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Abstract

Background: Essential events of cell development and homeostasis are revealed by the associated changes of cell
morphology and therefore have been widely used as a key indicator of physiological states and molecular
pathways affecting various cellular functions via cytoskeleton. Cell motility is a complex phenomenon primarily
driven by the actin network, which plays an important role in shaping the morphology of the cells. Most of the
morphology based features are approximated from cell periphery but its dynamics have received none to scant
attention. We aim to bridge the gap between membrane dynamics and cell states from the perspective of whole
cell movement by identifying cell edge patterns and its correlation with cell dynamics.

Results: We present a systematic study to extract, classify, and compare cell dynamics in terms of cell motility and
edge activity. Cell motility features extracted by fitting a persistent random walk were used to identify the initial set
of cell subpopulations. We propose algorithms to extract edge features along the entire cell periphery such as
protrusion and retraction velocity. These constitute a unique set of multivariate time-lapse edge features that are
then used to profile subclasses of cell dynamics by unsupervised clustering.

Conclusions: By comparing membrane dynamic patterns exhibited by each subclass of cells, correlated trends of
edge and cell movements were identified. Our findings are consistent with published literature and we also
identified that motility patterns are influenced by edge features from initial time points compared to later sampling
intervals.

Background
Cellular populations exhibit phenotypic heterogeneity
across various physiological and pathological processes.
The causative factors range from biological noise to com-
plex distinct states of cell functions. Different approaches
have been reported to study cellular heterogeneity from
different fronts. Morphological responses to perturba-
tions in cellular environments have been characterized by
patterns of signaling marker colocalization from high
content images [1]. Cellular heterogeneity through FACS
(fluorescence activated cell sorting) has been captured to
provide a large number of cell read outs, but without any

spatial information [2]. Earlier studies have profiled cell
subpopulations from fluorescent images by computing
dynamic features of the cells along with static features by
using unsupervised clustering [3]. Cellular morphology is
a highly dynamic entity and time-lapse high-content ima-
ging of cells provides an unprecedented opportunity
to understand the mechanisms of morphodynamics.
Morphodynamics is defined as a correlation of cell
morphology and the underlying functional activity
with respect to time [4]. This concept has enabled the
discovery of functionality of specific biomolecules and
demanded new techniques for interpretability, accuracy,
and speed. Extensive research has been performed in
understanding and application of morphodynamics of
cell edges. High throughput analysis of cell morphody-
namics has been used to discover functions of specific
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proteins [5]. A series of studies using quantitative fluores-
cent speckle microscopy have revealed the power of com-
puter assisted high throughput analysis of time-lapse
microscopy images: an analysis of the number of speckles
suggested distinct regulation of actin polymerization-
depolymerization dynamics in different intracellular
regions [6,7]. The ratio of protrusive to inactive cell peri-
meter has been used as the measure of cell edge activity
[8]. Difference of the cell membrane boundary was
reported in the study of cell spread dynamics [9] and its
role in actin transport for protruding lamellipodia [10],
formation of filopodia downstream of SCAR (Suppressor
of cAMP receptor) [11], and the role of cofilin as a pro-
moter of actin polymerization leading to protrusion [12].
Alternatively protrusion rates are measured at multiple
locations of the cell boundary. The morphological
changes have been studied by placing markers in the cell
boundary at regular intervals and tracking their displace-
ment in orthogonal directions to the cell boundary [13].
Instead of direct displacement of tracking, cell bound-
aries can be analyzed with kymographs [14]. This techni-
que involves high resolution time-lapse microscopy to
capture subcellular motion which is widely used for rela-
tively small sample sizes due to highly magnified imaging
and for relatively short periods of time. However, these
approaches are not suitable for high throughput applica-
tions due to computational complexity compounded by
elaborate cell shapes and its ever changing dynamics.
In this work, we propose novel morphodynamics con-

cepts to quantify the relationship between whole cell
movement and edge dynamics. Whole cell movement as a
function of space and time and its possible influence on
protrusion retraction dynamics have not been studied in
detail. Heterogeneous populations exhibiting characteristic
protrusion and retraction patterns have been completely
exploited by us in order to identify possible correlations
with motility features. Such information is helpful in
determining overall motility functions of cells in collective
migration. Cell membrane movements are extracted and
protrusion/retraction dynamics along the cell edges at dif-
ferent time points were obtained to correlate with whole
cell motility features. An approach to extract such patterns
from heterogeneous cell populations is presented. Our
experiments show that the cells with similar kinetic pro-
files display different edge movements and that features
observed in initial time points have profound influence in
determining the type of motility patterns as the cell adapts
to its motion.

Results and discussion
Dataset
Cells used in this experiment were mouse macrophage
cell lines IC-21 (American Type Culture Collection
(ATCC) TIB-186) treated with solvent DMSO (Dimethyl

sulphoxide). Cells were observed over a period of 120
minutes and 12-bit images with 0.5 µm2 pixels were col-
lected using Cellomics KineticScan at every 10 minutes
giving a total of 12 snapshots. Data and statistical analysis
were implemented in MATLAB R2008a (The Math-
works, Inc., USA) and R project [15].

Cell identification and tracking
Cells are bright objects protruding from a relatively uni-
form dark background in microscopic images. The pur-
pose of segmentation is to identify cells accurately in an
automated manner. Segmentation algorithms cluster
image pixels based on their features into two groups
representing objects of interest and background. Simple
methods like thresholding do not work because they are
not robust to noise and artifacts of images as well as
images with overlapping cells [16]. Methods such as region
growing, watershed, clustering and active contours have
been attempted on cellular images [17-19]. However, these
methods fail on images composed of overlapping or clus-
tered cells. Cell segmentation is crucial to this work since
tracking and subsequent analyses depend on the segmen-
tation results. In our analyses, active contour without
edges was used since it is not dependent on initialization,
noise and boundary leakage by using intensity gradients
[20,21]. The energy functional for regularization term is
controlled by the length terms only and it was set accord-
ing to the resolution of fluorescence intensity. The two
phase level-set method is able to identify cells with maxi-
mum shape information since it handles sharp corners
and cusps of the objects well. Thus, the original shapes of
cells are retained yielding accurate features. Since
dynamics of cell is dependent on geometric centroid, cell
shape has to be accurately segmented. We subjectively
evaluated segmentation results from different methods
and confirmed that slight changes in the methods could
dislodge the cell boundary by several pixels but did not
affect the global boundary movement. Since we used run
length of the boundary, minor boundary displacement did
not affect the overall downstream analysis.
The spatiotemporal tracking method does not assume

overlapping of cell boundaries between adjacent frames.
It is able to handle dividing cells by using a set of heuris-
tics. Four different scenarios are encountered during
matching: (i) a cell in the current frame could match a cell
in the proceeding frame (a successful match), (ii) no
matching for cells in both frames (cells moving out of
focus), (iii) one cell in current frame matches with more
than one cell in the proceeding frame (possible cell divi-
sion), and finally (iv) more than one cell in the current
frame matches with only one cell in the proceeding frame
(over segmentation). For differentiating case (iii) and case
(iv), matching between second and third frame are
checked to see whether a cell in multiple matches has its
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own unique characteristics. If a cell matches its counter-
parts in second and third frame, then we conclude that
this cell has divided in the middle frame. If it has only one
match in the third frame, then we conclude that this cell
might have been over-segmented in the second frame. We
used the same settings for weights as suggested by authors
[22].

Classification of cell features
The classification of cells is done in two steps. First, the
numbers of clusters are found by modeling features by
using a Gaussian mixture model; second, unsupervised K-
means clustering was used with the number of clusters,
obtained with GMM model. Since underlying structure of
distribution of cell features are unknown, unsupervised
approaches are more suitable. However, K-means cluster-
ing requires to know the number of clusters a priori. In
order to implement Gaussian mixture models, cell features
have to be normally distributed. We used probability plots
and chi-square goodness-of-fit to test for Gaussianity of
features. Probability plot is a graphical method for deter-
mining whether sample data conforms to a hypothesized
distribution decided upon visual examination. The data is
sorted and plotted against the midpoint in the jump of
the empirical cumulative distribution function (CDF) on
Y-axis. The CDF F(z), describes the probability that a ran-
dom variable z with a given probability distribution takes
on a value less than or equal to a specific value. The mid-
point is given by (j – 0.5)/N for jth sorted value from a
sample size of N. This plot also includes a reference line
joining the first and third quartile and extrapolated out to
the ends, which is useful for judging whether data follows
a normal distribution. A departure from normality is indi-
cated by presence of points away from the reference line
(Fig. 1). All features except one, the total path length con-
formed to normality test. Since the cluster membership
did not change significantly by removing total path length,
this feature was included to derive the cell classes. A chi-
square goodness-of-fit test also showed that Gaussian mix-
ture modeling is appropriate to represent heterogeneous
cell populations (Table 1).
The GMM model was computed for every possible

number of subpopulations in the dataset (K = 2, 3, …
100). To eliminate the influence of convergence failures,
each run was attempted up to 5 times with new initial
conditions until convergence was reached. MDL criteria
were used since it can lead to a consistent estimator
even for large values of observations. For each value of
K, MDL was calculated after convergence in the EM
step. The optimal value of K corresponds to minimum
MDL. In our dataset, this method identified four distinct
subclasses from dynamic features. These classes were
termed as (i) Class 1, (ii) Class 2, (iii) Class 3, and (iv)

Class 4. The features for individual classes are tabulated
in Table 2.

Classification of edge features
The cell images sampled at 12 different time points pro-
vided a vector of values of protraction and retraction
velocities respectively. This vector constitutes to an edge
print of a cell, characterizing the membrane movement
of the cell over time. For dataset with 12 time points, the
features are computed using the adjacent frames. Finally
we get a feature set of 11 protrusion features and 11
retraction features and thus 22 features in total. This set
of measurements provides novel dynamic features to cap-
ture individual cell movements and membrane (edge)
dynamics. This measurement does not necessarily inform
about cell migration, since membrane retraction and pro-
trusion without translocation can lead to high values.
Reference sets for each cell class were estimated by
K-means clustering. The initial centroids for K-means
were obtained by performing the clustering phase on a
random 10% sample of the data. Since the choice of
initial cluster centroids is important, only 10% of ran-
domly sampled data was used for K-means clustering.
The centroids obtained from the subsamples (first phase)
was used as seeds in the clusters for the second phase
which used all the data. This procedure overcomes
the problem of initialization in K-means clustering.
About 1000 iterations were used each time to get the
cluster centroids and members. K-means identified dif-
ferent number of sub-clusters in each of the cell classes
(Fig. 2a - 2h).

Correlation of cell and edge features
To evaluate correlation between cell and edge features,
Spearman’s rank correlation (r) and multiple correlation
analysis (R2) were used on averaged dynamic and edge
features over time. The Spearman rank correlation is a
non-parametric measure of statistical dependence
between two features using the ranks of features and is
less sensitive to outliers. For this analysis, MATLAB
function ‘corrcoef’ with type ‘Spearman’ was used. Cor-
relation coefficient was computed for every pair of moti-
lity and edge features and the results were reported for
statistically significant correlations at p < 0.05. The p-
values were computed by transforming the correlation

to create a t-statistic ( t s
N= −
−

r
r

2
1 2 ; where r = correla-

tion coefficient, N = number of samples) having N – 2
degrees of freedom and under the assumption that fea-
tures are normally distributed. Rank correlations indi-
cated that both motility and edge features varied in the
degree of their correlation among clusters of cell
dynamics (Fig. 3). The correlation plots in Figs. 3a - 3d
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show that the level of correlation varies among different
classes. Multiple correlation measures the goodness-of-
fit in linear regression; the ‘speed’ was the dependent
variable and all other features (motility and edge

features) were the predictors in regression analysis. This
analysis showed strong positive correlation for all the
features (R2 = 0.97). In order to account for bias due to
outliers in the regression analysis, we also performed

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1 Tests of normality of features: every cross in the plot corresponds to midpoint in the jump of empirical cumulative distribution
function on Y axis to sorted data in X axis (number of cells=5415).
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jackknife cross-validation (results are given in Table 3).
This qualitatively prove the existence of correlation of
edge patterns with whole cell motility in individual
classes.
• Class 1: This class consists of cells with low speed and

persistence. The pattern shows that active membrane ruf-
fling may not translate into active cell movement. It might
have even restricted the cells overall movement which is
evident from the low total displacement feature. For exam-
ple, NRK49F cells with defect in rho or adducin have been
shown to have active lamellopodial ruffling, while being
unable to migrate [23] (Fig. 2a and 2b).
• Class 2: Cells with medium speed and persistence

showing positive correlation for protrusion and retrac-
tion. Similar protrusion and high retraction activity may
be the reason for multiple peaks of edge features over the
length of time (Fig. 2c and 2d).
• Class 3: This class is represented by fast moving cells

displaying high speed and persistence and is positively
correlated with edge movement features. These cells also
had the highest edge activity which may help in moving
the cell over long distances with high persistence. When
the static features of these cells were analyzed they had
typical fan shaped morphology (Fig. 2e and 2f).
• Class 4: These cells frequently change directionality as

indicated by low persistence. Edge features are also posi-
tively correlated to dynamic features and this suggests that
the frequent change in direction may be accompanied by a
respective change in edge movements. Although the cells
change direction, they travel within a limited radius more

like in spiral motion. This can be seen from the low total
displacement and mean path length compared to class 3.
Even though, the cell speed is greater than Class 3, the
cells do not travel in a constant direction (as indicated by
low persistence) and tend to display a spiral or circular
concentric motion (Fig. 2g and 2h).
In order to determine which features contributed to

the diversity of correlation patterns, or rather influenced
the type of motility pattern adapted by any cell, factor
analysis was performed on all four sub-clusters. This
method has been proven efficient in describing cell
shape dynamics in cancer cells [24]. This method postu-
lates the existence of a small number of latent factors
which explains the systematic contribution of the origi-
nal features. The number of factors that should be
retained is suggested by the Kaiser criterion (factors
with Eigenvalues more than or equal to one should be
retained) [25]. For class 1 and class 2, six factors were
retained which accounted for 91.6% and 90.1% of the
variance respectively. For class 3 and class 4, seven fac-
tors were retained and they accounted for 88.2% and
89.0% of the variance respectively (Table 4). Factor 1
indicated the presence of high number of edge fea-
tures. In particular, protrusion and retraction features
extracted from initial six time points (Table 5 ). Factor
2 had predominantly cell dynamics features. The
remaining factors contained edge features sampled
from middle to end time points. These findings con-
clude that the motility patterns are decided largely by
cell membrane features observed in the initial time
points.

Conclusion
Non-genetic heterogeneity in cell populations arises from
a combination of intrinsic and extrinsic factors. This het-
erogeneity has been measured for gene transcription,
phosphorylation, cell morphology, drug perturbations, and
used to explain various aspects of cellular physiology. Our
understanding of individual players in cell migration pro-
cess is increasing; but there remains a vital gap to be filled
concerning how they are coordinated spatially and tempo-
rally. New techniques are needed which can quantify
dynamic cell movements at the level of single cell resolu-
tion in an automated manner.
Here, we report multivariate analysis of different sets of

motility features through a meaningful combination of
both novel (edge) and existing (centroid based) dynamic
features. The first set of measurements has been already
proved to improve subpopulation analysis. The second set
of features is a novel measurement of edge activity. These
features capture pixel movement, either through protrusion
or retraction frame by frame over the entire length of
observation. Since these measurements are temporally
sampled, it is suitable to study cell activity over time. These

Table 1 Chi-square goodness-of-fit for dynamic features

Feature c2 p value

Speed 2.62 < 0.001

Persistence 2.19 < 0.001

Chemotactic Index 9.92 < 0.001

Total path length 43.10 0.78

Total displacement 7.53 < 0.001

Random motility coefficient 7.07 < 0.001

Mean path length 4.40 < 0.001

Persistence length 4.40 < 0.001

Table 2 Feature values of individual clusters

Feature Class 1 Class 2 Class 3 Class 4

Speed (µm2/h) 9.50 9.53 11.95 12.32

Persistence (h) 1.46 8.93 10.57 0.82

Chemotactic Index 0.10 0.41 0.34 0.34

Total path length (µm) 15.07 14.46 16.89 17.27

Total displacement (µm) 1.85 6.10 6.55 6.04

Random motility coefficient 2.32 8.30 56.76 21.96

Mean path length (µm) 0.30 1.50 3.41 1.98

Persistence length (µm) 13.87 85.1 126.31 10.10
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features are unique and not necessarily a measurement of
cell migration, as membrane protrusion-retraction is possi-
ble without translocation. Our data indicate different levels
of correlation between sets of features, depending on the

dynamic classes they belong to. This type of relationship
was expected for this cell line due to its highly motile nat-
ure. Our findings compare well with previous literature
[23].

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2 Edge prints for reference population from edge classes: left panel shows protrusion activity and right panel shows retraction activity
for: class 1 (a and b); class 2 (c and d); class 3 (e and f); class 4 (g and h). The lines in each subplot represent edge prints of reference cells of
each edge class.
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The introduction of edge features is the major contribu-
tion of this work since it captures edge activity of large
number of cells from high throughput imaging platforms in
a way that no other profiling methods we are aware of have
previously demonstrated. Our profiling method was able to
provide additional insights which might have been missed
using population based cell migration techniques or classi-
cal motility assays. To conclude, we have identified hetero-
geneous edge patterns of related dynamic profiles and
validated our correlation patterns by comparing with pre-
vious publications. The dynamic profiles were obtained
from cell displacement data by GMM clustering. Edge
prints from these subclasses were further used to character-
ize heterogeneity arising due to different edge movements.
The patterns arising from statistical correlation analysis
were validated by comparing with previous publications.
We also provided statistical evidence that initial time point
edge features influence the motility patterns that a cell
adapts.

Methods
Segmentation and tracking of cells
Level-set was used to segment cells from images, inde-
pendently at all the time frames [20]. The image gradi-
ent was used to stop the evolution of level-sets.

Touching cells were further separated by a marker-
controlled watershed that uses initially segmented cells
as shape markers for marking function [26]. The seg-
mented cells in adjacent frames were correspondingly
matched by spatiotemporal matching scheme that uses
features like size, intensity, and spatial coordinates for
matching [22]. The tracks of cells were subsequently
corrected for mismatches and only those cells moving
for the entire period of observation were included for
further analysis.

Dynamic feature extraction
Dynamic features of cells are classified into two cate-
gories based on motility modes: features describing
whole cell dynamics and features representing membrane
(edge) dynamics. Two different methods were employed
to extract the two sets of features.
Cell dynamics
A persistent random walk model was used to study
directional migration of cells, in which the geometric
centroid of a cell forms the basis for modeling cell moti-
lity [27]. A total of eight cell dynamics features were
extracted: speed, persistence, chemotactic index (CI),
total path length (TPL), total displacement (TD), ran-
dom motility coefficient (RMC), mean path length

(a) (b)

(c) (d)

Figure 3 Correlation analysis of dynamic and edge features: Spearman rank correlation coefficient (r) demonstrates various levels of correlation
among the features in different dynamic classes. The subplots (a), (b), (c), and (d) depicts distribution of features in four dynamic classes
obtained from GMM clustering (class 1, class 2, class 3, and class 4). A black bullet on top of the bar represents significant correlation at (p <
0.05). CI: chemotactic index, TPL: total path length, TD: total displacement, RMC: random motility coefficient, MPL: mean path length, PrL:
persistence length, ProVL: protrusion velocity, RetVL: retraction velocity.
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(MPL) and persistence length (PrL) [3]. The set of sub-
populations obtained from these features represent cell
classes. The overview of the analysis is illustrated in the
flowchart of Fig. 4 and Algorithm 1 summarises the dif-
ferent steps in the analysis.

Algorithm 1 Statistical analysis of features                                                             

Step 1: Deteermine the number of clusters by GMM modeling

Step 2: Perfoorm K-means clustering to find subclasses

Step 3: Determinee correlation between edge features and cell features, usiing

(i) Spearman rank correlation coefficient

(ii) Multiple  correlation analysis

Step 4: Perform factor analysis to deetermine which factors are most correlated       

A Gaussian mixture model (GMM) is used to represent
feature distribution of the cell classes. The initial subpopu-
lations were obtained by Gaussian mixture modeling of
the cell feature distribution where each cluster is repre-
sented by a parametric distribution. The weighted sum of
K component Gaussian densities is given by:

p x w G xk k k

k

K

( : ) ( : , )q m= ∑
=

∑
1

where x xi i
N= ={ } 1 is a set of N samples and xi is the

ith sample comprising of n features, { }wk k
K

=1 are the

mixture weights, and { ( : , )}G x k k k
Km ∑ =1 are component

Gaussian densities. Each class density is a n-variate
Gaussian function. The mixture weights satisfy the con-

straints that wk

k

K

=
=

∑ 1
1

. The complete Gaussian mixture

model is parameterized by the mean vector, covariance
matrices and mixture weights from all component den-
sities. These parameters are collectively represented as

Table 3 Leave-one-out cross-validation of correlation
(mean ± std.dev) ×10–4

Feature Protrusion Retraction

Speed 55.78 ± 2.93 380.18 ± 3.20

Persistence –263.96 ± 0.40 –5.33 ± 0.45

CI –31.24 ± 1.98 377.82 ± 3.08

Class 1 TPL 95.82 ± 4.64 418.90 ± 3.66

TD 15.80 ± 2.52 426.21 ± 2.11

RMC –88.32 ± 2.22 285.68 ± 1.60

MPL –168.86 ± 1.33 169.92 ± 3.51

PrL –169.26 ± 1.33 169.84 ± 3.51

Speed 182.02 ± 1.15 346.26 ± 0.80

Persistence 329.58 ± 0.65 498.53 ± 0.82

CI 411.92 ± 3.50 489.53 ± 1.28

Class 2 TPL 84.41 ± 0.02 299.57 ± 0.48

TD 427.14 ± 1.57 602.57 ± 0.80

RMC 242.12 ± 2.11 413.72 ± 2.78

MPL 280.53 ± 1.41 452.87 ± 1.82

PrL 280.41 ± 1.41 452.79 ± 1.82

Speed 149.57 ± 2.49 127.09 ± 1.82

Persistence 736.33 ± 0.53 119.63 ± 0.96

CI 599.60 ± 0.12 105.90 ± 0.28

Class 3 TPL 148.64 ± 1.62 123.50 ± 1.37

TD 114.32 ± 0.63 142.40 ± 1.23

RMC 137.66 ± 1.47 159.82 ± 1.26

MPL 116.66 ± 3.48 148.01 ± 2.52

PrL 116.66 ± 3.48 148.01 ± 2.52

Speed 776.22 ± 0.01 481.55 ± 0.36

Persistence 655.13 ± 0.61 504.45 ± 0.44

CI 595.36 ± 0.40 360.12 ± 0.55

Class 4 TPL 828.03 ± 1.53 539.72 ± 0.20

TD 872.38 ± 0.40 562.92 ± 0.40

RMC 808.41 ± 0.43 506.85 ± 0.31

MPL 796.51 ± 0.19 503.66 ± 0.23

PrL 776.57 ± 0.19 503.71 ± 0.23

Table 4 Factor analysis on cell and edge features

Class 1 Class 2 Class 3 Class 4

Factor name (number) Var Cum. Var Var Cum.Var Var Cum.Var Var Cum.Var

Initial edge features (1) 35.69 35.69 35.08 35.08 38.64 38.64 24.92 24.92

Motility features (2) 24.39 60.06 22.02 57.28 17.79 56.44 20.58 45.50

Intermediate/late edge features (3) 10.19 70.28 13.80 71.09 11.12 67.56 11.90 57.4

Late retractions (4) 9.44 79.73 7.83 78.93 7.13 74.70 10.62 68.03

Intermediate retractions (5) 6.32 86.05 7.76 86.70 6.08 80.79 10.45 78.48

Intermediate retractions (6) 5.59 91.65 3.47 90.17 3.99 84.79 5.87 84.36

Late protrusions (7) - - - - 3.42 88.21 4.68 89.04
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Table 5 Factor loading matrix computed from covariance matrix for all classes

Feature Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

Speed -0.79

Persistence 0.82

CI 0.56

TPL -0.91

TD -0.73

RMC 0.87

MPL 0.96

PrL 0.96

p1,2 0.82

p2,3 0.56

p3,4 -0.80

p4,5 0.68

p5,6 -0.96

p6,7 0.88

p7,8 -0.93

p8,9 -0.93

p9,10 -0.45

p10,11 -0.85

p11,12 0.83

r1,2 0.40

r2,3 0.84

r3,4 0.80

r4,5 -0.91

r5,6 0.75

r6,7 -0.91

r7,8 -0.91

r8,9 -0.96

r9,10 -0.69

r10,11 -0.87

r11,12 -0.79

Figure 4 IIllustration of subpopulation identification using cell dynamics features: the time-lapse images are segmented by level-set framework
followed by marker controlled watershed to separate touching cells; tracking by spatiotemporal scheme, clustering (GMM followed by K-means,
and analysis of correlation among features).

Veronika et al. BMC Bioinformatics 2011, 12(Suppl 13):S19
http://www.biomedcentral.com/1471-2105/12/S13/S19

Page 9 of 11



q m= ∑ ={( , , )}wk k k k
K

1 where (µk, Σk) denotes the mean

and covariance of the kth component.
Given training vectors and a GMM configuration, the

parameters of GMM are given by maximum likelihood
(ML) estimates q̂ .

ˆ arg max log ( : )q q
q

= p x

ML estimates of parameters are obtained by using
Expectation Maximization (EM) algorithm. In order to
find the optimal number of classes, a minimum descrip-
tion length (MDL) estimator was employed [28]. MDL is
an information theoretic model selection principle pre-
sumed as the most compact representation of data in the
probabilistic network. MDL estimator finds the model
order K̂ by the following criteria:

ˆ arg min{ log ( | , ˆ) log( )}K p x K L Nn
K

= − +q
1
2

Where L K n n n= + +( ) −+1 11
2

( ) . The penalty term in
MDL includes the total number of features to avoid
over-fitting of the model.
Edge dynamics
Cell membrane features are defined as features charac-
terizing movements of cell protrusions and retractions.
Given a sequence of cell boundaries at the image
frames, cells are aligned using their centroids. Edge
pixels are then transformed to polar coordinates from
Cartesian coordinates and a set of M markers

{ }fm m
M

=1 are placed on the segmented boundary j of
the cell marked by the radial coordinate. The move-
ment of cell boundary jt at time t to jt+τ at time t + τ
is calculated by measuring the displacements of indivi-
dual markers within an interval τ . Protrusion and
retraction features {( , )}p rt t t

T
=1 of a cell are computed

as a function of marker displacements over sampling
intervals τ. A positive displacement is considered as a
protrusion and negative displacement a retraction.
The protrusion and retraction features are computed
from total boundary displacement ν(t : τ) of the cell at
time t:

n t t f ft( : ) ( ), ,t m t m t

m

M

= −+
=

∑ 2

1

where jm,t denotes the location of the mth marker of
the boundary jt at time t. The protrusion pt and retrac-
tion rt features at each time point t are then computed
and features are extracted thereof. Fig. 5 illustrates the
steps involved in evaluating edge features.
Cells are classified by a set of protrusion and retraction

features measured over all the time points. These features
provide an idea about the activity level of a cell at respec-
tive time instances and are used to cluster the cells. Clus-
tering was performed using K-means algorithm.
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