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Abstract

Background: Many learning approaches to predicting RNA-binding residues in a protein sequence construct a
non-redundant training dataset based on the sequence similarity. The sequence similarity-based method either
takes a whole sequence or discards it for a training dataset. However, similar sequences or even identical
sequences can have different interaction sites depending on their interaction partners, and this information is lost
when the sequences are removed. Furthermore, a training dataset constructed by the sequence similarity-based
method may contain redundant data when the remaining sequence contains similar subsequences within the
sequence. In addition to the problem with the training dataset, most approaches do not consider the interacting
partner (i.e., RNA) of a protein when they predict RNA-binding amino acids. Thus, they always predict the same
RNA-binding sites for a given protein sequence even if the protein binds to different RNA molecules.

Results: We developed a feature vector-based method that removes data redundancy for a non-redundant
training dataset. The feature vector-based method constructed a larger training dataset than the standard
sequence similarity-based method, yet the dataset contained no redundant data. We identified effective features of
protein and RNA (the interaction propensity of amino acid triplets, global features of the protein sequence, and
RNA feature) for predicting RNA-binding residues. Using the method and features, we built a support vector
machine (SVM) model that predicted RNA-binding residues in a protein sequence. Our SVM model showed an
accuracy of 84.2%, an F-measure of 76.1%, and a correlation coefficient of 0.41 with 5-fold cross validation on a
non-redundant dataset from 3,149 protein-RNA interacting pairs. In an independent test dataset that does not
include the 3,149 pairs and were not used in training the SVM model, it achieved an accuracy of 90.3%, an
F-measure of 72.8%, and a correlation coefficient of 0.24. Comparison with other methods on the same datasets
demonstrated that our model was better than the others.

Conclusions: The feature vector-based redundancy reduction method is powerful for constructing a non-
redundant training dataset for a learning model since it generates a larger dataset with non-redundant data than
the standard sequence similarity-based method. Including the features of both RNA and protein sequences in a
feature vector results in better performance than using the protein features only when predicting the RNA-binding
residues in a protein sequence.
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Background
Interactions between proteins and RNA are fundamental
to many cellular processes [1]. Much experimental and
theoretical effort has been made to study protein-RNA
interactions, but their precise mechanism is not fully
understood. Motivated by the recent increase in struc-
tures of protein-RNA complexes, several theoretical stu-
dies such as supervised learning have been carried out to
predict RNA-binding residues in protein sequences. For
example, BindN [2] uses a support vector machine
(SVM) to predict the RNA- or DNA-binding residues in
a protein sequence based on the chemical properties of
amino acids. RNABindR [3,4] predicts the RNA-binding
residues in a protein sequence using a Naïve Bayes classi-
fier. However, none of these consider interacting partners
(i.e., RNA) for a given protein when predicting RNA-
binding amino acids. Thus, they always predict the same
RNA-binding sites for a given protein sequence even if
the protein binds to different RNA molecules.
We previously studied the interactions between protein

and RNA [5,6]. In an effort to discover binding-specific
features of amino acids and nucleotides, we performed
an extensive analysis of the recent structures of protein-
RNA complexes and computed several types of interac-
tion propensity (IP) between amino acids and nucleotides
[7]. Our analysis revealed that the IP of amino acid tri-
plets has a higher binding specificity than IP of individual
amino acids or other biochemical properties. In this
study, we modified the previous interaction propensity of
amino acid triplets and computed the new interaction
propensity from more structures of protein-RNA com-
plexes. In addition to the interaction propensity, we iden-
tified several features of protein and RNA sequences
which are effective for predicting RNA-binding amino
acids in a protein sequence.
In supervised learning approaches, preparing enough

training data is crucial for its success, but the training
data should be non-redundant and representative. Many
learning approaches to predicting RNA-binding residues
construct a training dataset based on the similarity of
protein sequences without considering their binding and
partial sequence information [2-4,8-10]. However, these
approaches eliminate much binding information from a
training dataset, which would otherwise be valuable for
predicting binding sites. Consider the protein sequences
of Figure 1, which were grouped by CD-HIT [11] based
on sequence similarity. CD-HIT selects the protein chain
A of the protein-RNA complex 1F7Y (1F7Y:A) as the
representative sequence of the cluster since it is the long-
est sequence in the cluster. For a small training dataset,
removing all the sequences except the representative one
will make the training dataset smaller beyond the bound-
ary of practicality. More importantly, the binding infor-
mation of the removed sequences is lost during the

redundancy reduction of the sequences. Including all the
redundant sequences of the cluster in a training dataset
would yield a classifier prone to over-fitting due to expo-
sure to a highly redundant training dataset.
In the standard redundancy reduction practice for

sequence data, a sequence is included in a training data-
set as a whole or discarded from a training dataset. It is a
take all or nothing approach, so no partial sequence of
the original sequence is allowed to be included in a train-
ing dataset. As a solution, we proposed a feature vector-
based reduction of data redundancy. In the feature
vector-based approach, two identical feature vectors with
different binding labels (i.e., one is binding and the other
is non-binding) are considered as different feature vec-
tors and both are included in a training dataset. The fea-
ture vector-based redundancy reduction method
constructs a powerful training dataset, especially when
there is not sufficient data available.
This paper describes a support vector machine (SVM)

model that predicts RNA-binding residues by considering
both RNA and protein sequences. The SVM model was
trained on a non-redundant dataset constructed by the
feature vector-based redundancy reduction method. To
the best of our knowledge, this is the first attempt to pre-
dict RNA-binding amino acids by considering the RNA
sequence that interacts with the protein. The rest of the
paper presents the details of the SVM model and its
experimental results.

Methods
Definition of protein-RNA binding sites
Different studies have used slightly different criteria for
protein-RNA binding sites. For example, in BindN [2]
and RNABindR [3,4] an amino acid with an atom within
a distance of 5Å from any other atom of a nucleotide was
considered to be an RNA-binding amino acid. However,
we use stricter criteria than that. In our study, an RNA-
binding amino acid should satisfy the following geo-
metric criteria for hydrogen boding (H bond) interaction
with RNA: the contacts with the donor-acceptor (D-A)
distance < 3.9Å, the hydrogen-acceptor (H-A) distance <
2.5Å, the donor-hydrogen-acceptor (D-H-A) angle > 90°
and the hydrogen-acceptor-acceptor antecedent (H-A-
AA) angle > 90°.
These criteria are slightly different from the ones used

in our previous studies [6,12] but they are the most com-
monly used criteria for H bonds. In particular, the criteria
of a H-A distance < 2.5Å and a D-H-A angle > 90° are
essential for the H bonds [13].

Interaction propensity of amino acid triplets
A same amino acid can have different interaction pro-
pensities with different neighbors or at different second-
ary structures. We computed the interaction propensity
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of three consecutive amino acids in a sequence (called
amino acid triplet or triple amino acids) and used the
interaction propensity to predict RNA-binding residues.
The interaction propensity IPtb between the amino acid
triplet t and the nucleotide b is defined by equation (1).

IP
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This definition of IPtb in equation (1) slightly differs
from the definition we used in our previous studies
[5-7]: (1) IPtb uses the inverse of the value that the H-A
distance multiplied by cosine of D-A-H angle of the H-
bonds between an amino acid in a triplet and a nucleo-
tide instead of using the H-bonds between an amino
acid and a nucleotide, and (2) IPtb uses amino acid tri-
plets instead of individual amino acids.
In equation (1), HA DAHtb cos( )∠ is the sum of the

inverse projected distance of H-A on the D-A between

triplet t and the binding nucleotide b, NPR is the total
number of amino acid triplets that bind to any nucleo-
tides, Nt is the number of triplets t, NP is the total num-
ber of amino acid triplets, Nb is the number of
nucleotide b and NR is the total number of nucleotides
in the dataset. The purpose of using the projected dis-
tance of H-A distance on D-A in the H bonds is to con-
sider H-A distance as well as the locational relationship
to D-A. The purpose of using the inverse value is to
assign higher IP values to the H-bonds with the close
donor-acceptor pairs than those with the distant donor-
acceptor pairs. Since there are 203 = 8,000 amino acid
triplets and 4 nucleotides, we computed 32,000 IPs
between amino acid triplets and nucleotides.

Encoding a feature vector
To predict RNA-binding amino acids in the protein
sequence, we represented several features of protein and
RNA sequences in a feature vector. The features can be
categorized into three different feature types: (1) global

Figure 1 The binding information loss during the redundancy reduction based on measuring sequence similarity. The clustered protein
sequences by CDHIT. Protein chain A of the protein-RNA complex 1F7Y (1F7Y:A) was selected as the representative sequence because it was the
longest. In the representative sequence, the boxed residues were determined as non-binding residues, but those residues in similar locations
were determined to be binding residues in the non-selected protein sequences. Hence, the binding information of non-selected protein
sequences was not contained in input training data which would only include the binding information of selected sequences.
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features of the protein sequence, (2) local features of
amino acids, and (3) partner features. The global features
represent the entire sequence information of the target
residue when the local features represent the individual
information of the residue. Since our prediction model is
to predict different binding sites in a protein sequence
depending on a partner sequence, the information of an
interacting partner sequence was used with the other
features.
• Global features of the protein sequence included

the sequence length (L) and amino acid composition
(C). The amino acid composition represented the fre-
quencies of 20 amino acids in a protein sequence. The
global features required a total of 21 elements in a fea-
ture vector, one for the sequence length and 20 for the
amino acid composition.
• Local features of amino acids included the normal-

ized position (N), hydropathy (H), accessible surface area
(A), molecular mass (M), and side chain pKa (P) value of
an amino acid, the interaction propensity (IP) of an amino
acid triplet. IP is represented as 4 elements, IP_A, IP_C,
IP_G, and IP_U, in which IP_A denotes the interaction

propensity of the amino acid triplet with the nucleotide
adenine (A) (Figure 2). The normalized position of an
amino acid in the sequence is calculated by equation (2).
Except for the normalized position, a same amino acid or
amino acid triplet has the same value for the local features.

Normalized Position 
Position 

Sequence Length
( )

( )
i

i= (2)

• Partner features represent the feature of the RNA
(R) sequence that interacts with the protein. For each of
the four nucleotides, we encoded the sum of the nor-
malized position of the nucleotide in the RNA sequence.
This feature is computed by equation (3) and repre-
sented as 4 elements (RA, RC, RG, RU) in a feature vec-
tor. Due to these elements, identical amino acid
sequences can be encoded into different feature vectors
if they interact with different RNA sequences.
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Figure 2 The structure of a feature vector with the window of 9 amino acids. A window of 9 amino acids corresponds to 7 overlapping
triplets: T(i – 3), T(i – 2), …, T(i + 2), T(i + 3). 21 global feature elements (1 L and 20 Cs) and 4 RNA feature elements (RA, RC, RG, RU) are encoded
once for a given pair of protein and RNA sequences. 9 local feature elements (N, H, A, M, P and 4 IPs) are encoded for 7 internal residues, and 5
local feature elements (N, H, A, M, P) for 2 terminal residues. Thus, the feature vector representing a window of 9 residues has a total of 98 (=21
+4+9×7+5×2) feature elements.
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Each of the feature elements is normalized into a value
in the range of [0, 1] when it is represented in a feature
vector. The global features of a protein (1 element for L
and 20 elements for C) and its partner feature (4 ele-
ments for R) are represented once for the entire protein
sequence, but the local features of a protein should be
represented for each internal residue (5 elements for N,
H, A, M, and P and 4 elements for IP). The IP is not
defined for the terminal residue of a window (e.g., ai–4
and ai+4 in Figure 2), so only 5 elements are represented
for the terminal residues.
Since we use overlapping triplets for encoding a

sequence, a sliding window of w residues corresponds to
w – 2 triplets. When a sliding window of w residues is
used, the feature vector for residue i starts with residue
i - (w – 1)/2 and covers the triplets T(i – (w – 1)/2 – 1),T
(i – (w – 3)/2 – 1), …,T(i + (w – 3)/2 – 1) and T(i + (w –
1)/2 – 1). Thus, a sequence fragment of w residues is
encoded as a feature vector of 9w+17 elements: 21 global
elements (1 L and 20 Cs), 4 RNA elements (RA, RC, RG

and RU), 9 local elements (N, H, A, M, P and 4 IPs) for
w – 2 internal residues, and 5 local elements (N, H, A,
M and P) for 2 terminal residues. A feature vector is
labeled +1 (positive) if the middle residue of the sequence
fragment is a binding residue, and -1 (negative) other-
wise. Figure 2 shows an example of a feature vector for
an amino acid sequence with a window of 9 amino acids.

Feature vector-based reduction of data redundancy
All of the protein sequences in the protein-RNA interact-
ing pairs are segmented into overlapping sequence frag-
ments of a window size w. From a protein sequence of n
amino acids, n sequence fragments are generated and
each sequence fragment is encoded into a feature vector.
Feature vectors are considered identical only when they
have the same elements and labels. When a prediction
model is trained by redundant data, a bias towards the
over-represented data is introduced during prediction.
Thus, a training dataset should be constructed with the
most representative data after removing redundant data.
We removed redundant data based on the feature vec-

tor representing the data. Figure 3 explains our method
with hypothetical sequences and features. In case 1 of
Figure 3, the sequence fragments s1 and s3 have the
same amino acid sequence and the middle amino acids of
s1 and s3 are both binding sites. Thus, the feature vectors
v1 and v3, representing the sequence fragments s1 and
s3, have the same vector elements and the label. To
remove redundant data in a training dataset, only one
sequence fragment (s1 in this example) is left and s3 is
discarded. On the other hand, the sequence fragments s2
and s4 have the same vector elements but different labels,
so their feature vectors v2 and v4 are not identical. Both
s2 and s4 are included in the training dataset. In case 2 of

Figure 3, an additional feature of the protein, sequence
length, is included in a feature vector. Then, the feature
vectors v5 and v6 representing the sequence fragments
s5 and s6 are no longer the same.
Figure 4 compares the feature vector-based redundancy

reduction method with the standard redundancy reduc-
tion method, which reduces data redundancy based on
the sequence similarity. The feature vector-based method
constructs a non-redundant training dataset with all pos-
sible sequence fragments in the protein sequences, but
the sequence similarity-based method discards some
sequence fragments and constructs a smaller training
dataset than the feature vector-based method. It is also
noticeable that the sequence similarity-based method
kept the redundant data (Fragment 2 and Fragment 4) in
the training dataset, whereas the feature vector-based
method did not include redundant data in the training
dataset by considering the feature vectors and their
labels. When a prediction model is trained by redundant
data, the model is biased toward the over-represented
data.

Performance measures
The performance of the prediction model was evaluated
using seven different measures: sensitivity (Sn), specificity
(Sp), precision rate (Pr), accuracy (Ac), net prediction
(NP), F-measure (Fm) and correlation coefficient (CC).

Sensitivity (Sn)=
TP

TP FN+
(4)

Specificity (Sp) =
+

TN

TN FP
(5)

Precision rate (Pr) =
+
TP

TP FP
(6)

Accuracy (Ac) = +
+ + +
TP TN

TP FP TN FN
(7)

NetPrediction(NP)
Sn Sp= +

2
(8)

F-measure (Fm)
Sn Sp

Sn Sp
= × ×

+
2

(9)

Correlation Coefficient (CC) = × − ×
+ + +

TP TN FP FN

TP FN TP FP TN( )( )( FFP TN FN)( )+ (10)

In these equations, the true positives (TP) are binding
residues that are predicted as the binding residues, the
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true negatives (TN) are non-binding residues that are
predicted as the non-binding residues, the false positives
(FP) are non-binding residues that are predicted as the
binding residues, and the false negatives (FN) are bind-
ing residues that are predicted as the non-binding
residues.
Sensitivity is the percentage of amino acids that are

RNA-binding and are correctly predicted as RNA-binding.
Specificity is the percentage of amino acids that are not
RNA-binding and are correctly predicted as non-binding.
Accuracy is the percentage of amino acids that are cor-
rectly predicted. But, accuracy may be misleading in highly
imbalanced datasets. For example, in a dataset of 10 posi-
tive and 90 negative samples, the accuracy becomes as
high as 90% if all the samples are classified as negative.
Net prediction is the average of sensitivity and specificity.
The correlation coefficient is the best single measure for
comparing the overall performance of different methods
[14].

Results and discussion
Datasets of protein-RNA interactions
We constructed three different protein-RNA interaction
datasets: PRI3149, PRI727 and PRI267. For the PRI3149

dataset, the protein-RNA complexes were obtained from
the Protein Data Bank (PDB) [15]. As of November 2009,
there were 442 protein-RNA complexes that were deter-
mined by X-ray crystallography with a resolution of 3.0Å
or better. After applying the geometric criteria for H
bonds to 442 protein-RNA complexes, 429 protein-RNA
complexes containing 3,149 pairs of interacting protein-
RNA sequences were left that satisfied the criteria. If a
protein p interacted with two different RNAs r1 and r2,
both pairs p – r1 and p – r2 were included in the dataset.
The 3,149 protein-RNA interacting pairs were formed by
2,663 protein sequences and 812 RNA sequences. From
the PRI3149 dataset, we constructed a set of non-redun-
dant feature vectors to train the SVM model.
The PRI727 and PRI267 datasets were constructed

independently from the PRI3149 dataset solely for test-
ing different methods of predicting RNA-binding resi-
dues in the protein sequence. We obtained a total of
107 protein-RNA complexes that had been deposited in
PDB since November 2009. After applying the geometric
criteria for H bonds to the 107 protein-RNA complexes,
727 protein-RNA interacting pairs with 592 protein
sequences and 244 RNA sequences were left to form
the PRI727 dataset.

Figure 3 An example of feature vector-based reduction of data redundancy. Case 1 shows the procedure of the feature vector-based
redundancy reduction method with a hypothetical amino acid-based feature when there is a different typed feature: sequence length feature is
combined with the amino acid-based feature to encode a feature vector in case 2. The sequence fragment (s3) is not included in the training
dataset in case 1 because it generates a redundant feature vector with the one from the sequence fragment (s1). However, the sequence
fragments (s5, s6) become the non-identical feature vectors (v5, v6) when using the sequence length feature in case 2 and both sequence
fragments are included in the training dataset.
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For a more rigorous evaluation, any pair of protein
and RNA sequences in the PRI727 dataset with >60%
sequence identity to the sequences in the PRI3149 was
removed. As a result, 267 protein-RNA interacting pairs
with 192 protein sequences and 211 RNA sequences
were left to form the PRI267 dataset. Details of the data-
sets are available as Additional Files 1, 2, 3.

Feature vector-based reduction of data redundancy
The PRI3149 dataset of 3,149 protein-RNA interacting
pairs initially contains 59,398 RNA-binding residues and
542,627 non-binding residues. If redundant data is not
removed, the number of positive sequence fragments is
the same as that of binding residues and the number of
negative sequence fragments is the same as that of non-
binding residues. We represented the 3,149 protein-RNA
interacting pairs as feature vectors using two different
combinations (all protein features and RNA features vs.
local features of protein) of their features and applied the
feature vector-based redundancy reduction method to
the feature vectors.
Table 1 shows the number of remaining feature vec-

tors after applying the feature vector-based redundancy
reduction method to the PRI3149 dataset. Common

vectors in Table 1 denote the feature vectors with the
same vector elements but with different binding labels
(’+1’ for binding and ’-1’ for non-binding) (Figure 4). It
is harder to separate different classes in the data with
more common feature vectors than those with fewer
common feature vectors. As shown in Table 1, using all
the features (protein sequence length, amino acid com-
position, normalized position, hydropathy, accessible
surface area, molecular mass, and side chain pKa of an
amino acid, IP of an amino acid triplet, sum of the nor-
malized position of each nucleotide type) produced
more feature vectors but a smaller proportion of com-
mon feature vectors than using the 6 local features of
protein (normalized position, hydropathy, accessible sur-
face area, molecular mass, and side chain pKa of an
amino acid, IP of an amino acid triplet) consistently in
all window sizes. When the 6 local features of sequence
fragments were represented, the feature vector-based
redundancy reduction method with a larger window size
constructed a larger non-redundant dataset. However,
when the 9 features were represented, the feature vec-
tor-based redundancy reduction method constructed
non-redundant datasets of similar size irrespective of
the window size.

Figure 4 Comparison of the sequence similarity-based method and the feature vector-based method for reducing data redundancy.
The sequence similarity-based method removes an entire sequence that is identical or similar to other sequences. When similar sequences are
eliminated from a dataset, their binding information is also lost. When the remaining sequence contains repetitive subsequences, redundant
data are generated from the subsequences. The feature vector-based method first represents every possible subsequence and its binding
information as a feature vector. A subsequence is removed only when it has the same feature vector as others. Subsequences with the same
amino acid sequence but different binding information are considered different and both are kept in the training dataset.
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Table 2 compares the performance of the feature
vector-based redundancy reduction method with that
of the sequence similarity-based redundancy reduction
method in the PRI727 and PRI267 datasets. S-method
is the sequence similarity-based redundancy reduction
using the CD-HIT program. The number in the par-
enthesis represents the sequence identity threshold of
CD-HIT clusters, and the longest sequence of each
cluster was included in a training dataset. F-method is
the feature vector-based redundancy reduction. The
only difference between S-method and F-method was
in their training datasets. The SVM model was trained
and tested using 9 features and a window size of 15.

In both the PRI727 and PRI267 datasets, F-method
was better than S-method in all performance
measures.

Interaction propensity of amino acid triplets with RNA
By equation (1), we computed 32,000 interaction pro-
pensities between the 8,000 amino acid triplets and 4
nucleotides with the PRI3149 dataset. 18,301 IPs (57.2%)
out of the total 32,000 IPs have non-zero values, ranging
from 0.0 to 4.789796. The pair of (SHK, U) had the
highest IP value (4.79) and CRR showed high IP values
(2.46) with all nucleotides on average. In contrast, 2,238
IPs had zero values with all nucleotides.

Table 1 Feature vectors generated by the feature vector-based redundancy reduction method to the PRI3149 dataset

Window size #Positive feature vectors #Negative feature vectors #Total vectors #Common vectors

with 9 features (L, C, N, H, A, M, pKa, IP, and R)

1 21,282 198,578 219,860 2,811

3 21,282 198,585 219,867 2,811

5 21,283 198,590 219,873 2,811

7 21,283 198,596 219,879 2,811

9 21,284 198,601 219,885 2,811

11 21,284 198,606 219,890 2,811

13 21,284 198,611 219,895 2,811

15 21,284 198,616 219,900 2,811

with 6 features (N, H, A, M, pKa, and IP)

1 6,286 74,829 81,115 3,641

3 6,618 81,390 88,008 3,164

5 6,658 81,729 88,387 3,164

7 6,681 81,891 88,572 3,168

9 6,702 82,010 88,712 3,170

11 6,710 82,129 88,839 3,168

13 6,720 82,242 88,962 3,169

15 6,733 82,349 89,082 3,173

The number of non-redundant feature vectors generated from the PRI3149 dataset by the feature vector-based redundancy reduction method with various
window sizes. Common vectors denote the feature vectors with the same vector elements but with different classes. 9 features: protein sequence length (L),
amino acid composition (C), normalized position (N), hydropathy (H), accessible surface area (A), molecular mass (M), and side chain pKa of an amino acid, IP of
an amino acid triplet (IP), sum of the snormalized position of each nucleotide type (R). 6 features: N, H, A, M, pKa, and IP of an amino acid.

Table 2 Comparison of the redundancy reduction methods for training datasets

Dataset construction Sensitivity (%) Specificity (%) Accuracy (%) NP (%) Fm (%) CC

PRI727 dataset

S-method (100%) 84.1 75.8 76.3 80.0 79.7 0.32

S-method (80%) 84.9 74.3 74.9 79.6 79.2 0.31

S-method (60%) 85.4 72.7 73.5 79.1 78.6 0.30

F-method 87.2 81.7 82.1 84.5 84.4 0.40

PRI267 dataset

S-method (100%) 46.4 86.8 85.9 66.6 60.5 0.14

S-method (80%) 48.4 85.7 84.9 67.2 62.2 0.14

S-method (60%) 49.6 84.5 83.8 67.0 62.5 0.13

F-method 60.7 91.0 90.3 75.8 72.8 0.24

S-method is the sequence similarity-based redundancy reduction using the CD-HIT program. The number in the parenthesis indicates the sequence identity
threshold of CD-HIT clusters. F-method is the feature vector-based redundancy reduction. The SVM model was trained and tested using 9 features and a window
size of 15. NP: net prediction. Fm: F-measure. CC: correlation coefficient.
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In addition to the IP of amino acid triplets, we com-
puted the four RNA feature elements (RA, RC, RG, RU)
for the RNA sequences in the PRI3149 dataset using
equation (3). The PRI3149 dataset contains 812 RNA
sequences, and only 312 sequences are distinguishable
from each other. When we represented the four RNA
features for the 312 sequences, they became unique fea-
ture vectors. The interaction propensities of amino acid
triplets and the RNA feature elements computed for the
PRI3149 dataset are available Additional Files 4 and 5.
To examine the effect of several definitions of the inter-

action propensity of amino acids with RNA on prediction
performance, we encoded the non-redundant dataset
using 3 different definitions of IP: the interaction propen-
sity sIP of single amino acids [5,6], the interaction propen-
sity prev_tIP of amino acid triplets used in our previous
study [7], and the interaction propensity tIP of amino acid
triplets used in this study. The results shown in Table 3
were obtained by 5-fold cross validation with a window
size of 15. The SVM models with the IP of the amino acid
triplets (i.e., prev_tIP and tIP) were better than those with
the IP of single amino acids (sIP). As a single feature, the
new IP of amino acid triplets (tIP) showed the best perfor-
mance. When the IP was used along with the RNA feature
elements (RA, RC, RG, RU), performance always improved
compared to the prediction with the IP only.

Implementation and prediction results
We implemented a set of programs for extracting H
bonds with various geometric criteria from PDB files, for
encoding a feature vector for the data, and for running a
SVM model with several different conditions. A program
called HBPLUS (http://www.biochem.ucl.ac.uk/bsm/
hbplus/home.html) is widely used to extract H bonds
from PDB files, but it cannot deal with new PDB files
that have atom names such as O2′ and OP1 in RNA. In
our program for extracting H bonds, atoms O2′ and O3′

of RNA were included as potential donors of H bonds.
Likewise, atoms OP1, OP2, O2′, O3′, O4′ and O5′ of
RNA were included as potential acceptors of H-bonds.
To evaluate the effect of the window size on predicting

RNA-binding amino acids, several datasets were con-
structed by applying the feature vector-based redundancy
method with various window sizes to the PRI3149 dataset.
Table 4 shows the prediction performance of the 5-fold
cross validation on the SVM models trained by 8 different
non-redundant datasets built from the PRI3149 dataset
(see Table 1). All the results shown in Table 4 were
obtained with the following parameter values: C=10, g=1/
#feature elements in the dataset, w+ (weight of positive
class)=#negative feature vectors/#positive feature vectors,
and w-(weight of negative class)=1. The prediction perfor-
mance improved as the window size increased up to 15 in
all performance measures. Therefore, the best prediction
performance (an accuracy of 84.2%, an F-measure of
76.1%, and a correlation coefficient of 0.41) of 5-fold cross
validation was achieved from the SVM model with a win-
dow size=15.

Comparison with other methods
We compared our method to other machine learning
methods for predicting RNA-binding amino acids in a
protein sequence. BindN [2] uses a support vector
machine with different amino acid features. RNABindR
[3,4] predicts RNA-binding residues in a protein sequence
using a Naïve Bayes classifier. These methods use different
features to encode a feature vector and different machine
learning algorithms to build a prediction model, but they
performed the sequence similarity-based redundancy
reduction method for their training datasets and did not
consider the information of interacting partner sequences
in predicting RNA-binding residues.
To objectively compare these methods we tested

them on the PRI727 dataset and the PRI267 dataset,

Table 3 The effect of IP and RNA features on prediction
performance

Features Sn (%) Sp (%) Pr (%) Ac (%) NP (%) Fm (%) CC

sIP 41.3 70.9 13.2 68.1 56.1 52.2 0.08

prev_tIP 57.0 83.5 27.0 80.9 70.3 67.8 0.29

tIP 57.4 83.8 27.5 81.3 70.6 68.2 0.30

sIP + R 57.3 83.1 26.7 80.6 70.2 67.8 0.29

prev_tIP + R 61.5 85.1 30.7 82.8 73.3 71.4 0.34

tIP + R 61.4 85.2 30.8 82.9 73.3 71.4 0.35

The non-redundant dataset with a window size=15 was encoded into the
feature vectors with different interaction propensities separately or with the
RNA feature (R) in combination. The prediction performance was evaluated by
5-fold cross validation. sIP: the interaction propensity of single amino acids.
prev_tIP: the previous version of the interaction propensity of amino acid
triplets. tIP: the modified interaction propensity of amino acid triplets. Sn:
sensitivity. Sp: specificity. Pr: precision rate. Ac: accuracy. NP: net prediction.
Fm: F-measure. CC: correlation coefficient.

Table 4 The prediction performance with different
window sizes

Window size Sn (%) Sp (%) Pr (%) Ac (%) NP (%) Fm (%) CC

1 47.3 73.6 16.1 71.1 60.4 57.6 0.14

3 66.5 84.8 30.9 82.7 74.1 72.6 0.36

5 64.9 84.5 30.9 82.6 74.7 73.4 0.36

7 65.6 84.9 31.7 83.0 75.2 74.0 0.37

9 66.8 84.9 32.2 83.2 75.9 74.8 0.38

11 66.8 85.4 32.8 83.6 76.1 74.9 0.39

13 67.1 85.8 33.7 84.0 76.5 75.3 0.40

15 68.4 85.9 34.1 84.2 77.1 76.1 0.41

The non-redundant dataset with various window sizes were constructed by
applying the feature vector-based redundancy reduction method to the
PRI3149 dataset. All 9 features were encoded in the feature vector. The
prediction performance across varying window sizes was evaluated by 5-fold
cross validation. Sn: sensitivity. Sp: specificity. Pr: precision rate. Ac: accuracy.
NP: net prediction. Fm: F-measure. CC: correlation coefficient.
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separately. Both the PRI727 and the PRI267 datasets
were different from the PRI3149 dataset, which was
used to train our SVM model. Table 5 shows the pre-
diction performance of the methods with various
options. RNABindR was run with three options: high
sensitivity (sn), high specificity (sp) and optimal (opt).
BindN was executed with two options: expected sensi-
tivity of 80% (sn80) and expected specificity of 80%
(sp80). In order to examine the effect of using the
RNA feature on the prediction performance, we built
two SVM models that used different features. ‘Our
method 1’ in Table 5 represents an SVM model that
used the RNA features as well as the 8 features (2 glo-
bal features and 6 local features) of protein. ’Our
method 2’ represents an SVM model that used the 8
protein features only. For both ‘Our method 1’ and
‘Our method 2’, the feature vector-based method was
used to construct non-redundant training datasets
from the PRI3149 dataset.
In both the PRI727 and the PRI267 datasets, our

SVM model that used the RNA features as well as the
protein features (Our method 1) had higher values for
both sensitivity and specificity, but the other methods
had either high sensitivity or specificity. As well as the
high sensitivity and the high specificity, our SVM
model (Our method 1) had the higher values for the
net prediction, F-measure and the correlation coeffi-
cient than the other methods including our SVM
model that used protein features only (Our method 2).
Our SVM model that used protein features only (Our
method 2) achieved the similar or better prediction

performance than the existing methods. This result
shows the feature vector-based method and the fea-
tures are useful to construct a highly accurate predic-
tion model in prediction of RNA-binding residues.
Details of the prediction results are available in Addi-
tional Files 6 and 7. Figure 5 shows an example of pre-
diction by the SVM model (Our method 1 in Table 5)
for protein chain B with RNA chain D in a protein-
RNA complex (PDB ID: 3OVB).

Conclusions
Most learning approaches to predicting RNA-binding
residues in a protein sequence construct a training data-
set based on the sequence similarity. During the process
of removing redundancy in sequence data a whole
sequence is either taken or discarded for the training
dataset. Similar sequences or even identical sequences
often have very different binding sites when their bind-
ing partners change. However, much binding informa-
tion is lost when a training data is constructed by the
sequence similarity-based redundancy reduction method.
We developed a feature vector-based method for

removing data redundancy. Our method constructed a
larger training dataset of non-redundant data than the
standard sequence similarity-based reduction method.
Furthermore, the training dataset constructed by the
feature vector-based method did not contain redundant
data, whereas the dataset built by the sequence similar-
ity-based method was likely to produce redundant data
when a single sequence contains similar subsequences
within the sequence.

Table 5 Comparison of prediction methods on the PRI727 and PRI267 datasets

Approach Sensitivity (%) Specificity (%) Accuracy (%) NP (%) Fm (%) CC

PRI727 dataset

RNABindR (opt) 51.5 90.4 88.0 70.9 65.6 0.31

RNABindR (sp) 29.6 96.6 92.4 63.1 45.3 0.29

RNABindR (sn) 90.2 45.9 48.6 68.0 60.8 0.18

BindN (sn80) 88.4 51.0 53.4 69.7 64.7 0.19

BindN (sp80) 67.2 77.2 76.5 72.2 71.8 0.25

Our method 1 87.2 81.7 82.1 84.5 84.4 0.40

Our method 2 82.1 76.4 76.8 79.2 79.1 0.32

PRI267 dataset

RNABindR (opt) 4.0 98.4 96.4 51.2 7.6 0.03

RNABindR (sp) 0.8 99.8 97.8 50.3 1.7 0.02

RNABindR (sn) 65.9 57.9 58.1 61.9 61.7 0.07

BindN (sn80) 80.2 53.5 54.0 66.8 64.2 0.10

BindN (sp80) 45.6 80.2 79.5 62.9 58.1 0.09

Our method 1 60.7 91.0 90.3 75.8 72.8 0.24

Our method 2 48.0 85.6 84.8 66.8 61.5 0.13

’Our method 1’ used all the 9 features (2 global features and 6 local features of protein and the RNA feature), whereas ’Our method 2’ used the 8 protein
features (2 global features and 6 local features of protein) only. sn: high sensitivity option. sp: high specificity option. opt: optimal option. sn80: expected
sensitivity of 80%. sp80: expected specificity of 80%. NP: net prediction. Fm: F-measure. CC: correlation coefficient.
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Previous approaches to predicting RNA-binding residues
in a protein sequence do not consider the interacting part-
ner (i.e., RNA) of a protein. As a result, they always predict
the same RNA-binding sites for a given protein sequence
even if the protein binds to different RNA molecules. We
took both protein and RNA sequences as input, and con-
sidered RNA feature to predict RNA-binding residues in
the protein sequence. Our SVM model showed an accu-
racy of 84.2%, an F-measure of 76.1%, and a correlation
coefficient of 0.41 with 5-fold cross validation on the 3,149
protein-RNA interacting pairs.
For a more rigorous evaluation we tested our SVM

model on two new datasets, which were not used in

training the model. In the new datasets, our SVM
model showed an accuracy of 90.3%, an F-measure of
72.8% and a correlation coefficient of 0.24. Comparison
of our SVM model with other methods on the same
datasets demonstrated that ours is better than other
methods.
In this study we identified effective features of pro-

tein and RNA (i.e., the interaction propensity of
amino acid triplets and RNA features) for predicting
RNA-binding residues and developed a new data
redundancy method for constructing a training data-
set. These will be useful in other studies of protein-
RNA interactions.

Figure 5 Prediction of binding sites in protein chain B with RNA chain D of 3OVB. 21 binding amino acids (blue balls, TP) and 408 non-
binding amino acids (orange ball and sticks, TN) were predicted correctly. 12 non-binding amino acids were incorrectly predicted as binding
(yellow balls, FP), and there was no binding amino acids that were incorrectly predicted as non-binding (no FN). In RNA protein-binding
nucleotides are represented in dark gray balls and sticks, and non-binding nucleotides in gray wireframes. The ’+’ symbol below in the text line
represents a binding amino acid while the ’-’ symbol represents a non-binding amino acid. Due to the limited space, the last 295 amino acids of
protein chain B are not shown in the sequences. TP: true positives. TN: true negatives. FP: false positives. There are no false negatives (FN) in this
example.

Choi and Han BMC Bioinformatics 2011, 12(Suppl 13):S7
http://www.biomedcentral.com/1471-2105/12/S13/S7

Page 11 of 12



Additional material

Additional file 1: The PRI3149 dataset. 3,149 protein-RNA interacting
pairs.

Additional file 2: The PRI727 dataset. 727 protein-RNA interacting
pairs.

Additional file 3: The PRI267 dataset. 267 protein-RNA interacting
pairs.

Additional file 4: The interaction propensity of the amino acid
triplets The interaction propensity of the amino acid triplets with 4
nucleotides, computed by equation (1) with the PRI3149 dataset

Additional file 5: The RNA feature of the 312 RNA sequences The
RNA feature computed for the 312 RNA sequences by equation (3)

Additional file 6: Prediction results with the PRI727 dataset
Prediction of RNA-binding amino acids in the PRI727 dataset

Additional file 7: Prediction results with the PRI267 dataset
Prediction of RNA-binding amino acids in the PRI267 dataset
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