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Abstract

Background: Structural measures for networks have been extensively developed, but many of them have not yet
demonstrated their sustainably. That means, it remains often unclear whether a particular measure is useful and
feasible to solve a particular problem in network biology. Exemplarily, the classification of complex biological
networks can be named, for which structural measures are used leading to a minimal classification error. Hence,
there is a strong need to provide freely available software packages to calculate and demonstrate the appropriate
usage of structural graph measures in network biology.

Results: Here, we discuss topological network descriptors that are implemented in the R-package QuACN and
demonstrate their behavior and characteristics by applying them to a set of example graphs. Moreover, we show a
representative application to illustrate their capabilities for classifying biological networks. In particular, we infer
gene regulatory networks from microarray data and classify them by methods provided by QuACN. Note that
QuACN is the first freely available software written in R containing a large number of structural graph measures.

Conclusion: The R package QuACN is under ongoing development and we add promising groups of topological
network descriptors continuously. The package can be used to answer intriguing research questions in network
biology, e.g., classifying biological data or identifying meaningful biological features, by analyzing the topology of
biological networks.

Background
Understanding the structure and dynamics of biological
systems has been a major task in systems biology [1]. In
the early years of computational biology, the main task
was to investigate the individual properties of intracellu-
lar components and collect this information in large
databases [2]. Palsson defines biological systems as inter-
actions of their components [3]. Furthermore, the devel-
opment of high-throughput technologies made it
possible to study these complex systems in a quantita-
tive manner [4]. Moreover, gene networks, whose nodes
represent gene products and the edges correspond to
molecular interactions, serve as means to study the bio-
logical function by representing and analyzing high-
throughput data [2].

Network inference plays a major role in network biol-
ogy, as there exist various methods to infer networks
from high-throughput data [5-9]. By using the WGCNA
package [10] it is possible to create correlation net-
works. One can use the minet package [6] to infer net-
works based on mutual information. Other packages
[11-13] offer methods to infer networks using different
kinds of graphical models. Moreover, Altay and
Emmert-Streib introduced the C3NET algorithm to
infer the conservative causal core of gene networks and
compared them to other approaches [5]. Their study
shows the importance of correctly creating robust and
valid networks from biological data. Note that it is cru-
cial to choose suitable methods for inferring networks
from biological data, in order to take the nature and
constraints of the underlying problem into account [5].
After inferring gene networks, it is often important to
analyze them structurally to conclude statements about
the underlying topology [14,15]. Moreover, the struc-
tural analysis of biological networks can be useful to
extract biological knowledge that may not be revealed
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by studying the raw data [16]. Typical problems aim at
identifying of topological interesting nodes or character-
izing the networks by means of their structure. There-
fore, we provide an R package called QuACN [17]
providing a selection of new topological network
descriptors. Such descriptors are numerical graph invar-
iants that quantitatively characterize the structure of the
underlying network. Note, that the authors use the
words descriptor, measure, or index as synonym for
topological network descriptors.
Quantifying the complexity of networks appears in dif-

ferent scientific disciplines and has been a challenging
research topic during the last decades [15]. Importantly,
little is known about the structural interpretation of
topological network descriptors [14,15]. This relates to
information-theoretic measures [14,18-21] that had been
used to determine the entropy of the graph topology.
Other topological network descriptors had been used
also in mathematical and medical chemistry including
drug design to analyze and characterize the structure of
chemical compounds (QSAR/QSPR) [15,22-24].
In more biologically motivated work, Xia et al. [25]

used the vertex degree of protein-protein interaction
(PPI) networks to correlate the structural complexity of
proteins and the organismal complexity with the com-
plexity of the underlying PPI network. They show that
the PPI domain coverage significantly correlates with
the vertex degrees of the PPI networks [25]. In another
study, Mazurie et al. [26] used different network mea-
sures to link the structure and complexity of metabolic
reactions (interacting pathways) to the phylogeny of spe-
cies. Their results show that a small set of descriptors
reproduces the phylogenetic distances accurately [26].
Numerous network measures have been developed,

but it would be out of the scope of this paper to explain
them in detail. For further investigation see the recently
and up to date review due to Dehmer and Mowshowitz
[27]. Apart from information-theoretic measures,
Todeschini et al. [24] provides a compelling overview of
available network descriptors. But from [24], the feasibil-
ity and properties of a large number of descriptors
remain untackled.
QuACN provides a selection of topological network

descriptors. It offers the possibility to apply the indices
in a standardized and intuitive manner. Thus, it can
support the scientific community to investigate these
methods in different kinds of biological applications. A
typical setup for a study to analyze biological networks
structurally is illustrated in Figure 1. It shows a general
workflow to analyze microarray studies using a network
approach with topological network measures.
Of course, there also exist freely available tools, e.g.,

PowerMV [28] or JOELib [29] to calculate network
descriptors. However, these tools are designed for

Figure 1 Illustrative figure of a structural network analysis of
microarray data. This figure illustrates a typical workflow in
network biology to analyze microarray data. After inferring a
network from microarray data, it is often important to analyze it
structurally to conclude statements about the underlying topology
[14,15]. To underpin statements about the topology it can be
necessary to validate them biologically. Also, this workflow can be
adapted for different kinds of biological data.
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quantitative structure-activity relationship (QSAR).
Thus, they do not support common exchange standards
for biological data. Compared to commercial software
tools as Dragon [30] or PreADMET [31], QuACN is
published under an open source license (LPGL) and
freely available. Therefore, it offers the possibility to
adjust and further develop the existing indices or even
add additional descriptors to the package. Compared to
the R-packages igraph [32] and RBGL [33], which con-
tain a few basic descriptors, QuACN contains a selec-
tion of more sophisticated network descriptors (i.e., the
group of entropy-based descriptors). To our best knowl-
edge, it is the only available software package that con-
tains sophisticated measures such as the parametric
graph entropies (Dehmer entropy) [34]. We recommend
QuACN to investigate large-scale complex networks.
Further, we expect that the package will be helpful for
exploring questions concerning the structure of biologi-
cal networks in the context of systems biology.
Generally, quantitative network analysis [35] is a non-

trivial task, since it is necessary to understand the meth-
ods in detail to interpret the results correctly. This
manuscript addresses readers who want to analyze net-
works structurally. Its aim is to guide the reader to cor-
rectly apply the methods provided by QuACN [17]. This
manuscript does not deal with the issue of inferring
robust and valid networks. Neither does it explain the
network measures in detail nor how to interpret the
results of the topological networks descriptors, as this
would go beyond the scope of this paper. Dehmer et al.
dealt with these questions extensively [15,27]. This
paper is structured as follows: The section Implementa-
tion gives an overview about the topological network
descriptors, implemented in the R-package QuACN.
The section Results and Discussion illustrates how to
apply the topological descriptors to concrete networks.
Also, we show the behavior of selected measures using
small example graphs. Moreover, we demonstrate their
performance by applying them to biological networks.
Further, we illustrate possible use cases using topologi-
cal network descriptors for performing a quantitative
analysis of biological networks. The section Summary
and Outlook concludes and summarizes the paper and
outlines future developments.

Implementation
We implemented a selection of topological network
descriptors discussed in [15,27]. Table 1 gives an over-
view about all implemented network measures with the
name of the function to call the corresponding descrip-
tors in R. For a detailed description of all implemented
descriptors in QuACN, see the package vignette or addi-
tional literature [24,27].

The measures can be categorized within the following
groups:

Descriptors based on distances in a graph
This class contains measures that use distances between
nodes to capture the structural complexity of the under-
lying network. A famous and classical representative of
this group is the Wiener index [36] that has been
defined by the sum of all distances within the network.
We also integrated a group of basic distance-based
descriptors introduced by Skorobogatov and Dobrynin
[37].

Descriptors based on other graph invariants
The descriptors in this class use other graph invariants
than distances (e.g. degree, number of vertices, number
of edges, etc.) to characterize the structural complexity
of complex biological networks. For example, the Zagreb
group indices [38] are based on the degree of the ver-
tices. The normalized edge complexity [39] is calculated
by using the adjacency matrix and the number of
vertices.

Information measures
For an extensive overview of measures of this class, see
[16,20,27].
• Partition-based graph entropy descriptors
These measures use an arbitrary graph invariant and an
equivalence criteria to induce partitions. A probability
value is calculated for each partition to determine the
entropy, based on the entropy formula due to Shannon
[19]. The topological information content introduced by
Rashevsky [14] and reformulated by Trucco [21] is
based on partitions of vertices that are in the same ver-
tex orbit, to calculate the entropy of a graph. Addition-
ally, Mowshowitz [19] investigated mathematical
properties of the index to characterize product graphs
and other sophisticated measures such as the chromatic
information content of a graph.
• Parametric graph entropy measures
Measures of this class [27,34] assign a probability value
to each vertex of a graph, using so-called information
functionals (IFs) which capture structural information of
the network. A special information functional quantifies
the structural information by using the cardinalities of
the corresponding j-spheres [34]. The derived probabil-
ity distribution is used to calculate the entropy, which
has been called Dehmer entropy [34].
As mentioned above, it is not the aim of this manu-

script to describe all descriptors in detail. For a better
understanding of the used descriptors see the vignette of
QuACN and the extensive work of Dehmer and Mow-
showitz [27] on information measures for networks.
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QuACN is entirely written in R and detailed help is
available according to the R documentation standards.

Results
The examples below show the functionality of QuACN by
using a selection of small example graphs, which are
shown by Figure 2. Our goal is to show how the methods
work and to apply the measures to a multitude of complex
networks that may lead to novel applications in the field.

Example Graphs
To demonstrate the usefulness of topological network
descriptors, we consider Figure 2, showing six undir-
ected example graphs. An undirected graph or network
G = (V, E) consists of a non-empty vertex set V. E is

called the edge set of G and is the set of unordered
pairs of elements of V. We calculate exemplary a set of
descriptors consisting of the Wiener index W(G) [36],
the Balaban-like index X(G) [40], the topological infor-
mation content Iorb(G) [14,21] and the Dehmer entropy
Ifv (G) [34]. The results are shown in Table 2.
Calling the corresponding methods in R can be done

in different ways. The following example shows how to
calculate the Wiener index from the graphNEL-object
g, representing the example graph (a) in Figure 2.
> wiener(g)
[1]56
As all descriptors are implemented as R-functions it is

possible to easily calculate them for a set of graphs
using the methods from the apply-family.

Table 1 Overview about the implemented topological network descriptors

Name Symbol R function Ref.

Descriptors based on distances

Skorobogatov indices Di(G) dobrynin(g) [37]

Wiener index W(G) wiener(g) [36]

Hararay index H(G) harary(g) [53]

Balaban J index J(G) balabanJ(g) [54]

Compactness C(G) compactness(g) [55]

Product of row sums index PRS(G) productOfRowSums(g) [56]

Hyper-distance-path index DP (G) hyperDistancePathIndex(g) [24]

Descriptors based on other invariants

Index of total adjacency A(G) totalAdjacency(g) [39]

Zagreb group indices 1 Z1(G) zagreb1(g) [38]

Zagreb group indices 2 Z2(G) zagreb2(g) [38]

Randić index R(G) randic(g) [57]

The complexity index B B(G) complexityIndexB(g) [39]

Normalized edge complexity EN(G) normalizedEdgeComplexity(g) [39]

Classical entropy-based descriptors

Topological information content IVorb(G) topologicalInfoContent(g) [14,21]

Bonchev-Trinajstić index 1 ID(G) bonchev1(g) [42]

Bonchev-Trinajstić index 2 IWD (G) bonchev2(g) [42]

BERTZ complexity index C(G) bertz(g) [58]

Radial centric info index IC,R(G) radialCentric(g) [20]

Vertex degree equality-based ii. Ideg(G) vertexDegree(g) [20]

Balaban-like information index U U (G) balabanlike1(g) [40]

Balaban-like information index X X (G) balabanlike2(g) [40]

Graph vertex complexity index IV (G) graphVertexComplexity(g) [59]

Dehmer entropy with information functionals using

the j-spheres If V (G) infoTheoreticGCM(g,infofunct="sphere”) [43]

path lengths If P(G) infoTheoreticGCM(g,infofunct="pathlength”) [43]

vertex centrality If C(G) infoTheoreticGCM(g,infofunct="vertcent”) [43]

degree-degree associations If�(G) infoTheoreticGCM(g,infofunct="degree”) [49]

This table gives an overview about the implemented topological network descriptor including the function name in QuACN and the reference to the
corresponding publication.
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> sapply(glist,balabanlike2)

(a) (b) (c)

0.5978703 0.6932045 0.8190124

(d) (e) (f)

Figure 2 Small example graphs. This figure lists 6 small example graphs to illustrate the correct application of the topological network
descriptors implemented in QuACN.

Table 2 Selected descriptors for the small example graphs

(a) (b) (c) (d) (e) (f)

Wiener index W 56.0000 52.0000 48.0000 44.0000 42.0000 36.0000

Balaban-like index X 0.5979 0.6932 0.8190 1.0492 1.1452 1.8204

Topological information content Iorb 1.9502 2.5216 1.3788 1.9502 1.8424 0.5917

Dehmer entropy If V 2.7648 2.7533 2.7432 2.7282 2.7305 2.7391

Results of some selected descriptors applied to the small example graphs shown in Figure 2.
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1.0491707 1.1451745 1.8204321
Note that each descriptor has at least two parameters

as listed in Table 3. However, passing the distance
matrix to the corresponding function is optional. If the
parameter remains empty or is set to NULL the distance
matrix will be calculated within each function. If calcu-
lating more than one descriptor for one graph, it is
recommended to calculate the distance matrix separately
and pass it to each method, instead of recalculating it
again. Particularly when using large networks it can save
a lot of time to calculate the distance matrix only once.
It will enhance the performance of the calculations sig-
nificantly. We demonstrate the pre-calculation of the
distance matrix in the next example, where we calculate
four descriptors for the example graphs in Figure 2. The
results of the below listed function call are listed in
Table 2.
> descriptors <- sapply(glist, function(g){
+ dm <- distanceMatrix(g)
+ result = list()
+ result[["Wiener"]] <- wiener(g, dist = dm)
+ result[["BalabanLike2"]] <- balabanlike2(g, dist =

dm)
+ result[["topologicalInfoContent"]] <-
+ topologicalInfoContent(g, dist = dm)$Iorb
+ result[["Dehmer_jsphere"]] <-
+ infoTheoreticGCM(g,
+ dist = dm,
+ coeff="exp”,
+ infofunct="sphere”,
+ lambda = 1000)$entropy
+ return(result)
+ })
Calling topological information content [14,19,21] and

the Dehmer entropy [34] returns a list of different vari-
ables. In the example we only use the entropy value of
the descriptor. The call of the function works like all
other methods, but it returns a list of different values.
To explain the result of this function we apply it to
graph (c) in Figure 2:
> topologicalInfoContent(glist[[3]])
$entropy
[1]1.378783
$orbits
[1]4 2 1

The implementation of the topological information
content returns a list containing the entropy ($entropy)
and the number of nodes within the same orbit
($orbits). This information can be used for different
other applications, e.g. to determine a graph prototype,
see [41].
The numerical results of the foregoing example can be

seen in Table 2. The visual representation of the nor-
malized results in Figure 3 shows the different behavior
of the topological network descriptors using the example
graphs. The example graphs start with a linear graph (a)
and the branching of the graphs increases towards (f).
In this context, branching correlates with the number of
terminal vertices (endvertices) [42]. The Wiener index is
known as an index to detect molecular branching [24],
and one can see that the Wiener index represents
increasing branching with decreasing values. Further-
more we can see in this example, that the Balaban-like
index X(G) also detects branching well. Note, that its
values are just given in a reverse order. The topological
information content is based on partitions of vertices
that are in the same vertex orbit. But calculating Iorb
shows that the quantity does not reflect branching prop-
erly. As known, Iorb is a symmetry-based measure rather
than an index for structural complexity [27]. In this
example, the Dehmer entropy with monotonously
decreasing weighting parameter ci and the information
functional using the j-spheres, neither reflects branching
appropriately. The information functional using the j-
spheres [34] itself has been used to investigate the infor-
mation spread in a network [43,44]. However, with a
different parameter setting, the Dehmer entropy reflects
branching of certain networks meaningfully [45].
However, this simple but demonstrative example indi-

cates that not every topological information index is sui-
table for a particular problem. It is a challenging task to
derive general statements about the structural complex-
ity captured by such measures [15]. It is even harder to
connect biological properties with topological network
descriptors. Despite the fact that we often do not know
the biological interpretation of topological network mea-
sures exactly, they can be helpful in a broad range of
biological questions. For example, classifying biological
data or identifying meaningful biological features, by
analyzing the topology of biological networks.

Table 3 Common parameters for each function in QuACN

Name Type Description Mandatory

g graphNEL The graph that represents the network. yes

dist matrix The distance matrix of g. If this parameter remains empty or is set to NULL, the distance matrix will be calculated
separately within the corresponding R-function.

no

This table shows the two parameters that are common for every method.
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To conclude this section, we want to emphasize that
one has to understand the selected descriptors and mea-
sures in detail to interpret the results correctly. Note
that topological network analysis is a non-trivial task
and one has to know specific properties of the descrip-
tors to solve a particular problem dealing with networks.
One example is the group of Balaban-like indices X(G)
and U(G). For a graph with two vertices connected with
one edge the index is defined as infinite. That is also
returned by the QuACN-method but accompanied by a
warning:
> g = new("graphNEL”)
> # add nodes
> g = addNode("1”,g)
> g = addNode("2”,g)
> g = addEdge("1”,"2”,g,1)
> balabanlike1(g)
[1]Inf
Warning message:
In balabanlike1(g): Graphs with
|V| < 3 result in: Inf!
It is important to know how the different descriptors

are defined, when processing and interpreting the
results. Note, that not each combination of networks
and descriptors could be tested and considered within
the exception handling. Keep in mind that applying
QuACN to concrete networks can result in special
values (i.e.: infinite (Inf), not available (NA) or not a
number (NaN)).
The next section shows an example of a possible

application of QuACN with biological networks. We

will also use this chapters to explain the usage of more
complex descriptors implemented in QuACN.

Supervised Machine Learning for Prostate Cancer
Networks
In this section, we present an application of topological
network descriptors to classify gene networks inferred
from gene expression data. Note, we do not aim to jus-
tify network-based approaches itself and compare them
to alternative approaches. In fact, a large body of litera-
ture dealing with networks does exist, i.e., see [2,4,16].
This example was chosen to explain a possible appli-

cation of topological network descriptors on biological
data. Therefore, we will focus on the methodical usage
of the network measures and not on the biological inter-
pretation of the results.
To perform our analysis, we selected seven public

available studies of prostate cancer from NCBI GEO
and EBI Arrayexpress and inferred networks using the
C3NET inference method [5]. This resulted in seven
networks {GB

i }7i=1 representing benign tissue (from the

control group) and seven networks {GC
i }7i=1 representing

cancer tissue. Then we extracted subgraphs from these
networks based on the gene ontology (GO) database
[46]. For each network and each GO-term we extracted
one subgraph containing the genes associated with this
specific GO-term. This resulted in a total of 159 net-
works representing benign tissue and 108 networks
representing cancer tissue. The numbers are different

because the network structure of GB
i and GC

i is differ-

ent and, hence, not all pathways are captured by these
networks. Whenever a subnetwork contained less than
10 genes associated with a GO-term, we excluded this
pathway from the analysis. The obtained network sets
can be seen as an approximation of two populations.
One population represents benign and the second can-
cerous molecular interactions.
Additionally, we calculated all topological network

descriptors available in QuACN, as feature vectors for
each of these networks. Afterwards, we performed fea-
ture selection and classification using random forest
with 10-fold cross-validation (CV). In order to correct
the selection bias, an external cross validation is applied
to the selection process [47]. In particular, we per-
formed the selection process within each CV-loop [48].
We trained the classifier to classify cancer networks ver-
sus benign networks, what lead to a mean classification
performance of a F-score of 0.80 and an accuracy of
0.74. This demonstrates that the topological network
descriptors, integrated in QuACN, are able to capture
group specific structural features meaningfully to distin-
guish between networks representing prostate cancer
and benign tissue. Importantly, this result is not trivial

Figure 3 Visualization of normalized values for selected
descriptors for the small example graphs. This figure illustrates
the behavior of selected topological network descriptors applied to
the small example graphs listed in Figure 2.
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as one could easily show by using other measures or
only a particular fraction thereof, the classification task
would result in a random classification. Hence, this
result would not be feasible in practice.
As already mentioned we won’t focus on a biological

representation of the results, as it is the aim of this pub-
lication to discuss the methodical perspective of the pre-
sented R-package.
One of the measures that showed a significant group

effect was the Dehmer Entropy [43]. The Dehmer
entropy is a complex measure with several parameters.
It is possible to choose the information functional f(vi),
the weighting parameter ci and the scaling constant l
[49]. The means of these parameters has been discussed
in [43]. The user can specify four different information
functionals using j-spheres, path lengths, vertex central-
ity or degree-degree associations [43,49]. We implemen-
ted different pre-settings for the weighting parameter ci:
constant, linear, quadratic or exponential. A customized
setting for ci can also be declared. The following exam-
ple shows how to call the function to calculate a Deh-
mer entropy. The information functional using j-spheres
with an exponential setting for ci and a scaling constant
l = 2500 are used.
> infoTheoreticGCM(gl[[3]], infofunct="sphere”,
+ coeff="exp”, lambda = 2500)
$entropy

[1]2.743221

$distance
[1]160.3339
$pis

1 2 3 4

0.1057720 0.1952924 0.1863273 0.1952924

5 6 7

0.1057720 0.1057720 0.1057720
$fvis

1 2 3 4

7.882673 14.554200 13.886071 14.554200

5 6 7

7.882673 7.882673 7.882673
This function returns a list containing a more com-

prehensive result than the other measures. Certainly, the
list contains the Dehmer entropy denoted by $entropy.
The list entry named $distance contains the distance of

the entropy from maximum entropy [43]. It also returns
the results of calculating the information functional
($fvis) and the corresponding probability distribution
($pis). The probability distribution can later be used for
further analysis, i.e. estimating the graph prototype of a
set of networks [41].

Conclusion
The freely available open source R-package QuACN
contains a selection of topological network descriptors.
The aim of this manuscript was to explain, how to
apply the implemented descriptors correctly to complex
biological networks using R. To provide a basic under-
standing of the application we demonstrated the beha-
vior of the indices by applying them to small example
networks. Moreover, we presented an application for
supervised machine learning from biological networks
by using topological network descriptors. Within these
examples we demonstrated the correct usage of the
methods included in QuACN. Machine learning is not
the only application that topological network descriptors
can be used for. They also can be utilized to compare
networks. In this sense, Kugler et. al. [41] calculated the
Kullback-Leibler divergence to perform an integrative
network analysis.
Topological network descriptors have been standard

methods in the field of quantitative structure property
activity relationship (QSAR/QSPR) [22,34]. The methods
implemented in QuACN had already been used for
QSAR/QSPR applications, see [22,34]. Further applica-
tions of information-theoretic measures had been dis-
cussed by Dehmer and Mowshowitz [27].
The indices integrated in QuACN can also be effi-

ciently applied on large networks as their calculation
requires polynomial time complexity. However, there
also exist some indices whose algorithms are NP-com-
plete (e.g., descriptors based on the subgraph isomorph-
ism problem [50] or the Hosoya index [51]), but they
have not been integrated in the package. Importantly,
not every index is suitable for any application in net-
work biology and it strongly depends on the underlying
research question which measures can be considered as
appropriate.
Using the concept of advanced network descriptors is

relatively new in systems biology. Advanced network
descriptors are able to quantify specific topological char-
acteristics of the underlying network but the interpreta-
tion of the structural properties of the applied measures
is still an ongoing task [15]. However, modeling biologi-
cal systems as networks had become an important task
in recent systems biology research and created a need
for methods to analyze them structurally. Therefore, the
topological network measures provided by QuACN can
stimulate the research in this field. However, a thorough
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analysis to investigate the behavior of topological infor-
mation indices on biological networks is planed to be
performed.
As future work, we plan to apply the integrated mea-

sures on various biological research questions, and to
extend the range of functions with new promising
descriptors for coming versions of QuACN. The next
step is to integrate a group of already existing polyno-
mial-based descriptors [22,52]. Finally, we are convinced
that this package will turn out to be useful for a com-
munity dealing with network biology [16].

Availability and requirements
Project name: QuACN - Quantitative Analysis of Com-
plex Networks
Project home page: http://cran.r-project.org/web/

packages/QuACN/
Operating system(s): Platform independent
Programming language: R (http://www.r-project.org)
License: LGPL
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