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Abstract

Background: Influenza A viruses exhibit complex epidemiological patterns in a number of mammalian and avian
hosts. Understanding transmission of these viruses necessitates taking into account their evolution, which
represents a challenge for developing mathematical models. This is because the phrasing of multi-strain systems in
terms of traditional compartmental ODE models either requires simplifying assumptions to be made that overlook
important evolutionary processes, or leads to complex dynamical systems that are too cumbersome to analyse.

Results: Here, we develop an Individual-Based Model (IBM) in order to address simultaneously the ecology,
epidemiology and evolution of strain-polymorphic pathogens, using Influenza A viruses as an illustrative example.

Conclusions: We carry out careful validation of our IBM against comparable mathematical models to demonstrate
the robustness of our algorithm and the sound basis for this novel framework. We discuss how this new approach
can give critical insights in the study of influenza evolution.

1 Background
The ecology and evolution of influenza viruses, espe-
cially in human and avian populations, have received
considerable attention over the last decade [1-3]. It is
increasingly recognised that because of the genetic
diversity of these RNA viruses [4,5] and their high
mutation rate [1], transmission dynamics and evolution
need to be considered simultaneously. The evolutionary
dynamics of influenza viruses are complicated the fre-
quent occurrence of reassortment events [6,7], whereby
two virus strains co-infecting the same individual
exchange genetic material, resulting in a third strain.
Despite its demonstrated frequent occurrence [1,6],
reassortment remains largely absent from theoretical
studies of influenza evolution. In this respect, it is
important to develop an appropriate theoretical frame-
work to explore its evolutionary impact.

The most commonly used approach to analyse influ-
enza dynamics has been mathematical models where
state space is expanded to take into account multiple
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virus strains [8,2,9,3,10]. The overlap between epidemio-
logical and evolutionary time scales [1], the observed
immune drift in human populations [2,3], and the high
mutation rate [1] make it essential to integrate a large
strain space into models. Consequently, the classic mod-
elling approaches, based on the familiar SIR framework
[11-13], are not readily amenable for this purpose
because the resulting state space increases exponentially
with the number of strains and, consequently, becomes
too cumbersome for meaningful analysis. One possibility,
recently suggested [14,3], is not to track co-infections,
yielding a model whose number of state variables
increase linearly with the number of strains. However,
these models by necessity overlook the contribution of
reassortment events (but see [15]).

It is possible to fill this void by developing an Indivi-
dual-Based Model (IBM, see [16,17]). The rationale of
this kind of modelling is to explore individual heteroge-
neity, allowing us to track infection history. Extensively
used in ecology [18] and more recently in epidemiology
[9], the main goal of these models have been to focus
on very detailed and specific scenarios, with the goal of
making quantitative predictions especially about

© 2011 Roche et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:benjamin.roche@ird.fr
http://creativecommons.org/licenses/by/2.0

Roche et al. BMC Bioinformatics 2011, 12:87
http://www.biomedcentral.com/1471-2105/12/87

alternative infection control decisions [19,20,9]. IBMs
have also been shown to be useful in theoretical studies
[21-23].

Here, we develop a stochastic IBM to simultaneously
address the ecology and evolution of avian influenza
viruses. We first describe the current paradigms of influ-
enza mathematical modelling, which drives the structure
of our computational framework. After detailing our
IBM, we demonstrate that under analogous conditions,
our model precisely recaptures the output of classic
models. This validation step will allow the future use of
our IBM to rely on the background of mathematical epi-
demiology [11-13]. Finally, we conclude that our model
improves the current mathematical models and can be
exploited to study evolutionary processes previously
intractable, giving the opportunity to address all the
components of influenza evolution.

1.1 Transmission process and mean field theory

The goal our of IBM is to extend the capabilities of the
mathematical models of Influenza viruses. Here, we
describe the current paradigms about the Influenza
transmission and how they are modelled using the clas-
sic SIR framework. These models underlie the IBM
design presented during the next section.

In humans populations, a direct transmission is
assumed between individuals as usual when airborne
propagation is documented [24]. The situation is more
complex in birds. Generally, direct transmission is
assumed to encapsulate both fecal/oral and airborne
transmission because they are occur on the same time
scale and both rely on the proximity of susceptible and
infectious individuals [25]. There is increasing evidence
for indirect influenza transmission in avian species
through an environmental reservoir [26-29]. Experimen-
tal studies have shown the long-term persistence of
these viruses in aquatic environments [4,30] and theore-
tical studies have underlined its importance in epide-
miological and evolutionary outcomes [29,25,31,32].

Epidemiological models of influenza viruses generally
consider only a limited number of strains, perhaps as few
as two [33,31]. The host population is then classified
according to their infectious status with regards to each
strain. For a two strain model, for example, individuals are
born susceptible to both strains (Ngs) and become infected
(Njs or Ng7) at rate A;. While infected with strain i, they
may be exposed to strain j resulting in co-infection (Nj; ),
at a rate (1 - 0) A; where o captures the extent of cross-
protection. Individuals recover (Ngs or Ngp) at rate ¥; and
are assumed to be invulnerable to that strain.

Clearly, the force of infection (4;) is the main driver
for epidemiological and evolutionary dynamics. Direct
transmission (through airborne droplets and/or via the
short-term fecal/oral route) is usually modeled as a
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density-dependent process [24] and defined by the rate
BiliS (Iy = Nis + Ny + Nig and I, = Ng; + Ny + Ng; ).
For avian influenza viruses, the force of infection
includes another component, intended to capture trans-
. . . oo Vi

mission via the environmental reservoir: ¢ )

L Ki + Vi
where p is the uptake rate, L is the lake volume, & is the
viral load needed to yield a 50% probability of infection,
and ¢ is the competition term for viral particles within
environment [34,33,29]. This competition term ¢ deter-
mines which strain is the most able to infect the suscep-
tible individual. The viral load determining the infection
rate, V;, is influenced by the shedding rate of infectious
individuals @; and the pathogen clearance rate in envir-
onment ¢;, also termed environmental durability. The
mathematical formulation is:

dN. SS
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(13)

Vl/Kl

£ = (14)
Vl/Kl + V2/K2

When a single disease system is assumed, we can
derive an analytic expression for the Ry, a predominant
measure in epidemiology measuring the expected num-
ber of infections when one infectious individual is intro-
duced in a population totally susceptible:

Np |
Y+ Ex(y+u)

Npw

Ro = RE™ + RY" = (15)

where R¥" and R§" are the contribution of direct and
environmental transmission respectively [25]. When
evolution is considered, i.e. through mutation, this fra-
mework can be extended easily to numerous strains if
full cross-immunity is assumed (i.e. ¢ = 0 and co-infec-
tion is not possible). However, partial cross-immunity is
well established for influenza viruses [3,35]. In this case,
the state space of the system increases exponentially
because the infection history of individuals needs to be
tracked, quickly leading to model intractability. A solu-
tion recently suggested [14] is to assume “polar immu-
nity”, which means that cross-immunity makes some of
the hosts totally immune instead of infecting them. An
infection is hence possible only if the host is completely
susceptible to this strain. Then, it is possible to track
only susceptible and infectious individuals to each strain
i

ds;
g = HN = pSi > BioySil; (16)
j
dl;
P BiSili — (v + w)i + m(Li—1 — 2I; + I1,1) (17)
i—j\’
( p ) (18)
ojj=¢e

where 0;; represents the cross-immunity network
between strains, m is the mutation rate and i and j are
the strain “identities” of the pathogens. Here, we assume
that cross-immunity decreases exponentially [14] with
the distance between the infection history and the chal-
lenging strain (equation 19) as it has been described for
influenza viruses in humans [3] and horses [35]. This
exponential decrease is shaped by the parameter d .

These ordinary differential equations may be con-
verted to exact Markovian analogues using, for example,
Gillespie’s direct method [36,37,13]. To do so, first the
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rates of all events have to be specified (i.e transitions
between classes, see table S1 in additional file 1). The
time until the next events is computed at each iteration
as follows:

(St =

-1
R log(RAND1) (19)
j

Zn

where R; is the rate of event j and RANDI is a uni-
form random deviate in (0, 1). Then, a new uniform
random number in (0,1) is generated and multiplied by
Y" R, denoted by P . The next event is then determined
by Y <P < Y.

2 Implementation

The recent development in mathematical models of
influenza viruses fails to follow co-infections and conse-
quently to incorporate reassortment. We choose the fra-
mework of IBM (Individual-Based Model, see [22]) to
develop a model fully considering epidemiology and
evolution of Influenza viruses.

2.1 Model structure

As usual in IBM, we use an oriented-object approach
[38] where a “class” is an abstract pattern of a physical
entity (e.g. a pathogen or a host) and an “object” an
instance of its class (e.g. each host or each pathogen).
Each class has its own “attributes” which represent the
properties of an object. These attributes can be model
parameters (e.g. host lifespan) and filled by the user
(table 1). Otherwise, they change through time like state
variables (table 2) and make links between classes (e.g. a
“Host” object may contain several “Pathogen” objects).
These variables are modified through “methods”, which
correspond to the different functions applicable to each
object (e.g. pathogen transmission).

Table 1 Parameters of the model

Name Class in IBM  Units Value used in this study
u BIRD years”' 2

p BIRD centiliterday’ 10"

L LAKE centiliter 10*

K PATHOGEN virions 10

I3 PATHOGEN days’ 30

B PATHOGEN year’ 0.0078
m PATHOGEN ind.days™ 0.048
y PATHOGEN days” 7

1) PATHOGEN virions.day” 10"
d MODEL None 5

o, MODEL days None
tMax MODEL day None

Each parameters are explained in the main text. Values displayed here are
used throughout the manuscript except something different is noticed.
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Table 2 Variables of the model
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Name Class Type Description

currentPathogens BIRD PATHOGEN[ Array with every strains in Infectious state

next Pathogens BIRD PATHOGEN[ Array with every strains just enter in Infectious state
oldPathogens BIRD PATHOGEN[ Array with infection history

Pathogens LAKE PATHOGEN[ Array containing every strains present in the environment
ViralLoad LAKE INTEGER[ Viral load of every stains present in the lake

identity PATHOGEN double Strain identity

hostTab MODEL HOST Array with all “Host” objects

Every of these attributes change dynamically through time and represent the environment, the host population and its infectious status.

The structure of our model, i.e. the relationships
among classes, is described in Figure 1. This UML
(Unified Modeling Language) design shows the differ-
ent parts of our framework and how they are linked
together. The instance of class “Model” represents the
program scheduler and contains all “Host” objects
corresponding to individuals. These last ones can
become infected and entertain one or more memory
reference to “Pathogen” instances. “Host” objects can
also interact with the environment (class “Lake”) by
viral particles shedding through a method of “Model”
object.

Host n Model
q
1
$0 ‘1
n 1

Pathogen Lake

Figure 1 UML design of the IBM model. The links between
classes represent a “composition” property. The filled diamonds
points the containing class and the other side is the contained
class. The “cardinalities” (1,n) represents the number of contained
objects or the number of objects which can contain it. The
methods and attributes of each class are detailed in the main text
and are not displayed here for clarity.

2.2 Dynamical Model behaviour
For the sake of simplicity, here we do not explain every
functions in detail, but focus instead on the most impor-
tant ones (all algorithms are detailed in the section S1 in
additional file 1). Specifically, we explain the functions
where infection, mutation or recovery events are
applied. The probability of these events are calculated
by applying an exponential distribution on rates, as
usual in mathematical epidemiology (P = 1 - exp(- rate x
o) where J; is the model integration time step and rate is
the individual rate expressed in the mean field approxi-
mation [13]).
2.2.1 Program scheduler and host status
In IBM, two steps are generally considered at each itera-
tion [39]. The first one determines the status of each
individual at the end of this time step. Then, when all
individuals have computed their next status, they are
updated through a second function. This methodology
is applied to avoid synchronization problems which can
occur where an individual calculates its status based on
other individuals status who have one more time step.
In our case, at each iteration, a function “Step” is
called for every individual. If a host becomes infected to
one specific strain during this function, a “Host” attri-
bute ("nextPathogens”) will be filled with a memory
reference to this “Pathogen” object. After all individuals
have called the “Step” function, the “Update” function
moves this reference to another variable ("currentPatho-
gens”). During the following time step, this reference
can move to another variable ("oldPathogens”) with a
probability P = 1 - exp(- 19,).
2.2.2 Infection process
Within the “Step” function, transmission process (direct
and/or environmental) takes place. For each strain pre-
sent in the system at this time step, a probability of
infection is computed for both transmission routes. In
the case of direct transmission, this probability is equal
to P; = (1 - 0)(1 - exp(- BI;5,)). This probability is added

V4
to Pi=(1—o0)(1—exp(pe. ' )8) which describes
Vi+k

1
the environmental transmission (parameters have the

meaning than in equations 1-13).
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The mathematical formulation assumes that co-
infections occur sequentially and not simultaneously. In
fact, co-infections can be approximately simultaneous
because of the very small time step involved in Gillespie’s
method. Time step duration is not infinitesimal in the
IBM. To avoid an under-estimation of co-infections, we
have to consider that co-infections occur sequentially,
but potentially during the same time step. Then, we
apply a method already used in [40]. We rank randomly
infection probabilities for each individual and apply the
transition if selected (if RAND1() <P). Ranking randomly
the infections events removes the potential issue that
pathogens at the top of the pathogen list can have a
greater chance to infect the host.

2.2.3 Mutations

Upon infection, mutations occurs at a fixed rate. At the
end of the host update, a function “mutation” is called
for every “Pathogen” objects found in the list “curren-
tPathogens”. The probability that a mutation occurs is
given by P = 1 - exp(- md,). When this event is selected,
the “identity” will increase or decrease by 1 with a prob-
ability of 50% each. Hence, we assume a linear strain
space. Other pathogen parameters stay identical (i.e. no
evolution of life-history traits).

2.2.4 Demography

When all individuals have completed their “Update”
function, host demography is applied. Hosts have an
expected period before producing one o spring as well
as an average lifespan. Each host produces one off
spring (susceptible) with a probability P = 1 - exp(- udy)
and dies with the same probability (assuming a constant
population size).

2.2.5 Viral demography within environment

To model the fluctuations of environmental viral con-
centration, we use the deterministic solution of the
equations 10-11) as it has been calculated in [32]:

Vit +1) = Vi(t) + ";I + 8 (vi(1) — (“;I")

1 1

) (20)

2.3 Input and Output Files

The attributes which have to filled by the user are split
between three different input files in order to distinguish
their class destination. The “main” input file contains the
global parameters of the simulation, i.e. the length of a
time step, the lake volume or the filenames of other
input files. The “species” file describes the ecology of the
population considered. It integrates its birth, death and
drinking rate, its population size and which transmission
route has to be included. Finally, the “pathogen” file
depicts the life-history traits of the introduced pathogens,
i.e. its mutation and direct-transmission rate, the viral
load required to yield 50% of infections, as well as its
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initial conditions within the host population (identity,
infectious population size and environmental concentra-
tion). Finally, we have implemented three different out-
puts which track the pathogen dynamics at the
environmental (dynamics of strains concentration), indi-
vidual (all the infection events) and populational level
(dynamics of strain infectious population size).

3 Results and discussion

3.1 Methodology for IBM validation

We compare IBM outputs in specific cases which can be
addressed by the stochastic version of the two mathema-
tical frameworks previously exposed (equations 1-13, see
also table S1 in additional file 1). The goal of this valida-
tion step is to show that our algorithms reproduce cor-
rectly the expected behaviour of SIR framework.

Within the existing epidemiological studies using an
IBM, a time step of one day is generally used and
claimed to be small enough. To assess this, we analyse a
first simple epidemiological case where only one strain
and direct transmission are involved. These results
determine the optimal time step duration to produce
similar disease dynamics than in SIR. It is worth to
point out that the period between two time steps has to
be as small as possible to get the correct dynamics and
large enough to reduce significantly the simulation time.

Then, we study a situation where two identical strains
and environmental transmission are introduced. We
compare the IBM outputs with the stochastic version of
the SIR system depicted in equations 1-13. As usual
when stochastic outputs are compared [13], we analyse a
bunch of pathogen dynamics characteristics. For both
strains, we analyse (i) the epidemics peak (in terms of
infectious population size), (ii) the time at epidemics
peak (time needed to reach the epidemics peak), (iii) the
epidemic duration (time between the start and the end of
the epidemics) and (iv) the sampled epidemics size (sum
of all new infections during an epidemics). We study also
the global properties of the epidemics: (v) the global
extinction proportion (no epidemics are observed for
both pathogens) and (vi) the ratio between dominance of
strain 1 and dominance of strain 2 (epidemics occurs
only for strain 1 over epidemics occurs only for strain 2).

Finally, we compare the evolutionary dynamics of our
model with the model assuming polarity immunity
(described in equations 17-18). We study this dynamics
without environmental transmission since the analysis of
its influence on evolutionary dynamics is beyond the
scope of this paper.

3.2 Dynamical behaviour

With only direct transmission and one strain (8, = ®, = 0),
we explore here the influence of the IBM time step dura-
tion in order to find its optimal value
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Our simulations show that a time step of one day yields
a too long and too flat disease dynamics comparing to
SIR models (Figure 2). Even if the cumulative incidence
(total number of infectious individuals during the epi-
demics) should be relatively similar, the discrepancy
between disease dynamics may have some undesirable
effects. Our results underlines that a time step of 0.1 day
is enough to have similar dynamics between IBM and SIR
models. This value will be used in the rest of this study.

3.3 Comparison of epidemiological signatures

We now compare IBM and the stochastic SIR outputs
where two identical strains and environmental transmis-
sion are involved. Here, our goal is to show that our
model yields epidemiological dynamics indistinguishable
from the SIR model depicted in equations 1-13.

For both approaches, Figure 3 shows the distributions
of the different epidemiological signatures for each
strains and the proportions of global extinction and dom-
inance ratio. We apply Kolmogorov-Smirnov and y* tests
to explore statistical difference between the distributions
generated by the two models. All these tests produce p -
values > 5% (see table S2 in additional file 1) and high-
light that the differences between the epidemiological
dynamics produced by our IBM and by SIR models do
not reach an acceptable level of certainty. Hence, these
distributions are statistically indistinguishable.

3.4 Evolutionary dynamics

We now focus on the adequacy between evolutionary
dynamics produced by our IBM and by stochastic SIR
model when only density-dependent transmission is
involved (described in equations 17-18, implemented as
in [3]). We assume the same cross-immunity pattern
than in equation 19.

For the same mutation rate m and cross-immunity shape
d, IBM and SIR models show similar evolutionary dynamics
(Figure 4). The epidemiological dynamics are similar (top
panels), despite that SIR model exhibits a lower prevalence.

Page 6 of 10

It is well known that this model, assuming polarity immu-
nity, tends to underestimate the infectious population size
[14]. The speed of cluster replacement is the same
(medium panels) and, because of the under-estimation of
infectious population size, the strain diversity through time
(bottom panels) is slightly lower.

4 Conclusions & Discussions

In this paper, we have introduced a stochastic Individual-
Based Model (IBM) to study epidemiological and evolu-
tionary dynamics of avian influenza viruses. We have
shown that we can accurately reproduce the solutions of
classic SIR model as a special case of our model. However,
the more general set of conditions that may be repre-
sented by the IBM will enable investigation of a much lar-
ger class of evolutionary and ecological dynamics.

Additional epidemiological signatures could be ana-
lysed. Nevertheless, our goal was to give the proof that
our algorithms have been implemented correctly in
order to can rely on SIR literature for the future
improvements of our IBM. Since six different epidemio-
logical signatures, tackling different aspects of the dis-
ease dynamics (coexistence, extinction, epidemics peaks,
etc.), have been used (Figure 3), we believe that the
overall picture allows us to claim that our IBM mimics
SIR models with a computational formulation at an indi-
vidual scale.

The main difference between IBM and SIR models is
the possibility to acquire sequentially several infections
within a same time step. We had to make this assump-
tion since the period between two time steps is necessa-
rily bigger in the IBM than in the mathematical
framework where the time step is infinitesimal. Results
reported here show that, despite this difference, the two
formulations are dynamically identical.

We suggest that the discrepancy between the evolution-
ary dynamics produced by SIR model and by our IBM
(Figure 4) is due to the known underestimation of the
infectious population size consecutive to the assumption

6t=0_05 6t=0_1 5t=0.25 5t=0.5 8t=1
800 r
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Time
Figure 2 Influence of time step duration involved in Individual-Based Model when only one strain and direct-transmission are
assumed. The blue shaded area and line show the IBM dynamics. The red shaded area and line shows the SIR dynamics. For the sake of clarity,
only simulations without extinctions are considered among the 500 replications. Parameters are detailed in table 1.
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Figure 3 Epidemiological validation of the IBM with two strains and environmental transmission. The blue and red boxplots show the
distributions of epidemiological signatures of IBM and SIR respectively. For the sake of clarity, these distributions have been computed only
where at least one strain displays an epidemics (defined as an epidemic peak greater than 50 individuals). 500 replications have been used. The
epidemiological signatures are described in the main text and the parameters used are detailed in table 1.

of polarity immunity [14]. Even if it is impossible to quan-
tify this under-estimation, it is worth to point out that this
dichotomy cannot be due to a time step too coarse in our
IBM. Indeed, a too large IBM time step tends to underesti-
mate infectious dynamics (as shown in Figure 3), instead
of the opposite.

The possibility to track co-infections has been central
in the design of this model, but it is valuable to under-
line that our IBM improves the current mean field

theories in an additional way. Our model can cope with
a strain space that is virtually infinite (constrained by
the maximal number of a “double” variable, usually
more than 10°°°). Hence, it is not necessary to invoke
pragmatic approximations in order to simplify the
model; the full epidemiological and evolutionary
dynamics can be explored in our framework.

This IBM can be extended in numerous ways. Except-
ing all the possible computational additions (space,
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Figure 4 Evolutionary dynamics of stochastic SIR model and IBM where only direct transmission is involved. The top panels show the
dynamics of the infectious individuals (summing all the strains through time). The middle panels show the evolutionary dynamics. Y-axis
represents the strain “identity”, X-axis is time and colors illustrate the superposed evolutionary dynamics of the 500 stochastic realizations. Each
point in this panel is the maximal incidence over all these replicates for the strain identity described on Y-axis at the time step given on X-axis.
The bottom panels show the dynamics of strain diversity. The left and right parts show the outputs of our IBM and SIR model respectively.

network interactions, etc.), complex ecological and evo-
lutionary processes can also be included. So far, we have
considered a constant host population size, but the
modification of the demography function can integrate
all kind of dynamics, even data from the field. Similarly,
the reassortment process, which has never been theore-
tically studied as we said before, has not been exposed
here because its analysis is beyond the scope of this
paper. Nevertheless, it can be included easily through
the mutation function. The strain identity should be
replaced by a set of characters, representing amino acids
for instance. Then, this string can be also divided into
different parts to mimic the possibility of different
genes. This modification of pathogen genome makes
possible the creation of a third “Pathogen” object pro-
duced by the exchange of amino acids between strains
co-infecting a given individual.

Here, we propose an Individual-Based Model improving
the current modelling paradigms on influenza viruses. Its
validation against a SIR model allows the future uses to
rely on the SIR background. Its ability to be extended
opens many new areas of influenza research which were
previously constrained by the limitations of the mathema-
tical formulation. To conclude, we shown that modelling
at an individual scale allows the study of mathematically
inaccessible situations despite an identical behavior. We
believe this model offers an unique opportunity to fully
address the evolution of influenza viruses.

5 Availability and requirements
Project name: Influenzalbm

Project home page: https://sites.google.com/site/roche-
ben/influenzaibm

Operating system(s): Platform independent


https://sites.google.com/site/rocheben/influenzaibm
https://sites.google.com/site/rocheben/influenzaibm
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Programming language: C++
Other requirements: None
License: GNU GPL

Additional material

Additional file 1: Appendix. This file contains the algorithms used in
this study, the description of the deterministic and stochastic SIR models
and the results of the statistical tests.
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