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Abstract

Background: Accurate identification of protein domain boundaries is useful for protein structure determination
and prediction. However, predicting protein domain boundaries from a sequence is still very challenging and
largely unsolved.

Results: We developed a new method to integrate the classification power of machine learning with evolutionary
signals embedded in protein families in order to improve protein domain boundary prediction. The method first
extracts putative domain boundary signals from a multiple sequence alignment between a query sequence and its
homologs. The putative sites are then classified and scored by support vector machines in conjunction with input
features such as sequence profiles, secondary structures, solvent accessibilities around the sites and their positions.
The method was evaluated on a domain benchmark by 10-fold cross-validation and 60% of true domain
boundaries can be recalled at a precision of 60%. The trade-off between the precision and recall can be adjusted
according to specific needs by using different decision thresholds on the domain boundary scores assigned by the
support vector machines.

Conclusions: The good prediction accuracy and the flexibility of selecting domain boundary sites at different
precision and recall values make our method a useful tool for protein structure determination and modelling. The
method is available at http://sysbio.rnet.missouri.edu/dobo/.

Background

It has been well over thirty years since Wetlaufer for-
mally introduced what he termed structural regions of a
protein chain. Such regions were portions of the peptide
sequence which assumed a compact structure [1]. In
modern parlance, these units are known as domains.
Protein domains are structural, functional and evolu-
tionary units and are the building blocks of larger pro-
teins [2]. In recent years, the identification and
delineation of protein domains has become more promi-
nent as this information eases the determination of pro-
tein structure by experimental means and can also
speed up computational approaches for protein struc-
ture prediction [3,4].
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Due to the large amounts of data being generated by
today’s technology, human experts can no longer keep
up. It is simply not possible to visually identify and
annotate such a large number of domains. Thus, com-
putational approaches are needed to fill the gap.

At present, computational methods for protein
domain prediction can be roughly dichotomized as
either template-based or ab-initio. Most template-based
approaches attempt to find homologous sequences in
one of the many existing domain databases and then
infer from these sequences the domain(s) of the protein
in question. Of course the drawback to this approach is
that it will only work if a domain is conserved and has
already been deposited in a database. A few template
based methods [5,6] take a different approach and build
a 3D model using structural templates found by fold
recognition. The domains are then derived from the
generated model. Ab-initio methods make predictions
based solely on the primary sequence of a protein and
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therefore work regardless of the novelty of the protein at
hand. Traditional methods for this type of approach
include sequence comparison, neural networks and sta-
tistical analysis [7-13]. Some of the newer ab-initio
approaches construct an ensemble of 3D models via de
novo modelling techniques which are then analyzed and
parsed for domain boundaries [5,14]. Finally, there do
exist a small number of hybrid methods which combine
both template based and ab-initio approaches into one
comprehensive package [15,16].

For proteins without homology to known structures,
ab-initio approaches are the only choice. Unfortunately,
the accuracy of their domain boundary predictions is
still too low for general, practical use [11,12,17,18].
Most ab-initio methods can be classified into two sub-
categories: comparative sequence analysis [7,8,19-24]
and direct boundary prediction [12,17,25]. Most com-
parative sequence analysis methods use pairwise
sequence alignment similarity to cluster sequence seg-
ments into domains [7,8,19-24]. The direct boundary
prediction methods try to identify domain boundary
regions such as domain linkers, exploiting their
sequence and structural biases [26-28]. This is done
using machine learning techniques [11,12,17] which are
trained on known domain boundaries extracted from
domain classification databases such as CATH [29],
SCOP [30] and DALI [31,32]. Still, because these meth-
ods need to scan several hundred positions (i.e. to cover
the length of the protein) and rely on inputs containing
very weak domain boundary information, they often suf-
fer from low accuracy.

Here we present DoBo, a new ab-initio method we
have developed to exploit evolutionary domain boundary
signals embedded in homologous proteins. This reduces
the search space of domain boundaries and in turn
improves domain boundary prediction. It is well known
that during evolution genes may undergo recombination
to produce complex domain architectures via gene
fusion [33], gene fission [33,34], domain duplication and
domain swapping [34-38]. Thus evolutionary related
domains may exist in different forms in different organ-
isms [39]. Some exist as a component of multi-domain
proteins and some as standalone single domain proteins
[40,41]. When a multi-domain protein sequence is
searched against a protein sequence database (e.g. NCBI
non-redundant sequence database [42]), proteins con-
taining domains similar to the target protein are
returned which often reveal the domain architecture of
the target protein. We integrate evolutionary domain
boundary signals with machine learning classification
into a two-step prediction procedure. First, we leverage
evolutionary information and generate domain boundary
signals which identify potential domain boundary sites.
These sites are then further examined and classified as

Page 2 of 8

boundary or non-boundary sites using machine learning
methods.

Methods

Data Set Preparation

The starting point for our dataset was a collection of
proteins curated for the DOMpro package [11]. From
this set, we extracted only those proteins whose domain
number agreed in both SCOP (v 1.75) and CATH (v
3.3.0) [29,30]. Then we removed any protein whose
length was less than 90 residues long as these sequences
were incapable of generating signals. This resulted in a
final data set containing a total of 628 protein
sequences, 186 of which were multi-domain proteins
and 442 were single domain proteins. The domain defi-
nitions used for domain boundary signal classification
for training and evaluation are those provided by
CATH. The PDB identifiers and domain definitions for
these proteins can be found online [43].

Identification and Classification of Domain Boundary
Signals

To detect putative domain boundary signals for a pro-
tein, PSI-BLAST [44] is used to generate a multiple
sequence alignment (msa). This is achieved by running
PSI-BLAST to search a query sequence against the
NCBI non-redundant protein sequence database [42]
(i.e. nr-database) for 3 iterations with an e-value of .001.
Then the pairwise alignments generated by PSI-BLAST
are extracted and used to form a multiple sequence
alignment anchored on the query sequence. A domain
boundary signal is defined as a gap which begins at the
N or C terminal end of a sequence in the msa and
extends continuously for at least 45 residues. We make
an additional stipulation that with the gaps removed the
remaining sequence must be at least 45 residues long
for a signal to be generated. The location of the domain
boundary signal is defined to be the first non-gap resi-
due in the sequence. Figure 1 illustrates this process and
shows two domain boundary signals for protein 1B4A.

When extracting domain boundary signals from a
multiple sequence alignment, each sequence from the
msa is processed in order of increasing PSI-BLAST e-
value. The location of each domain boundary signal is
noted and aggregated to a list of all the signals for the
protein.

The collection of domain boundary signals stops when
all of the sequences in the msa have been processed or
whenever signals have been generated at 35 unique resi-
due locations, whichever comes first. It is worth noting
that these parameter values used to generate putative
domain boundary sites are adjustable and may have
some impact on the sensitivity and specificity of domain
boundary prediction.
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Figure 1 Procedure to identify and extract domain boundary signals. To identify domain boundary signals for a target, homologous
sequences are found using PSI-BLAST. The pairwise alignments generated by PSI-BLAST are used to form a multiple sequence alignment with
the query sequence as the anchor. A domain boundary signal is defined as a gap which begins at the N or C terminal end of a sequence in the
msa and extends continuously for at least 45 residues. With the gaps removed the remaining sequence must be at least 45 residues long for a
signal to be generated. Here we see two domain boundary signals for 1B4A (location indicated by large arrows).

large arrows)

Domain boundary signals are classified as one of three
possible types: false boundary, near boundary, or away
boundary. False boundary signals are those generated
from a single domain protein. Near boundary signals are
those which occur within 20 residues of any domain
boundary in a multi-domain protein. The remaining sig-
nals come from multi-domain proteins and correspond
to away boundary signals as they take place more than
20 residues away from a true domain boundary. The
20-residue threshold is in accordance with previous
research [11,17,45].

Machine Learning Prediction Protocol
To predict domain boundaries, each domain boundary
signal was classified using a support vector machine
(SVM) [46]. As support vector machines are binary clas-
sifiers, we perform the classification using two separate
support vector machines in a two stage process. The first
SVM (Task-1) was trained to separate false boundary sig-
nals from near and away boundary signals (i.e. to discri-
minate signals generated from a single domain protein
from those generated from a multi-domain protein). The
second SVM (Task-2) was trained solely on signals from
multi-domain proteins and was charged with discriminat-
ing near boundary signals from away boundary signals.
To determine if a protein is single domain or multi-
domain, we first classify all domain boundary signals as
false signals or near/away signals. If a protein has one or
more near/away signals, it is classified as a multi-domain
protein. Those proteins which only generate signals clas-
sified as false signals or do not generate any signal at all

are classified as single domain proteins. Domain bound-
aries are predicted based directly on the output of
SVMlight. For each domain boundary signal, a set of
features is fed into SVMlight and output is generated.
Generally speaking, for Task-2 if the output is positive,
i.e. greater than 0, then a domain boundary is predicted
at that signal site. It is also possible to set a different
decision threshold and determine predicted domain
boundaries with respect to that new threshold.

Sequence Encoding and Training Method

Both Task-1 and Task-2 SVM predictors were trained
using the SVM light package [47]. The features used in
training came from a window of 41 residues centered
around the signal site. For each residue in the window,
21 features were used for a sequence profile (i.e. nor-
malized frequencies of 20 residues plus a gap) and 5 fea-
tures (i.e. helix, strand, loop, buried, exposed) encoded
the secondary structure and solvent accessibility as pre-
dicted by the SSpro suite [48]. In addition to these resi-
due specific features, we also added 3 signal specific
features such as the position of the signal with respect
to the N terminal (residue index divided by 100), posi-
tion with respect to the C terminal (protein length
minus residue index divided by 100) and a count of
boundary signal sites within 5 residues. Additionally, as
a protein specific feature we used the length of the
sequence divided by 100. The final feature was a mea-
surement of the total number of signals generated by
all of the sequences in the msa within a 5 residue neigh-
bourhood of the signal site. This local sum was
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calculated for each residue in the sequence and then
converted to z-scores. The z-score for the signal site
was added as the final feature and this resulted in a fea-
ture vector containing a total of 1071 features.

For both Task-1 and Task-2 SVM predictors, we used
a radial basis kernel function and set gamma to “0.015”
according to a leaving one out cross validation
(LOOCYV) procedure. For the purposes of training and
evaluation we performed 10 fold cross validation, split-
ting the proteins up into 10 set of approximately equal
size. For Task-1 we used all proteins in our dataset
while for Task-2 we limited ourselves to those targets
known to be multi-domain proteins.

Results

Signal Coverage of Domain Boundaries

To ascertain the usefulness of domain boundary signals
generated by multiple sequence alignments, we calcu-
lated the percentage of domain boundaries which had a
signal within 20 residues. When calculating this value, we
excluded the domain boundary closest to each terminal
end of the protein sequence (i.e, the first and last domain
boundaries with respect to the residue index were not
considered). For our dataset, there were 462 such bound-
aries and we found that 391 had a domain boundary sig-
nal within 20 residues. Thus, 84.6% of domain
boundaries had a signal nearby. Figure 2 illustrates the
distribution of the domain boundary signals generated
for 1CQX along with the true domain boundaries.

Site Level Evaluation of Domain Boundary Signals
Table 1 reports the results at site level for the two binary
classification tasks: Task 1, near/away boundary signals
(positive) VS false boundary signals (negative) and Task
2, near boundary signals (positive) VS away boundary
signals (negative). For site level evaluation for Task 1,
overall classification accuracy (i.e., percent of correct pre-
dictions) is 80% using 10-fold cross validation on all the
proteins in the data set. The overall classification accu-
racy for Task 2 predictions was 74% using 10-fold cross
validation. Using leaving one out cross validation proce-
dure (LOOCV), the accuracy is slightly higher (i.e. 81%
for Task 1 and 76% for Task2). Figure 3 shows one exam-
ple where domain boundaries were correctly predicted.
One key application of domain boundary prediction is
to select positions to cut a large protein into foldable
units for structure determination or prediction. In order
to facilitate this application, we study how the precision
and recall of domain boundary predictions change
according to decision thresholds on domain boundary
scores predicted by the support vector machines.
Figure 4 illustrates a plot of the precision and recall for
domain boundary sites as a function of the decision
threshold based on 10-fold cross validation. The decision
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Figure 2 Domain boundary signal sites for 1CQX. (a) Domain
boundary signal site locations which were extracted from a multiple
sequence alignment for chain A of protein 1CQX. Signals (denoted
by *") were generated at 28 different residues across this three
domain protein. The true domains and domain boundaries are also
indicated (boundaries with an ). Note that all domain boundaries
have signals nearby indicating good coverage of the domain
boundaries. (b) Structural plot for chain A of protein 1CQX. The
locations of domain boundary signals are shown in orange and true

domain boundaries are green.

threshold was the value used in conjunction with the out-
put of SVMlight to discriminate between near and away
boundary sites. It was varied from -1.5 to 1.5 and at each
threshold, signals were classified and the precision and
recall were calculated for the sites classified as near
boundary. The break-even point (i.e. precision = recall)
was found to be 60%, which means 60% of true domain
boundaries can be predicted at a precision of 60%. We
believe domain boundary predictions at this accuracy
level can used to effectively inform protein structure
determination and modelling. For the purposes of these
calculations, any signal classified as near boundary and
was within 20 residues of a true domain boundary was
counted as a correct prediction. For recall, we calculated
the percentage of true domain boundaries which were
more than 40 residues way from the N or C terminal and
had a near boundary signal with in 20 residues.

Protein Level Results
Table 2 reports the classification accuracy of our predic-
tion protocol when classifying a protein as single or multi
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Table 1 Boundary site signal classification results for
Task-1 and Task-2 using both 10-fold cross validation
and leaving one out cross validation

Classification Task Overall Acc. Using Overall
10-Fold Cross Accuracy Using
Validation Loocv

Task 1 (near/away 80 81

boundary VS false

boundary)

Task 2 (@away boundary .74 76

VS near boundary)

domain based on 10-fold cross validation. We considered
a protein to have multiple domains if it generated at least
one domain boundary signal which was classified as a
near/away signal by the Task-1 classifier. Overall 515 of
the 628, or 82% of the proteins considered, were correctly
classified as either a single or multi domain protein. The
precision and recall for classifying a protein as single
domain were 0.88 and 0.86, respectively. For multi
domain proteins, the performance was slightly less with
the precision being 0.68 and the recall 0.72.
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Figure 3 Domain boundary predictions for 1QQG. (a) True
domains and domain boundaries (boundaries indicated by 1) and
the predicted domain boundaries (indicated by ) for chain A of
protein 1QQG, a two domain protein with a domain linker
delineated by “I". Both domain boundaries are accurately predicted.
These predictions were made using a decision threshold of 0.5 (b)
Structural plot for chain A of protein 1QQG. The predicted domain
boundaries are shaded orange. The linker between the two
domains could not be structurally determined (i.e, its coordinates
were not available) and is therefore represented by the dashed line.
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Figure 4 Domain boundary prediction results on multi-domain
proteins. (a) We calculated the precision of domain boundary
predictions and recall of true domain boundaries at varying decision
thresholds. The recall value is calculated for domain boundaries
which occur at least 40 residues from the N or C terminal end of a
sequence. A domain boundary prediction is considered correct if it
occurs within 20 residues of a true domain boundary. (b) Plot of
precision and recall with respect to the decision threshold. The
break-even point (precision = recall) is 60%.

Comparison with Other Domain Boundary Predictors on
CASP9 Targets

As an additional assessment of our method, we evalu-
ated its performance along with that of two additional
ab-initio domain boundary predictors on the targets
from the Critical Assessment of Techniques for Protein
Structure Prediction (CASP9). The additional predictors
considered were DOMPro and PPRODO [11,13]. The
sequences and domain definitions for these targets were

Table 2 Classification of proteins as single or
multi-domain

Overall  Single Dom. Single Dom. Multi-Dom. Multi-Dom
Acc. Precision Recall Precision Recall
0.82 0.88 0.86 0.68 0.72

Using the results from Task 1, we classified proteins as a single or multi-
domain. Any protein which generated at least one boundary signal which was
classified as a near/away boundary signal was considered a multi-domain
protein.
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obtained directly from the CASP9 server [49]. To evalu-
ate the performance of the predictors at the protein
level (i.e. single or multi-domain classification), all
CASP9 targets with domain definitions were used.
When evaluating domain boundary predictions, we lim-
ited the dataset to 14 multi-domain targets which had
continuous domain definitions as these methods were
largely designed to handle domains without non-
continuous segments. The results of this evaluation are
summarized in Tables 3 and 4. Table 5 lists the multi-
domain targets used and their corresponding domain
definitions.

Discussion

One immediate benefit of this new domain boundary
prediction process is the combination of the strengths
of machine learning and evolutionary signals. Evolution-
ary signals embedded in multiple sequence alignments
help significantly reduce the search space. As men-
tioned, the domain boundary signal embedded in the
primary sequence is very weak. Any reduction in the
search space which does not eliminate domain boundary
sites will likely increase overall accuracy of domain
boundary prediction as it will reduce the chance of false
positives. For our dataset, the average sequence length is
210 residues while the average number of domain
boundary signals generated per protein is 23. This is a
significant reduction in the number of sites that must
be classified. Remarkably, this 10-fold reduction in
search space does not severely hamper the search for
domain boundaries as the number of domain boundaries
which have a signal nearby is still quite high, at slightly
under 85%.

We have also demonstrated that not only are signals
generated near domain boundary sites, but they also
contain useful information which can be used to classify
them. The machine learning method, which incorpo-
rates sequence profiles, secondary structures, relative
solvent accessibilities and positional information of
putative boundary sites, can produce scores to rank,
select and classify the largely reduced set of putative
domain boundary sites. Our two-tiered classification
approach allows proteins to be classified as single or
multi-domain and the boundary signals in multi-domain
proteins can be further processed in a task specific way.
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Table 4 Precision and recall of domain boundary
predictions on CASP9 continuous, multi-domain targets

Predictor Precision of Domain Recall of Domain
Boundary Prediction Boundaries

DOMPro 0.50 0.14

PPRODO 050 052

DoBo 049 0.70

For the 14 continuous, multi-domain targets from CASP9, we used DOMPro,
PPRODO and our method DoBo to predicted domain boundaries. Only
domain boundary predictions which were more than 40 residues from the N
or C terminal end of a sequence were considered. A domain boundary
prediction is considered correct if it occurs within 20 residues of a true
domain boundary. The recall value is calculated for domain boundaries which
occur at least 40 residues from the N or C terminal end of a sequence.

When classifying signals as near or away boundary sig-
nals, our method allows the user to specify a threshold
to meet his or her needs. The threshold can be
decreased to boost recall or it can be raised to better
precision. This is a stark contrast to many other meth-
ods which fix the threshold and do not allow for appli-
cation specific use.

Figure 4(b) shows the effects of varying the decision
threshold on both precision and recall for domain
boundaries. This figure demonstrates the performance
of our approach on the domain boundary site level as
no distinction is made as to where the sites are located.
In an attempt to gage performance on the protein level,
we varied the decision threshold and calculated the pre-
cision and recall of domain boundary predictions for
only those proteins that contained domain boundary
predictions. Using a threshold of “0”, we found that our
method made a domain boundary prediction for 137 of
the 186 multi-domain proteins (roughly 74%). When we
evaluated the precision and recall of domain boundary
predictions on only those 137 proteins we found those
values to be .75 and .68 respectively. This further illus-
trates the usefulness of the decision threshold.

In addition to the decision threshold, there are a num-
ber of other parameters that can be set and modified.
With respect to the signal generation process, it is possi-
ble to vary the e-value threshold of the PSI-BLAST
search, the minimum signal gap, minimum domain
length and unique signal site limit. Overall, we found
that the method is quite robust within a range of rea-
sonable parameter values and the tuning of these

Table 3 Classifcation of CASP9 targets as single or multi-domain

Predictor Accuracy Single Dom. Precision Single Dom. Recall Multi-Dom. Precision Multi-Dom Recall
DOMPro 0.72 0.82 0.84 0.30 0.28
PPRODO 0.63 0.84 0.65 0.30 0.56
DoBo 0.78 0.90 0.81 0.50 0.68

Using DOMPro, PPRODO and our method DoBo, we classified all CASP9 targets as single or multi-domain. For PPRODO, predictions were based on the authors’
documented procedure for predicting domain number [13]. For Dobo, any target which generated at least one boundary signal which was classified as a near/

away boundary signal was considered to be multi-domain.
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Table 5 Continuous, multi-domain CASP9 targets and
domain definitions

Target Domain Definitions
T0529 7-339, 364-561
T0537 65-350, 351-381
T0542 2-302, 303-585 *
10548 12-46, 47-106
T0550 31-117, 178-339
T0553 3-65, 66-136
T0571 32-196, 197-331
T0575 1-63, 64-216 *
T0582 2-122,123-221
T0586 5-84, 85-123
T0596 6-58, 59-188
T0600 17-75, 76-122
T0608 29-117,118-278
T0611 3-55, 56-213

The target numbers and domain definitions used when evaluating domain
boundary predictions on the CASP9 dataset. For targets T0542 and T0575, a
portion of the domain definition was disjoined. These disjoined portions were
consolidated into one range.

parameters usually involves some minor trade-offs
between different prediction objectives. For instance, we
set a shorter minimum domain and signal gap length,
and used an older version of the NCBI non-redundant
database when generating domain boundary signals and
this yielded a slightly higher overall accuracy for Task 1
and Task 2 (i.e. ~85% and ~77% respectively using a
LOOCYV procedure), but a lower precision and recall at
the break-even point (i.e. ~53%). The final values used
for these parameters were chosen empirically based on
coverage of domain boundaries by signals, the average
number of signal sites per protein and the break-even
point. Another parameter that can be set is the number
of sequences to be considered from the multiple
sequence alignment. We found that considering all
sequences in a multiple sequence alignment can some-
times be detrimental to the overall performance. While
it is true that allowing more sequences for consideration
often increases the number of signals and hence
increases the coverage of domain boundaries, it does so
at the cost of enlarging the search space. We also found
that number of signal generated for a protein has no
direct bearing on performance. The precision and recall
of domain boundary predictions for proteins generating
fewer than 10 signals is comparable to that of proteins
which generate many more signals.

A drawback to our approach is that by limiting the
search space by means of evolutionary signals, our
method is dependent on the generation of those signals.
That is to say if no signals are generated then domain
boundary predictions cannot be made. We have found
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that when signals are not generated, the most common
cause is that the length of the protein is too short. For a
domain boundary signal to be generated it must occur
at least 45 residues from the N or C terminal and the
resulting domain must be at least 45 residues long. This
effectively means that proteins less than 90 residues in
length are incapable of generating signals. In practice,
this limitation does not pose any serious problem as
such proteins are likely to be single domain and hence
there are no boundaries to detect. Another reason that
signals might not be generated is if a significant number
of homologs cannot be identified during the PSI-BLAST
search. This does occasionally happen and in this case
the method will not work.

Conclusions

We developed a two-step procedure to integrate
machine learning and domain evolutionary signals to
improve domain boundary prediction. The evolutionary
domain signals extracted from multiple sequence align-
ments of query proteins and their homologs can reduce
the space of the domain boundary search by about
10 fold while retaining the majority of true domain
boundaries. The further application of support vector
machines together with other sequence-derived features
can effectively score and classify these putative bound-
aries in order to identify true domain boundaries. The
numerical scores assigned to the predicted domain
boundaries make it possible to select domain boundaries
at different precision and recall values. This flexibility
and the good prediction accuracy make this method a
valuable tool for protein structure determination and
prediction. It is available at http://sysbio.rnet.missouri.
edu/dobo/.
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