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Abstract

Background: Epistasis is recognized fundamentally important for understanding the mechanism of disease-causing
genetic variation. Though many novel methods for detecting epistasis have been proposed, few studies focus on
their comparison. Undertaking a comprehensive comparison study is an urgent task and a pathway of the
methods to real applications.

Results: This paper aims at a comparison study of epistasis detection methods through applying related software

packages on datasets. For this purpose, we categorize methods according to their search strategies, and select five
representative methods (TEAM, BOOST, SNPRuler, AntEpiSeeker and epiMODE) originating from different underlying

computational complexity.

techniques for comparison. The methods are tested on simulated datasets with different size, various epistasis
models, and with/without noise. The types of noise include missing data, genotyping error and phenocopy.
Performance is evaluated by detection power (three forms are introduced), robustness, sensitivity and

Conclusions: None of selected methods is perfect in all scenarios and each has its own merits and limitations. In
terms of detection power, AntEpiSeeker performs best on detecting epistasis displaying marginal effects (eME) and
BOOST performs best on identifying epistasis displaying no marginal effects (eNME). In terms of robustness,
AntEpiSeeker is robust to all types of noise on eME models, BOOST is robust to genotyping error and phenocopy
on eNME models, and SNPRuler is robust to phenocopy on eME models and missing data on eNME models. In
terms of sensitivity, AntEpiSeeker is the winner on eME models and both SNPRuler and BOOST perform well on
eNME models. In terms of computational complexity, BOOST is the fastest among the methods. In terms of overall
performance, AntEpiSeeker and BOOST are recommended as the efficient and effective methods. This comparison
study may provide guidelines for applying the methods and further clues for epistasis detection.

Background

Compared with Mendelian diseases, complex diseases, i.
e., non-Mendelian diseases, represent the major part of
diseases in human and other model organisms [1], such
as Alzheimer’s disease, cancer, heart disease, type 2 dia-
betes and many others. They are supposed to be caused
by multiple single nucleotide polymorphisms (SNPs),
their interactive effects, and/or their interactions with
environmental factors [2-4]. The interactive effects of
multiple SNPs underlying complex diseases are often
referred to as epistasis or epistatic interactions [5,6]. It
is now believed to be one of the causative patterns of
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complex diseases [7]. There is a wide spectrum of epis-
tasis. Some show both marginal effects and interactive
effects and others show no marginal effects but interac-
tive effects [8-10]. We refer to the former as epistasis
displaying marginal effects (eME) and the latter as epis-
tasis displaying no marginal effects (eNME). Epistasis
detection is to explore all the epistasis including both
eME and eNME from a dataset for genome-wide asso-
ciation studies (GWAS). In fact, detection of epistasis
and characterization of the effects of those epistatic
interactions are both a goal and a challenge [11].

For identifying epistasis in biological datasets, some
pioneering work has been reported. For small scale data-
sets, exhaustive methods, including combinatorial parti-
tioning method (CPM) [12], multifactor dimensionality
reduction (MDR) [13], restricted partitioning method
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(RPM) [14], information gain (IG) [15] and backward
genotype-trait association (BGTA) [16], appear promis-
ing, though most of them have not been validated yet in
their effectiveness for large scale datasets. Recently
many stochastic and heuristic methods have been devel-
oped [7,8,17-26] in GWAS, which may retain as many
informative SNPs as possible while largely reducing
computational complexity [27]. For example, Tang et al
proposed epistatic module detection (epiMODE) [7],
which is a generalized method of Bayesian epistasis
association mapping (BEAM) [8]. Wang et al used
AntEpiSeeker [17] to identify epistasis, which is a two-
stage ant colony optimization algorithm (ACO). Wan et
al proposed SNPRuler [18] based on both predictive
rule inference and two-stage design. They also proposed
another method, Boolean operation-based screening and
testing (BOOST) [19], which involves only Boolean
values and allows the use of fast logic operations to
obtain contingency tables. Zhang et al proposed a series
of methods [20-23], which exploit some properties of
test statistic to mitigate multiple testing problems.
Among them, Tree-based epistasis association mapping
(TEAM) [23] updates contingency tables of two-locus
tests by utilizing a minimum spanning tree.

Although almost all methods in their respective arti-
cles are demonstrated as computationally and statisti-
cally useful tools in the coming era of large scale
interaction mapping and several review articles
[11,28-30] and web pages [31,32] appear, unfortunately,
their performance in common datasets remains largely
unclear. Till now, there have been few studies focused
on in-depth independent comparison of the methods
[27,33-40]. Ritchie et al [33] examined the detection
power of MDR in the presence of noise due to genotyp-
ing error, missing data, phenocopy and genetic hetero-
geneity. Motsinger-Reif et al [34] used the same criteria
to compare the performance of grammatical evolution
neural network and MDR. Both studies did not consider
sensitivity and computational complexity, which are cri-
tical to large scale datasets. Chen et al [27,35] executed
comparative studies based on ground-truth SNPs and
designed a series of evaluation criteria. Fritsch et al [36]
compared the performance of four regression based
methods in both simulation and real datasets. He et al
[37] assessed the performance of MDR and penalized
logistic regression method on models with different
magnitudes of interactive effects under the criteria of
log-odds, prediction error and detection power. More
recently, Wang et al [38] evaluated five novel methods
in terms of detection power, type-1 error rate, scalability
and completeness. In these articles, noise was not con-
sidered, which is often presented in biological datasets
and may affect results of methods severely.
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Lack of benchmark simulation datasets, limited epis-
tasis models, evaluation criteria and computational
complexity are main difficulties for comparison study.
Currently, different methods are evaluated in different
datasets simulated by diverse tools; most of epistasis
models are based on weak theories of biological sys-
tems (e.g., a complex disease may not be caused by
only a simple mathematical model, such as XOR [10],
77 [41], dominant, additive and recessive models
[42]); existing evaluation criteria may not be suffi-
ciently objective; computational burden imposed by
enormous search space is intensive. All the above are
the great challenges in association studies, especially
in GWAS.

The goal of this study is to reveal performance of
selected methods and provide guidelines for applying
them. By reviewing the literature, 36 methods in use are
identified. We then classify these methods into three
categories according to their search strategies and select
five representative methods for comparison. They are
TEAM, BOOST, SNPRuler, AntEpiSeeker and epi-
MODE. Diverse performance evaluation criteria are pro-
vided, including detection power (three forms are
introduced), robustness, sensitivity and computational
complexity. Experiments are performed on simulation
datasets, which are with different size, various epistasis
models, and with/without noise. Three types of noise, i.
e., missing data, genotyping error and phenocopy, are
considered in the experiments.

Methods

In a review of the literature, we identify 36 methods in
use for detecting epistasis, excluding specializations and
tweaks [43]. An overview of these methods is depicted
in Figure 1, with details provided in supplementary table
S1 in additional file 1. From Figure 1, one can see that
the methods can be classified into three categories
according to their search strategies, i.e., exhaustive
search, stochastic search and heuristic search. Exhaus-
tive search enumerates all K-locus interactions among
SNPs to identify the effect or effects that best predict
the phenotype. It prohibits application to GWAS on
identifying high-order interactions since its combinator-
ial explosion of running time with respect to the inter-
action order of SNPs. Stochastic search performs a
random investigation of search space and its perfor-
mance relies on random chance to select phenotype-
associated SNPs. With the number of SNPs growing, it
is believed that the chances of correct guess dramatically
drop. Heuristic search guarantees to obtain locally opti-
mal solutions at the given conditions based on available
information. It is likely to miss globally optimal solution,
especially when it is an eNME.
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Figure 1 Classification of the methods that detect epistasis. All methods can be classified into three categories according to their search
strategies, i.e, exhaustive search, stochastic search, and heuristic search. Methods with bold names are described and evaluated in detail.
Detailed information of these methods is provided in supplementary table S1 in additional file 1.

J

Methods being compared to facilitate large scale datasets and their packages are
It is unrealistic to comprehensively compare all 36  available online. They are TEAM, BOOST, SNPRuler,
methods at affordable time cost. For this reason, we  AntEpiSeeker and epiMODE (see original references
select five representative methods for our comparison  [7,17-19,23] for their details). Their main similarities/dif-
study. The methods are recently proposed and claimed ferences are provided in supplementary table S2 in
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additional file 1. Below we introduce their respective
principles briefly.

1. TEAM

TEAM (Tree-based Epistasis Association Mapping) [23]
exhaustively computes all two-locus interactions using
permutation test. Permutation test is generally more
accurate than direct-adjustment methods (e.g., Bonfer-
roni correction) in identifying significant epistatic inter-
actions, but at a higher computational cost. Notice that
if two SNPs have the same genotypes on most samples,
the computation of their contingency tables can be
shared by considering only those samples with different
genotypes [38], TEAM utilizes a minimum spanning
tree to maximize the computation sharing of contin-
gency tables for reducing the computational cost, where
a node represents a SNP and an edge weight denotes
the number of samples with different genotypes between
connected SNPs. Such a tree makes it faster than brute-
force methods by an order of magnitude. Since permu-
tation test is unable to differentiate eNME from eME
[44], TEAM focuses on identifying epistasis including
both eNME and eME.

2. BOOST

BOOST (BOolean Operation-based Screening and Test-
ing) [19] is a two-stage method. It examines all two-
locus interactions in screening stage and the ones which
pass a user-specified threshold are then tested in testing
stage. In screening stage, interactive effect of a SNP pair
is represented by Kullback-Leibler divergence
D = N - Dy, (#1|p) where # is the joint distribution esti-
mated under the full logistic regression model
Ms = Bo+ ;" + B> + Bi'™, and p is the approximate
joint distribution estimated under the main logistic
regression model My = fo + B;' + B;* using a method
known as “Kirkwood superposition approximation”. In
testing stage, two statistic tests, i.e., likelihood ratio test
and chi-squared test, are conducted to determine
whether the interactive effect of a SNP pair is signifi-
cant. BOOST is a model-based method that only focuses
on identifying eNME. Its contributions to epistasis
detection domain are the introduction of Boolean values
to represent data and an upper bound of likelihood ratio
test to prune insignificant epistatic interactions.

3. SNPRuler

SNPRuler is a learning method based on predictive rule
inference [18]. A predictive rule describing relationship
between SNPs and the phenotype is applied to infer
epistasis. Rule learning is carried out through a branch
and bound search algorithm. In branch stage, SNPRuler
builds a tree with a node representing a SNP and a path
indicating a possible rule. Since exhaustive tree traversal
is practically impossible due to the explosive number of
combinations as the tree grows, relevance measure, i.e.,
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an upper bound of chi-squared test, is introduced to
quantify the importance of a path. Only the path with
relevance measure higher than a user-specified threshold
is retained. In bound stage, a post-procedure is used to
order the retained paths by their relevance measures.
These paths, i.e., the rules, are the final epistatic interac-
tions. SNPRuler only tests eNME since it prunes eME in
the branch stage [38].

4. AntEpiSeeker

AntEpiSeeker [17] is a modified algorithm derived from
the generic ACO [45]. It is also a two-stage method. In
the first stage, Chi-squared test is used as a score func-
tion to measure the association between a K-locus inter-
action and the phenotype, and thus no assumption
about the interaction is made in AntEpiSeeker. The
probability of an ant adding SNP & into its path (i.e., a
K-locus interaction) at iteration i is defined as

N
pe(i) = w(i) / X t(i), where 74(i) is the pheromone.
j=1

The pheromone is

J .
T(i+1) = (1 — p) - w(i) + 0.1 Y x(i), where p is the
j=1
evaporation coefficient, J is the number of K-locus inter-

updated according to

actions containing SNP k at iteration i, X}i(i) is the chi-

squared value of interaction j. In the second stage,
AntEpiSeeker conducts an exhaustive search of interac-
tions within the highly suspected SNP sets, and within
the reduced set of SNPs with top ranking pheromone
levels.

5. EpiMODE

EpiMODE (epistatic MOdule DEtection) [7] is a gener-
alized method of BEAM [8]. It introduces a notion of
epistatic modules to describe interactive effects of mul-
tiple SNPs. An epistatic module is the smallest genetic
unit that independently influences the phenotype. On
the basis of the notion, finding SNPs having epistasis
is equivalent to assigning SNPs to epistatic modules.
The assignment is done by first calculating probability
of observed data given a certain SNP partition pattern
using a Bayesian model and then obtaining the poster-
ior probability of a SNP belonging to each epistatic
module. Gibbs sampling strategy with a reversible
jump Markov chain Monte Carlo procedure is
employed for the posterior probability. Finally, epi-
MODE resorts to hypothesis testing to screen out sig-
nificant epistatic modules. Just like TEAM and
AntEpiSeeker, epiMODE is also a method that focuses
on both eME and eNME detection.

Evaluation criteria
In our study, four criteria are used to evaluate the per-
formance of a method.



Shang et al. BMIC Bioinformatics 2011, 12:475
http://www.biomedcentral.com/1471-2105/12/475

Detection power is one of the generally used perfor-
mance evaluation criteria in epistasis detection domain.
Various forms of detection power have been proposed
[7,8,18,24] depending on what is desired to measure. In
this paper, three types of detection power with con-
straints ranging from conservative to modest are
defined.

Before giving definitions of detection power, several
terms and notations are introduced. A dataset refers to
a collection of SNP data as well as the phenotype. The
collection of SNP data is denoted as a matrix, in which
a row represents genotypes of a sample and a column
represents a SNP. The ground-truth SNPs, which are
only applied to simulation datasets [27,35], refer to the
causative SNPs that truly associated with the phenotype,
i.e,, the SNPs in models added into simulation datasets.

Since a complex disease may be caused by multiple
epistatic interactions, each of which consists of one or
more SNPs, it is necessary to simulate multiple epistasis
models in a dataset. Suppose we generate D datasets
with the same parameter settings for detection power
calculation. For dataset i, let S; denote the number of
independent epistasis models (i.e., no SNPs are involved
in more than one model) and k; be the number of SNPs
involved in model j. Hence, the number of ground-truth

Si
SNPs in dataset i is Mj =) kij. In our experiments, a
j=1
method returns a rank of SNPs implying their descend-
ing importance to the phenotype. We use the top L;
SNPs and the M; ground-truth SNPs to define detection
power.

power 1 is defined as the proportion of datasets in

which all ground-truth SNPs are identified with no false

1D
positives. It is written as power 1 = D > x;, where x; €
i=1

{0,1} is the detection tag, i.e., if the detection set consti-
tuted by the top L; (L; = M;) SNPs includes all ground-
truth SNPs in dataset i, x; = 1; otherwise, x; = 0.

power 2 is defined as an average proportion of true
positives in the top L; (L; = M;) SNPs. It is written as
DN,

i=1 i
truth SNPs in the top L; (L; = M;) SNPs identified in
dataset i.

power 3 is defined as the ratio of the number of
ground-truth SNPs appearing in the top L, SNPs to M,

power 2 = , where y; is the number of ground-

1Dz .
>, where z; is
D i=1 Mi

the number of ground-truth SNPs in the top L; ( L;
>M;) SNPs detected in dataset i. In our experiment, L; is
set to 4.

Robustness of a method is also measured. Though
empirical and theoretical studies suggest that the

and can be written as power 3 =
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methods have good performance on detection power, it
is for non-noise datasets. The robustness of methods to
noise remains unclear. For this study, we introduce
“degree of robustness” (DOR) to quantify the robustness
of a method on noise datasets. It is defined as a normal-
ized relative decrease of detection power from non-
noise datasets to noise datasets under unit degree of
noise added into non-noise datasets in generating noise

. Py — Py :
datasets. By setting v= I, we define
Pp + &

2

T= \/in e ¢2 dt as the DOR of a method, where P,
and P; are the detection power on non-noise datasets
and noise datasets respectively, and I is the degree of
noise added into non-noise datasets. In the definition, ¢
is introduced to avoid the denominator becoming zero.
It is clear that the smaller v or equivalently larger T'
indicates stronger robustness.

Having been widely applied in references
[27,35,46-48], receiver operating characteristic (ROC)
curve is a graphical plot of the sensitivity versus false
positive rate (FPR), showing how many ground-truth
SNPs are detected for a given FPR. Since the number of
SNPs meaningful to the phenotype is smaller compared
to that of phenotype-unassociated SNPs, we measure
sensitivity of a method at 0.01 FPR and show the left-
side ROC curve as an intuitive evaluation [27].

Computational complexity is also considered. We
measure running time in the same computational envir-
onment to assess realistic applicability of a method.

Simulation Tool

We provide a tool, epiSIM, to simulate epistatic interac-
tions in datasets for case-control association studies.
EpiSIM offers several single-locus and epistasis models
associated with the phenotype. It allows users to set
parameters freely, including sample size, number of
SNPs, variation range of minor allele frequencies
(MAFs) in random SNPs, model types, linkage disequili-
brium, penetrance functions, indexes of ground-truth
SNPs, and so on, some of which jointly determine the
strength of association between SNPs and the

phenotype.

Results and Discussion

Detection Power Analysis

Though epistasis models have been widely discussed
[49,50] and can be simulated by epiSIM, it is unrealistic
to evaluate a method on all epistasis models with all
possible parameter settings. In our experiments, we
exemplify 9 commonly used two-locus epistasis models
including three eME models and six eNME models for
study. The first three epistasis models [7,8] are eME
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models. Their penetrance functions are shown in sup-
plementary table S3 in additional file 1 and can be
determined given population prevalence, marginal effect
size of the first locus in an epistasis model (see addi-
tional file 1 for the description of marginal effect size)
[7,8] and MAFs of both loci. For detailed derivation and
equations, see reference [7]. In Model 1, the penetrance
increases only when both loci have at least one minor
allele. In model 2, the additional minor allele at each
locus does not further increase the penetrance. Model 3
assumes that the minor allele in the first locus has mar-
ginal effect, when minor alleles in both loci are present;
however, the effect is inversed. Other epistasis models
are eNME models with their population prevalence ran-
ging from 0.01 to 0.64. Their penetrances are directly
cited from references [10,41,50]. Specifically, Model 4 ~
Model 7 are randomly chosen from references [10,50];
Model 8 is a ZZ model [41]; and Model 9 is an XOR
model [10]. These eNME models are considered in this
study since they provide a high degree of complexity to
challenge ability of a method in identifying epistatic
interactions.

We use different parameters to generate epistasis
models. Detailed parameter settings are recorded in sup-
plementary table S4 in additional file 1. For each model,
200 datasets are simulated each containing 2000 cases
and 2000 controls. In the first 100 datasets, 100 SNPs
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are genotyped, while in other 100 datasets the number
of genotyped SNPs is increased to 10000, which simu-
lates high-dimensional datasets as those in GWAS. For
each dataset, two SNPs are phenotype-associated, and
others are phenotype-unassociated, which are set inde-
pendently with MAFs chosen from [0.05, 0.5] uniformly.

In our study, parameters of each method are generally
set as default. Only a few are modified according to sug-
gestions in order to balance result accuracy and compu-
tational cost. For TEAM, permutation number is set to
100. For BOOST, interaction threshold is set to 10, i.e.,
results of BOOST are the epistatic interactions whose
likelihood ratio test statistic values >10 with 4 degrees
of freedom. For epiMODE, iteration number is set to
100.

Detection power of the methods on 100-SNP datasets
is shown in Figure 2, and that on 10000-SNP datasets is
shown in Figure 3. TEAM and epiMODE are not con-
sidered in Figure 3 due to their unaffordable computa-
tional cost on high-dimensional datasets (e.g., 10000 or
more SNPs). From the figures, we have following
observations.

It is seen that for both SNPRuler and BOOST, detec-
tion power on eNME models is much higher than that
on eME models. Specifically, for 100-SNP datasets, they
identify almost all ground-truth SNPs in eNME models.
However, they have poor detection power on eME
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models. For 10000-SNP datasets, the situation is more
serious: detection power on eME models reduces to
zero. This is in consistency to the principle of them.
That is, they only focus on identifying eNME models.
The results are also consistent with and complementary
to previous reported results [38]. In addition, both
methods are based on contingency table, which reflects
(direct-) dependence structure between two or more
variables, and has been proven to be effective in identi-
fying interactions [51-53].

One might believe that it is the high population preva-
lence of a model that makes epistasis detection of
SNPRuler and BOOST easy. However, this is not the
case. For example, for 100-SNP datasets, detection
power on Model 3 is higher, but population prevalence
is lower than those on Model 2. Hence model type may
be a factor that influences detection power. In fact, from
our experiment, BOOST is more sensitive to model type
compared with SNPRuler.

In contrast to SNPRuler and BOOST, for 100-SNP
datasets, AntEpiSeeker has good performance on both
eME and eNME models. It identifies almost all ground-
truth SNPs except in Model 2. For Model 2, compared
with other methods, AntEpiSeeker is still a winner,
though detection power does not reach a perfect level.
Detection power of AntEpiSeeker decreases for 10000-
SNP datasets. Specifically, it is low on eME models and

zero on eNME models. This implies that the rules of
ants selecting paths in AntEpiSeeker are sensitive to
SNPs each has strong association with the phenotype.
The factor that significantly influences the decrease of
detection power from 100-SNP to 10000-SNP datasets
is the inevitably increased search space: only 4950 possi-
ble two-locus interactions need to be investigated for
100-SNP datasets, while it becomes about fifty million
for 10000-SNP datasets.

TEAM has good detection power on Model 3 and
Model 5, but detects no ground-truth SNPs in Model 8.
On other models, it has moderate detection power.
These results demonstrate that TEAM is model-
sensitive.

EpiMODE has the worst performance on seven mod-
els. Only on Model 1 and Model 3, has it moderate
detection power.

From above analysis, it is seen that contingency
table is a pathway for identifying eNME, and AntEpi-
Seeker provides a good search strategy for identifying
both eME and eNME. Hence a new direction might
be a combination of contingency table based relevance
measure and AntEpiSeeker like search principle for
detecting both eME and eNME. Till now, it seems
that no methods can be insensitive to model types.
Detecting all types of epistasis models is still a chal-
lenging task.
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Robustness Analysis

Commonly encountered noise in genetic epidemiology
studies is missing data, genotyping error and phenocopy,
which have been simulated and respectively added into
datasets for comparison study [33,34]. In our experi-
ments, missing data is simulated by removing 5% of
genotype information randomly. Genotyping error is
simulated using a directed-error model [54], so that, 5%
of genotypes are selected and biased toward to one
allele, unless it is already homozygous in the biased
direction. Phenocopy is simulated such that 20% of
cases are affected under a particular environmental con-
dition, rather than genotype conditions. For each model,
100 datasets for each noise type are generated.

We study the robustness of methods to missing data,
genotyping error and phenocopy respectively, except for
that of TEAM and BOOST to missing data. This is due
to the pre-process of both methods for handling missing
data. For TEAM, it estimates the value of missing data
using other tools, and for BOOST, it just simply
removes SNPs relating to missing data.

Detection power of the methods on noise datasets
with 5% missing data is shown in Figure 4, with 5% gen-
otyping error is shown in Figure 5, and with 20% pheno-
copy is shown in Figure 6. DORs of the methods on
noise datasets based on three forms of detection power
are recorded in table 1.
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As expected, most DORs are ranged from 0 to 1,
while surprisingly, some DORs (only a few) are even lar-
ger than 1. Such a surprising finding stimulates explana-
tion. One reason is the limited number of datasets (e.g.,
only 100) for detection power computation, which
restricts the precision of detection power, and hence
affects the DOR precision. This is the reason of most,
but not all, DORs larger than 1.

Theoretically, DOR of larger than 1 indicates that
detection power of a method on noise datasets is higher
than that on non-noise datasets: noise might help the
detection of epistasis model. As mentioned before,
among the methods, some focus more on eME detec-
tion, while some focus more on eNME detection. In rea-
lity, noise might traverse an eME model to be more
close to an eNME model, or vice versa. For example,
the original model is an eNME model, but addition of
noise biases the model to have marginal effects which
makes the model more close to an eME model. This
tends to possibility that the eNME model originally suc-
cessfully detected by the method facilitating to eNME
detection fails to be detected, leading to the DOR of the
method less than 1, but be successfully detected by the
method facilitating to eME detection though fails to be
detected originally, leading to the DOR of the method
larger than 1. We believe that this is another reason of
the DOR larger than 1 for some noise data.

Pl
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Table 1 Degree of Robustness (DOR) values of the methods to the noise of missing data, genotyping error and

phenocopy.

Noise Types Models Power TEAM BOOST SNPRuler AntEpiSeeker epiMODE

Missing Data Model 1 power 1 - - 0.0000 1.0000 0.0000

power 2 - - 0.0000 1.0000 0.0000

power 3 - - 0.0000 1.0000 0.0000

Model 2 power 1 - - 0.0000 0.0000 0.0000

power 2 - - 0.0000 0.0000 0.0000

power 3 - - 0.0000 0.0433 0.0000

Model 3 power | - - 0.0000 1.0000 0.0000

power 2 - - 0.2925 1.0000 0.0000

power 3 - - 05188 1.0000 0.0000

Model 4 power 1 - - 1.0000 1.0000 0.0000

power 2 - - 1.0000 1.0000 0.0000

power 3 - - 1.0000 0.7607 0.0000

Model 5 power 1 - - 1.0000 1.1601 0.0000

power 2 - - 1.0000 1.1601 0.0000

power 3 - - 1.0000 1.1601 0.0000

Model 6 power 1 - - 1.0000 0.0164 0.0000

power 2 - - 1.0000 0.0214 0.0000

power 3 - - 1.0000 00214 0.0000

Model 7 power 1 - - 1.0000 1.0000 0.0000

power 2 - - 1.0000 1.0000 0.0000

power 3 - - 1.0000 1.0000 0.0000

Model 8 power 1 - - 0.8399 1.0000 0.0000

power 2 - - 0.8399 1.0000 0.0000

power 3 - - 0.8407 1.0000 0.0000

Model 9 power 1 - - 1.0000 1.0000 0.0000

power 2 - - 1.0000 1.0000 0.0000

power 3 - - 1.0000 1.0000 0.0000

Genotyping Error Model 1 power 1 1.1759 0.0000 0.0000 1.0000 0.0000

power 2 09153 0.0000 0.0000 1.0000 0.0000

power 3 09170 0.0000 0.0000 1.0000 0.0000

Model 2 power 1 0.1531 0.0000 0.0000 0.0000 0.0000

power 2 0.0000 0.0000 2.0000 0.0000 0.0000

power 3 0.0000 1.0000 2.0000 0.0014 0.0000

Model 3 power 1 1.0000 0.0007 0.0000 1.0000 0.0000

power 2 1.0000 0.0007 0.0000 1.0000 0.0000

power 3 1.0000 1.1768 0.0000 1.0000 0.0000

Model 4 power 1 0.0031 1.0000 1.0000 1.1614 0.0000

power 2 0.0031 1.0000 1.0000 1.1614 0.0000

power 3 0.0031 1.0000 1.0000 09191 0.0000

Model 5 power 1 0.0051 1.0000 1.0000 1.0000 0.0000

power 2 0.0051 1.0000 1.0000 1.0000 0.0000

power 3 0.0051 1.0000 1.0000 1.0000 0.0000

Model 6 power 1 0.8026 1.0000 1.0000 0.8415 0.0000

power 2 0.8026 1.0000 1.0000 08415 0.0000

power 3 0.8026 1.0000 1.0000 08415 0.0000

Model 7 power 1 0.0058 1.0000 0.8399 1.0000 0.0000

power 2 0.0058 1.0000 0.8399 1.0000 0.0000

power 3 0.0058 1.0000 0.8399 1.1650 0.0000

Model 8 power 1 0.0000 1.0000 1.0000 1.0000 0.0000

power 2 0.0000 1.0000 1.0000 1.0000 0.0000
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Table 1 Degree of Robustness (DOR) values of the methods to the noise of missing data, genotyping error and pheno-

copy. (Continued)

power 3 0.0000 1.0000 1.0000 1.0000 0.0000

Model 9 power 1 05050 1.0000 0.6862 1.0000 0.0000
power 2 0.5050 1.0000 0.6862 1.0000 0.0000

power 3 0.5050 1.0000 0.6862 1.0000 0.0000

Phenocopy Model 1 power 1 0.0000 0.0000 2.0000 0.0005 0.0000
power 2 0.0000 0.0000 2.0000 0.0027 0.0000

power 3 0.0001 0.0000 2.0000 0.0643 0.0000

Model 2 power 1 0.0000 0.0000 0.0000 0.0000 0.0000
power 2 0.0000 0.1531 2.0000 0.0000 0.0000

power 3 0.0000 05785 2.0000 0.0003 0.0000

Model 3 power 1 0.0014 0.0000 0.0000 0.0023 0.0000
power 2 0.0153 0.0000 0.0001 0.0261 0.0000

power 3 0.1096 0.0000 0.0013 0.1542 0.0000

Model 4 power 1 0.7763 1.0000 1.0000 1.0000 0.0000
power 2 0.7763 1.0000 1.0000 1.0000 0.0000

power 3 0.7763 1.0000 1.0000 0.9393 0.0000

Model 5 power 1 0.5485 0.8808 0.1096 0.8006 0.0000
power 2 0.5485 0.8808 0.1096 0.9195 0.0000

power 3 06171 1.0000 0.1153 0.9195 0.0000

Model 6 power 1 0.8513 1.0000 1.0000 1.0000 0.0000
power 2 0.8513 1.0000 1.0000 1.0000 0.0000

power 3 0.8513 1.0000 1.0000 1.0000 0.0000

Model 7 power 1 0.1207 0.9203 0.3906 0.8315 0.0000
power 2 0.1207 0.9203 0.3906 0.8315 0.0000

power 3 0.2275 0.9601 0.5445 1.0208 0.0000

Model 8 power 1 0.0000 1.0000 09195 1.0000 0.0000
power 2 0.0000 1.0000 09195 1.0000 0.0000

power 3 0.0124 1.0000 0.9000 1.0000 0.0000

Model 9 power 1 0.5050 1.0000 1.0403 1.0000 0.0000
power 2 0.5050 1.0000 1.0403 1.0000 0.0000

power 3 05050 1.0000 1.0403 1.0000 0.0000

There are three types of noise added into datasets respectively. For each model with certain type of noise, each method has three DORs, since three forms of
detection power are introduced. Theoretically, DORs are ranged from 0 to 1. However, realistically, there are some DORs (only a few) in table larger than 1. Most
DORs with italic fonts are caused by detection power computation precision and their detection power differences are not greater than 0.01. DORs with bold
fonts, which are only occurred on robustness analysis of SNPRuler to phenocopy on Model 1 and Model 2, are described and evaluated in detail.

1. Missing data

AntEpiSeeker has far better robustness than other meth-
ods on eME models, and good detection power on
eNME models. This clue provides important basis for
developing effective methods which possess stronger
robustness to missing data. The small DORs of AntEpi-
Seeker on Model 2 and Model 6 implies that missing
data really influences detection power, though only 5%
of missing data is added into datasets. The DORs of
SNPRuler that close to or even equal to 1 on most
eNME models indicate that the method is robust to
missing data on eNME models. EpiMODE loses its abil-
ity on all models.

2. Genotyping error

TEAM has high DORs on Model 1, Model 3 and Model
6, but weak robustness on other models, which proves

that its robustness is model-sensitive. As might be
expected, SNPRuler has good detection power and
strong robustness on eNME models, but poor ability on
eME models. The DORs of BOOST are low on eME
models and keep at 1 on eNME models, which is con-
sistent to the principle of the method, i.e., it is designed
specifically for eNME detection. AntEpiSeeker has high
DORs on all models. EpiMODE has no ability on data-
sets with 5% genotyping error.

3. Phenocopy

Detection power of SNPRuler is higher on two eME
models (Model 1 and Model 2) with 20% phenocopy
than that with no noise. This is because phenocopy tra-
verses the eME models to be more close to eNME mod-
els, while SNPRuler only tests eNME models since eME
models are pruned in the branch stage [38]. But it
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seems that such a traversal is not strong enough for
BOOST focusing on eNME models to successfully
detect them. These are the examples that noise really
helps the detection of a model. Overviewing the DORs
among noise types, it is seen that such extreme exam-
ples happen only for phenocopy. This is because only
the phenocopy implies a real bias of the model, while
other noise, i.e., missing data and genotyping error,
modifies little about the model.

TEAM has high DORs on Model 4 ~Model 6, and has
poor robustness on other models. This is because
TEAM is sensitive to model type on its robustness. No
matter what types of noise are added into datasets,
BOOST always has perfect detection power and high
DORs on eNME models, which implies that regression
based methods are promising in detecting eNME mod-
els. Poor ability of BOOST on eME models inspires
researchers to develop more effective methods based on
regression strategy compared to BOOST. AntEpiSeeker
has good detection power on all models, especially on
eME models. Although its robustness on noise datasets
needs to be improved, on viewpoint of detection power
and model type dependence, AntEpiSeeker is the winner
among the methods.

From above analysis, AntEpiSeeker is robust to all
types of noise on eME models. Though BOOST can not
handle datasets with missing data, it has perfect DORs
on eNME models with either genotyping error or phe-
nocopy. SNPRuler is robust to phenocopy on eME mod-
els and missing data on eNME models. The robustness
of methods is sensitive to models and noise types.
Among the methods, epiMODE is of no robustness to
all the noise types.

Sensitivity Analysis

In above experiment, a simulation dataset includes only
one two-locus epistasis model. By considering that a
complex disease is possibly caused by multiple epistatic
interactions [4], we simulate 12 non-noise datasets
(Sim1 ~ Sim12) in each of which multiple epistasis
models are embedded that jointly influence the pheno-
type. For each of the first 6 datasets (Siml ~ Sim6), 6
models are embedded with 4 models being two-locus
eME models and 2 models being single-locus models.
Penetrances and MAFs of loci for these models are
directly cited from reference [55] and shown in supple-
mentary table S5 and supplementary table S6 in addi-
tional file 1. Other 6 datasets (Sim7 ~ Sim12) are
simulated each containing 3 eNME models (Model 4 ~
Model 6). The datasets are with 2000 and 4000 samples
genotyped by 100, 1000, and 10000 SNPs, respectively.
Among them, Sim5, Sim6, Sim11, and Sim12 simulate
high-dimensional datasets as those in GWAS. Details of
these datasets are recorded in supplementary table S7 in
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additional file 1. Sensitivity of the methods at 0.01 FPR
is given in Figure 7. Left-side ROC curves of the meth-
ods are shown in Figure 8, from which sensitivity of the
methods at other FPRs can be obtained directly.

Among the methods, BOOST has the highest sensitiv-
ity at 0.01 FPR in most of the datasets, especially in
Sim9 ~ Sim12. Although sensitivity of BOOST at low
FPRs is zero in Sim2, Sim7 and Sim8, when reaching to
0.1 FPR, it is the winner. As expected, SNPRuler has
high sensitivity in Sim7 ~ Sim12 and low in Siml ~
Sim6. Furthermore, by comparing ROC curves between
Sim1 and Sim2, between Sim3 and Sim4, and between
Sim11 and Sim12, it is seen that increasing sample size
helps SNPRuler to improve detection power. For AntE-
piSeeker, sensitivity at low FPRs seems drop as the
number of SNPs increases, which prohibits its further
application. TEAM has zero sensitivity at 0.01 FPR in all
datasets. Only when reaching to 0.1 FPR, has TEAM
low sensitivity in Sim3 and Sim4. EpiMODE detects
nothing in all datasets and hence is not considered in
this study.

From above analysis, it seems that BOOST is suitable
for multiple epistasis detection. AntEpiSeeker performs
well on multiple eME detection and SNPRuler performs
well on multiple eME detection. Additionally, both
SNPRuler and BOOST are sensitive to sample size and
SNP number. TEAM and epiMODE have no ability on
multiple epistasis detection.

Computational Complexity Analysis

Experiments of the methods on Siml ~ Sim6 are con-
ducted with Intel Xeon 2.00 GHz CPUs and 6 GB of
RAM running Microsoft Windows XP Professional x64
Edition 2003 Service Pack 2 for computational complex-
ity analysis. The running time of the methods on each
dataset is shown in table 2.

BOOST is the fastest among the methods. For Sim1
and Sim2, it only spends less than a second; even for
datasets each with 10000 SNPs, it costs a few minutes
with running time several times faster than that of other
methods. This is due to its fast Boolean operation for
computing contingency tables and upper bound-pruning
technique [38]. Running time of SNPRuler is short, less
than half an hour for sim6, and importantly, it goes up
moderately. AntEpiSeeker is time affordable on handling
large scale datasets. TEAM is the slowest among the
methods due to its permutation test operation, although
traversing minimum spanning tree helps reduce time
cost. EpiMODE could not deal with datasets with 10000
SNPs at affordable time cost.

For storage requirement, TEAM, BOOST, AntEpiSee-
ker and epiMODE do not need much memory and run
smoothly at our platform. However, SNPRuler requires
unaffordable memory for large scale datasets.
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From above analysis, TEAM, epiMODE and SNPRuler
require either huge time cost or unaffordable memory.
BOOST and AntEpiSeeker are affordable in both com-
putation and storage requirement for large scale data-
sets. Hence the latter two facilitate genome-wide study
in the sense.

Conclusions

Epistasis detection helps elucidate lots of biological and
biochemical pathways that underlie complex diseases of
human, animal and plant. Although its computational

and methodological perplexities have been well recog-
nized, it remains a challenge in designing methods.
With the tireless efforts of researchers for decades,
some promising methods have been proposed. However,
due to difficulties, such as lack of benchmark simulation
datasets, limited epistasis models, evaluation criteria and
computational burden, comparison study have not been
paid much attention to. Comparison study can reveal
merits and limitations of the methods and offer clues of
epistasis detection to researchers, which will inspire
them to develop more effective and efficient methods.
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Figure 8 Left-side ROC curves of the methods on datasets.
A

N
Sim1 Sim2 Sim3
1 e 1 — s - 1+
0.9 0.5 — 08
[ —— 08 - 08k
a7 —— TEAM ik 0.7
08 ——— BOOST 08 J 08k
£ AntEpiSeeker £ £
5 08 ~ SNPRuler B 05 1 g 05
2 2 2
204 B o4 1 % oar
03 03 1 03r
0.2 0.2 02
01 01 1 01r l—
0 Q [
0 005 o1 015 a 005 01 015 0 0.05 01 015
false positivity rate false positivity rate false positivity rate
Simd. Sims Sims
1 1 1 1
08 08 08
o8 08 1 osf
07 07 1 o7H
508 5 08 506
= = )
=05 =05 4 = 05
2 H 2
304 @04 %04
0.3 0.3 1 0.3r
0.2 02 02
01 /7 o1 1 0.1
0 0
o 0.05 0.1 0.15 ] 0.005 0.01 0.015 0 0.005 0.01 0.015
false positivity rate false positivity rate false positivity rate
Sim? Sim8 Simg
1 1 1
0.9 0.9 1 08
0.8 08 08
0.7 07 1 07
_. 06 _ 0B .06
] H i
205 Z05 1 = 05t
@ o I
@04 P04 ” 04
0.3 0.3 1 0.3r
0.2 02 1 02F
1 01 01
0 0 0
0 005 2.1 015 o 0.1 015 Q 0.08 o1 0.15
false positivity rate false positivity rate false positivity rate
Sim10 Sim11 Sim12
1 prop— 1 1 e e
0.8 (] 1 08r
0.8 0.8 08
07 o7 1 orr
= 06 = 06 1 = 08
= Z Z
205 Zos 1 2 os5F
z 2 2
g & g
® 0.4 @ 04 - ® g4t
0.3 03 03
02 02 1 02r
1 01 01
0 0
0 005 0.1 015 0 0.005 0.01 0.015 0 0.005 0.01 0.015

false positivity rate

false positivity rate

By reviewing the literature, we identify 36 methods in
use for epistasis detection, and in this study, we classify
them into three categories according to their search
strategies, i.e., exhaustive search, stochastic search, and
heuristic search. Among the methods, we select five
representative methods for comparison study. They are
TEAM, BOOST, SNPRuler, AntEpiSeeker and epi-
MODE. To do so, we need to have simulated datasets
and evaluation criteria. The simulation datasets with dif-
ferent size, various epistasis models, absence and

presence of noise are generated by a tool, epiSIM, in
which the noise includes respective missing data, geno-
typing error and phenocopy. Three forms of detection
power, robustness, sensitivity, and computational com-
plexity are provided as evaluation criteria.

Our experimental results indicate that performance of a
method varies over SNP number and sample size of data-
sets, epistasis models and noise types, and performance
varies over methods for a dataset. Since multiple evalua-
tion criteria are concerned, it becomes difficult to say



Shang et al. BMIC Bioinformatics 2011, 12:475
http://www.biomedcentral.com/1471-2105/12/475

Table 2 Running time (minutes) of the methods on Sim1
~ Sim6.

Methods Sim1 Sim2 Sim3  Sim4 Sim5 Sim6
TEAM 0099 0219 3955 7885 350.1 695.7
BOOST 0003 0006 0053 0086 3.098 4.142

SNPRuler 0.019 0.026 0.348 0.667 30.88 58.26

AntEpiSeeker 9.857 19.11 12.96 27.11 51.36 104.2
epiMODE 0604 0841 1607 3175 >20d*  >20d*

* represents running time is presented in days.

which method is better. In terms of detection power,
AntEpiSeeker performs best on eME models and BOOST
performs best on eNME models. When users expect
strong robustness to noise, we recommend using AntEpi-
Seeker, BOOST and SNPRuler. Specifically, AntEpiSeeker
is robust to all types of noise on eME models; BOOST is
robust to genotyping error and phenocopy on eNME
models, but can not handle datasets with missing data;
SNPRuler is robust to phenocopy on eME models and
missing data on eNME models. In terms of sensitivity,
AntEpiSeeker is the winner on eME models and both
BOOST and SNPRuler perform well on eNME models. If
users are conscious of computational complexity and have
to handle large scale datasets, we recommend using
BOOST. In terms of overall performance, AntEpiSeeker
and BOOST are recommended as the efficient and effec-
tive methods. Although the use of methods usually depend
on the context, according to results of this study, we sort
the methods according to each criterion and give an intui-
tive recommendation in supplementary table S8 in addi-
tional file 1 with a number ranging from 5 (i.e., excellent)
to 1 (i.e., poor).

As expected, several important conclusions can be
inferred.

First, each method has its own merits and limitations,
but no one is perfect. None of them are consistently
better than others in all scenarios. For example, SNPRu-
ler has perfect detection power on eNME models and
spends affordable time on large scale datasets. However,
it has weak detection power on eME models and
requires huge memory occupancy in GWAS.

Second, a method might be superior on some models
and inferior on other models, but none is insensitive to
all model types. For instance, SNPRuler and BOOST
have poor detection power on eME models and perfect
detection power on eNME models.

Some methods, e.g.,, TEAM and BOOST, are limited
to only two-locus epistasis detection. Some methods, e.
g., SNPRuler and AntEpiSeeker, though can deal with
high-order models, but with rapid growth of computa-
tional cost with interaction order.

Additionally, a method may have strong robustness on
datasets with one noise type, but is weak on datasets
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with another noise type. For example, SNPRuler has
strong robustness to missing data, but is sensitive to
genotyping error.

Considering further work relating to epistasis detec-
tion, there are multiple folds.

First, epistasis models used in this study, though spread-
ing in some sense, are still limited. More epistasis models
with wider spread parameter settings should be studied.
For instance, epistasis models with low population preva-
lence (i.e., less than 0.01) are not, but should be consid-
ered. In polygenic conditions, population prevalence of a
complex disease is very low, which is one of the reasons
for the meagre results from numerous GWAS.

Second, we infer that the performance may be sensitive
to MAFs, linkage disequilibrium and penetrances and
their impact to epistasis detection should be studied.

Furthermore, other noise such as genetic heterogene-
ity should be considered.

At present, epistasis models are more or less speculative
and have weak biological theories, hence models based on
biological systems need to be well defined for assessing a
method. Furthermore, detection methods are generally
based on statistical calculation, which is far too simplistic,
as diseases are not a single entity, but heterogeneous con-
ditions basically determined by the composite genotype in
a network of genetic interactions, subsequently possibly
modified by non-genetic factors. How to explore the wide
spectrum of all biologically authentic epistasis including
both eME and eNME from a genome wide scale dataset at
a computationally affordable cost is a challenging task for
bioinformatics researchers. From this view point, an
assessment of biological relevance of epistasis models and
detection methods would be highly appreciated.

EpiSIM simulator and 100-SNP non-noise datasets are
available and can be downloaded from the link, https://
sourceforge.net/projects/episimsimulator/files/. Other
datasets, like 100-SNP noise datasets, 10000-SNP non-
noise datasets and Siml ~ Sim12, can be obtained by
contacting the corresponding authors.

Additional material

Additional file 1: Supplementary file for the main text. The file is a
PDF document, including a technical term description and 8 tables.
Marginal effect size appeared in main text is described in detail. Table S1
and table S2 are overviews of the methods for epistasis detection. Table
S3 ~ S6 record 15 disease models (2 single-locus models and 13 two-
locus models). Table S7 shows information of datasets, each of which is
added into multiple disease models. Table S8 is an intuitive impression
of the methods.
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