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Abstract

parameters in the birth and death model.

maximum likelihood method.

Background: A birth and death process is frequently used for modeling the size of a gene family that may vary
along the branches of a phylogenetic tree. Under the birth and death model, maximum likelihood methods have
been developed to estimate the birth and death rate and the sizes of ancient gene families (numbers of gene

copies at the internodes of the phylogenetic tree). This paper aims to provide a Bayesian approach for estimating

Results: We develop a Bayesian approach for estimating the birth and death rate and other parameters in the
birth and death model. In addition, a Bayesian hypothesis test is developed to identify the gene families that are
unlikely under the birth and death process. Simulation results suggest that the Bayesian estimate is more accurate
than the maximum likelihood estimate of the birth and death rate. The Bayesian approach was applied to a real
dataset of 3517 gene families across genomes of five yeast species. The results indicate that the Bayesian model
assuming a constant birth and death rate among branches of the phylogenetic tree cannot adequately explain the
observed pattern of the sizes of gene families across species. The yeast dataset was thus analyzed with a Bayesian
heterogeneous rate model that allows the birth and death rate to vary among the branches of the tree. The
unlikely gene families identified by the Bayesian heterogeneous rate model are different from those given by the

Conclusions: Compared to the maximum likelihood method, the Bayesian approach can produce more accurate
estimates of the parameters in the birth and death model. In addition, the Bayesian hypothesis test is able to
identify unlikely gene families based on Bayesian posterior p-values. As a powerful statistical technique, the
Bayesian approach can effectively extract information from gene family data and thereby provide useful
information regarding the evolutionary process of gene families across genomes.

Background

A gene family is a group of genes with similar sequences
and biochemical functions [1-3]. Investigation of the
evolution of gene families provides valuable information
regarding the evolutionary forces that may have shaped
the genomes of species [4-6]. Advancing biotechnology
provides a vast amount of data for the studies of gene
family evolution. Meanwhile, probabilistic models,
describing the evolutionary process of gene families
along a phylogenetic tree, significantly facilitate the ana-
lyses of gene family data [7-12]. The size of a gene
family may expand or contract over time due to gene
duplication and loss [8,10,13-15]. The birth and death
(BD) model [16-18], which assumes that the size of a
gene family follows a birth and death process [8,19-21],
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is one of the most frequently used models for gene
family evolution [7,8,22,23]. Given the phylogenetic tree,
the probability distribution of the size of a gene family
has been derived under a probabilistic graphical model
(PGM) [24]. Parameters in the PGM include the birth
and death rate A and the counts of gene copies (i.e., the
sizes of ancient gene families) at the internal nodes of
the phylogenetic tree. The PGM assumes that the phylo-
genetic tree is given [5,8,25], though the tree is often
estimated from other sources of data. The PGM pro-
vides a probabilistic judgment of the hypothesis that dif-
ferent evolutionary forces may have acted on particular
gene families or particular lineages of the phylogenetic
tree [8]. The PGM can be used to simulate gene family
data to evaluate the performance of various computa-
tional methods for gene family evolution, including
comparative phylogenetic methods [26] that estimate
gene duplication and loss events by mapping gene trees
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onto the species tree [27]. In contrast to comparative
phylogenetic methods, the maximum likelihood (ML)
method [8] under the PGM is able to estimate the birth
and death rate A.

In this study, we develop a Bayesian approach for esti-
mating the birth and death rate A and the sizes of
ancestral gene families at the internal nodes of the phy-
logenetic tree. Moreover, a Bayesian hypothesis test [28]
is developed to identify the gene families that are highly
unlikely under the birth and death model. Our major
goal is to provide a Bayesian alternative to the ML
method for estimating parameters in the birth and death
model [8]. Although simulation results suggest that the
Bayesian estimates of the model parameters are more
accurate than the maximum likelihood estimates, it does
not necessarily imply that the Bayesian method devel-
oped in this paper, in general, outperforms the ML
method. In fact, both methods are useful for making
inferences on the evolution of gene families.

Methods

A Bayesian model for gene family evolution

Let X = {X;,i = 1,..,/ and j = 1,..../} denote gene family
data, where Xj; is the size (the number of gene copies)
of gene family i for species j, I is the total number of
gene families in the data, and / is the number of species.
The Bayesian model has the following parameters; y:
the phylogenetic tree; 8;: the size of gene family i at
internal node k; and A: the birth and death rate para-
meter. We assume that the topology and branch lengths
(in millions of years) of the phylogenetic tree are
known. The Bayesian model consists of two major com-
ponents [29]; the prior distribution of model parameters
{1,0,y} and the likelihood function fAX|A,6,y), i.e., the
probability distribution of gene family data X given para-
meters {1,0,y}. As the phylogenetic tree is known, the
prior distribution of y is trivial, i.e., the phylogenetic
tree with branch lengths is fixed with probability 1.
Given the tree y, we assume that the prior distribution f
(A|y) of the birth and death rate A is uniform (0, 1/max
(t)), where max(¢) is the largest branch length in the
tree (see below for the restricted parameter space of A).
We also assume that there is no prior knowledge about
0 (the counts of gene copies at the internal nodes of the
tree), i.e., the prior f{@|4,y) of 0 is a discrete uniform
distribution.

The probability distribution of X given parameters
{A,0,y} is derived under the PGM. Let #; be the length
of branch k (Figure 1). The counts of gene copies {x;;,
Xio, X3, Xia» X;5) at the tips of the tree represent the sizes
of gene family i for species 1, 2, 3, 4, and 5, while {66
0;7, 05, 0,9} are the counts of gene copies at the internal
nodes for gene family i (Figure 1). Under the BD model,
the probability that the number of gene copies changes
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Figure 1 A birth and death process along the lineages of a
phylogenetic tree. The branch lengths ts of the phylogenetic tree
are given in millions of years. In the phylogenetic tree, (X1, Xiz, Xi3,
Xia, X;5) are the sizes of gene family i for species 1, 2, 3, 4, and 5,
while (@, 0,7, 0:s, 0,0, are the sizes of the internal nodes for gene
family i.

from s (at the parent node x,) to c (at the child node x,)
after time ¢ on a particular branch w is [8].

Py{x; = clx, = 5,1}

min(s,c) [ g S+cC _]' _
j=0 \Jj/ \s—1

and A is the birth and death rate

1) as+c—2j(1 _ 20l)j’ (1)

where o =
+

parameter. Because (1-2ar) must be positive, the birth
and death parameter A is subject to a constraint A<1/
max(¢) in which max(¢) is the largest branch length in
the tree. With a complete assignment of all nodes in the
tree, the birth and death processes on the different
branches are independent of one another. The probabil-
ity distribution for gene family i (denoted by X;) is thus
the product of the probabilities defined in (1) across all
branches in the phylogenetic tree, i.e.,

2]-2
FXilx, 0,9) = [ | Pulxe = clxy = 5,1}, )

w=1

Note that there are (2/-2) branches in a /-taxon phylo-
genic tree. Finally, the probability distribution of X is
equal to the product of the probability densities defined
in (2) across all gene families, i.e.,

1
FXIn6,9) = [ [F(Xil2 6, 9). (3)

i=1
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Bayesian estimation of model parameters

Estimation of the birth and death rate A and assign-
ments 6 of the internal nodes is based on the joint pos-
terior probability distribution fil,0|X,y) of A and 6, i.e.,

f 01X, 4)
_ 0 Gf 611, ) @
S X120, 0,9)f (MY )f (014, ¥)drde

(1.0}

As the integral in the denominator of f(1,0|X,vy) is
analytically intractable, the Metropolis-Hastings algo-
rithm [30,31] is employed to estimate the posterior
probability distribution fil,0|X,y) in (4). The algorithm
starts with a set of arbitrary values of parameters A and
0. The value of A (or 0) is then updated at each iteration
[32]. The new value A’ is accepted with a probability
defined by the Hastings ratio H,

R0, O )
= ”””{ F(XI0, 0,9 ) O, ) 1} |

After the burn-in period, the Metropolis-Hastings
algorithm converges to the posterior probability distri-
bution fiA,0]|X,). The convergence rate of the Metropo-
lis-Hastings algorithm is largely dependent on the
starting values of A and 6. It follows from (1) that given
s and time f, the mean and variance of ¢ are equal to
(Bailey 1964):

Thus assignment 0;; (the number of gene copies, or s
in equation (1)) of internal node k for gene family i can
be consistently estimated by the average count
E(cls,t) =s and Var(c|s, t) = 2sit. of gene copies at
the terminal nodes that are the descendants of node k.
According to the law of large numbers, §,, is a consis-
tent and unbiased estimator of 0. Additionally, the var-

X;
\/29i*t*’
where 6, is the assignment of the tree root for gene
family i and ¢ represents the tree height, is equal to A
(the average rate along the branches connecting the root
and the terminal node of species j, because

iance of a transformed random variable y;; =

X;i
var(y;;) = var { \/20%* } = Aj. (6)

The last equality in (6) is derived from (5) by setting s
= 0 t = t* and A = A;. Equation (6) suggests that 4;
can be consistently estimated by the variance of the
transformed data {yyj, ¥2j,..., ¥ } for species j, ie.,

1

. 1 )

A=1_4 D i =) )
i=1

If the assignment of the root for gene family i is
unknown, @; in (6) is replaced by its consistent estimate
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éi*. When A is constant among all branches of the tree,
it is straightforward that the average rate, i.e,
1 s

] Z)»jis a consistent estimate of 1. We use these

j=1

consistent estimates as the starting values of A and 6 to
improve the convergence rate of the Metropolis-Hast-
ings algorithm. Convergence of the Metropolis-Hastings
algorithm may be assessed by comparing the results
from two or more independent runs [33,34]. Running
multiple chains, however, will dramatically increase the
computational time. More commonly, convergence of
the algorithm is evaluated by examining the log likeli-
hood values for a single run [33].

A=

Posterior Predictive P-value for detecting unlikely gene
families

Some gene families may have significantly higher or
lower birth and death rates than other families in the
dataset. These gene families are highly unlikely to be
observed under the BD model that assumes a constant
birth and death rate among all gene families. The classi-
cal p-value for detecting unlikely gene families depends
on the assignment of the tree root [8]. Because the size
of a gene family at the root of the tree is unknown in
most practical situations, the classical p-value cannot be
directly calculated. This is generally called “nuisance
parameter problem” (the nuisance parameter is the
assignment of the root) [28,35]. To overcome this pro-
blem, Hahn et al. [4] proposed to compute the maxi-
mum conditional p-value among all possible
assignments of the root. Although Hahn et al. [4] have
demonstrated that the maximum conditional p-value
can be used to detect unlikely gene families, it should
be noted that the maximum conditional p-value is no
longer the tail-area probability as intended in classical
approaches [28].

Posterior Predictive P-value (PPP) is the Bayesian
alternative to the classical p-value [28]. The Bayesian P-
value can be used to evaluate statistical significance for
the (alternative) hypothesis that the observed size of a
particular gene family is highly unlikely under the BD
model. Here the null hypothesis is that the BD model
can explain the observed size of the gene family across
species. The Bayesian P-value is defined as the average
p-value pa0,H, over the posterior distribution fIA,0|X,Hy)
under the null hypothesis (Hy ), i.e.,

PPP = / oo X f(1, 01X, Ho) drde. )
Q

In (8), Q represents the space of parameters 4 and 6.
The conditional p-value pag.H, is the probability that the
likelihood score fIX;*|2,0,p) of a random gene family X;



Liu et al. BMC Bioinformatics 2011, 12:426
http://www.biomedcentral.com/1471-2105/12/426

is less than that of the observed family Xj, i.e.,

pro,H, = Pr{f(Xi*|1, 0, ¢¥) < f(Xilr, 0, ¢)}.

A random gene family X, is generated from the BD
model at each cycle of the MCMC algorithm. The PPP
of gene family X; is estimated by the proportion of
cycles at which the likelihood score fAX;*|A,0,y) is less
than fiX;|A4,60,y) [28]. Under the null hypothesis, PPP is
expected to be near 0.5 [28]. Extreme PPPs (close to 0
or 1) imply that gene family X; is highly unlikely to be
observed under the BD model. Moreover, a gene family
with a slow birth and death rate tends to have a higher
likelihood score than a gene family with a fast rate.
Thus a small PPP (close to 0) indicates that the birth
and death rate of the gene family is significantly greater
than those of other gene families. A large PPP (close to
1) implies that the birth and death rate of the gene
family is significantly less than the rates of other gene
families.

Testing homogeneous birth and death rates among
branches of the tree

The hypothesis of homogeneous birth and death rates
among branches of the tree can be tested under the
maximum likelihood framework [1,27,36]. Under the
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Bayesian framework, the evidence for supporting the
null hypothesis (Hy) against the alternative hypothesis
(H;) is evaluated by the Bayes Factor [37],

F = ;Ei:ﬁ;;, where flX|H,) is the marginal likelihood
under the null hypothesis (homogeneous rates) and fX]|
H;) is the marginal likelihood under the alternative
hypothesis (heterogeneous rates). In general, Ln(BF)>10
[38] is interpreted as strong evidence for supporting the
alternative hypothesis (heterogeneous rates).

Results

Simulation

Gene family data were simulated from the PGM with a
phylogenetic tree of six primates (Figure 2) specified in
an example file in CAFE [39]. We assumed a constant
birth and death rate among all branches in the phyloge-
netic tree. Three simulations were conducted with A =
0.001, 0.005, 0.01 respectively. The simulated datasets
were analyzed by the Bayesian and ML methods to esti-
mate A and the proportions of gene families that showed
expansion, contraction, and no change along the eight
branches of the phylogenetic tree. The ML analysis was
conducted in CAFE [39]. The simulations were repeated
100 times. For the Bayesian analysis, the MCMC

human

dog chimp

Figure 2 The phylogenetic tree used in the simulation study.

rat mouse
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algorithm ran for 1000000 iterations. The log-likelihood
score approached stationarity at the 100000™ iteration
for all the 10 simulations randomly chosen for conver-
gence diagnosis. We discarded the initial 200000 itera-
tions as burn-in. To evaluate the performance of the
two methods, we calculated the estimation errors of the
Bayesian and ML estimates (3 ) of A. The estimation

. I e .
error of } is equal to w ; (Ai—2)?, where w is the
number of simulations and 5»1‘ is the estimate of A for
the i™ simulation. Similarly, we calculated the error of
estimating the proportions of gene families that showed
expansion, contraction, and no change on the eight
branches of the tree.

The simulation results show that the estimation error
of the Bayesian estimate of A is less than that of the
maximum likelihood estimate (MLE) for all three simu-
lations with 4 = 0.001, A = 0.005, and A = 0.01 (Figure
3a-c). It suggests that the Bayesian method outperforms
the maximum likelihood method in estimating the birth
and death rate 2. The ML method appears to consis-
tently underestimate A because the proportion of trials
underestimating A approaches 1.0 when the number of
gene families increases (Figure 3a-c). In contrast, the
Bayesian method produces a more unbiased estimate of
A when the true value of A4 is relatively small (1 = 0.001,
0.005) (Figure 3a-b). For a large A (A = 0.01), the Baye-
sian method tends to underestimate the value of A, but
the proportion of trials underestimating A appears to
decrease as the number of gene families increases (Fig-
ure 3c). The simulation results also suggest that the
Bayesian method outperforms the ML method in esti-
mating the proportion of gene families that showed
expansion, no change, or contraction on the eight
branches of the phylogenetic tree (Table 1).

Additional simulations were carried out to compare
the performance of the hypothesis tests based on the
Bayesian p-value and the maximum conditional p-value.
A total of 9 gene families were simulated using the phy-
logenetic tree in Figure 2 with 4 = 0.001. Another gene
family was generated from the same phylogenetic tree
with a higher birth and death rate A = 0.005 and treated
as the unlikely gene family. This represents the scenario
that the unlikely gene family has a faster birth and
death rate than other gene families. We also considered
the scenario where the unlikely gene family has a slower
birth and death rate than other gene families. The unli-
kely gene family was generated with a birth and death
rate A = 0.001, while other gene families were generated
with A =0.005. The simulated gene families were ana-
lyzed by the Bayesian and ML methods (the ML method
was implemented in CAFE) respectively to identify
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unlikely gene families. We carried out two Bayesian
hypothesis tests. The one-sided Bayesian hypothesis test
identified an unlikely gene family if PPP < 0.1, while the
two-sided Bayesian hypothesis test identified an unlikely
gene family if PPP < 0.1 or PPP > 0.9. Because a small
PPP is associated with the unlikely gene families that
have a fast birth and death rate, we expect that the one-
sided Bayesian test (PPP < 0.1) is able to identify unli-
kely gene families with a high birth and death rate (the
first scenario described above). However, the one-sided
Bayesian test is incapable of identifying unlikely gene
families with a slow birth and death rate (the second
scenario). In contrast, the two-sided Bayesian hypothesis
test works for both scenarios. The type I error was set
0.05 for both Bayesian and classical hypothesis tests.
The simulations were repeated 100 times and we calcu-
lated the proportion of trials yielding the true unlikely
gene families. Finally, we increased the number of simu-
lated gene families from 10 to 20 (including one unlikely
gene family) to investigate the effect of the sample size
(the number of gene families) on the performance of the
Bayesian and classical hypothesis tests.

Overall, the hypothesis tests based on the Bayesian
(one-sided and two-sided) and maximum conditional p-
values perform almost equally well in identifying the
unlikely gene families with a fast birth and death rate
(Figure 3d). However, CAFE and the one-sided Bayesian
hypothesis test perform poorly in detecting unlikely
gene families with a slow birth and death rate (Figure
3e). In contrast, the two-sided Bayesian hypothesis test,
as we expected, is capable of identifying gene families
with a slow birth and death rate, though the discovery
rate is rather low (Figure 3e).

Real data analysis

The Bayesian model was applied to a gene family dataset
generated from five Saccharomyces (S. bayanus, S.
kudriavzevii, S.mikatae, S.paradoxus, S.cerevisiae) gen-
omes. The dataset contains 3517 gene families. The phy-
logenetic tree was given by Hahn et al. [8]. The MCMC
algorithm ran for 10,000,000 generations. The log-likeli-
hood score reached stationarity at the 5,000,000™ gen-
eration. With the assumption of a constant birth and
death rate along the lineages of the phylogenetic tree,
the Bayesian analysis for the yeast dataset estimated the
birth and rate ) = 9.00213, which is close to the maxi-
mum likelihood estimate } = 0.0023 in the previous
study [8]. However, the consistent unbiased estimates
(defined in equation (7)) of the birth and death rates
along the lineages leading to the five extant species are
0.004, 0.0046, 0.0028, 0.0025, 0.0038 respectively, indi-
cating that the homogeneous rate model may not be
able to adequately explain the yeast dataset. The
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Figure 3 Simulation results. The estimation errors of the Bayesian and ML estimates of A are calculated for the simulations with a) A = 0.001,
b) A = 0.005, and ¢) A = 0.01. The proportion of trials yielding the true unlikely gene family is reported when the unlikely gene family is
simulated with d) a fast birth and death rate or with e) a slow birth and death rate.

Bayesian analysis of model selection described in the Unlikely gene families were identified on the basis of
previous selection confirmed that the BF ( > 100) their PPP values under the Bayesian heterogeneous rate
strongly favors the heterogeneous rate model. Thus the model. A gene family is identified as an unlikely family
analysis of the yeast dataset is based on the Bayesian if PPP < 0.01 or PPP > 0.99 (the corresponding type I
heterogeneous rate model. error is < 0.005). A large PPP (> 0.99) suggests that the
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Table 1 The estimation error of the proportions of gene
families that showed expansions, contractions, and no
change

A =0.001 A = 0.005 A =0.01
# of gene  Bayesian CAFE Bayesian CAFE Bayesian CAFE
families
20 007 0138 008 0184 0089 0214
40 0048 0105 0062 0148 0063  0.179
60 0032 0089 0051 0134 0052 0170
80 0032 0084 0045 0130 0045 0170
100 003 0081 0039 0126 0032 0164

Gene family data were simulated from the birth and death model with A =
0.001, 0.005, 0.01 respectively. The Bayesian model and CAFE were then
applied to the simulated data to estimate the proportions of gene families
that showed expansions, contractions, or no change. The estimation error is
equal to the square root of the mean squared error of the estimated
proportions of expansions, contractions, and no change. In general, the
estimation error decreases as the number of gene families increases.

birth and death rates of the unlikely gene families on
some branches of the phylogenetic tree are significantly
smaller than those of other gene families. A small PPP
(< 0.01) suggests that the birth and death rates of unli-
kely gene families on some branches are significantly
larger than those for other gene families. The two-sided
Bayesian hypothesis test suggests that 2263 gene families
have PPP values > 0.99. It is not a surprise because all
these gene families have no change in size across five
yeast species, extremely unlikely to be observed under
the BD model. This result suggests that the yeast dataset
may reflect two different evolutionary patterns. A major-
ity of gene families (2263) have no change in size across
five Saccharomyces species, suggesting a very slow birth
and death rate (close to 0), while the sizes of the
remaining 1254 gene families are distinct across species,
suggesting a relatively fast birth and death rate. It would
be more appropriate to analyze the two groups of gene
families separately. It is, however, unnecessary to analyze
the 2263 gene families with no change in size because
these gene families obviously support a very slow birth
and death rate A.

We analyzed the remaining 1254 gene families under
the Bayesian heterogeneous rate model. The 95% Baye-
sian credible intervals for the birth and death rates on
the eight branches of the phylogenetic tree suggest that
the rates on the branches leading to the species S.mika-
tae and S. kudrizvzevii are significantly higher than the
rates on other branches (Figure 4). Moreover, there is a
clear pattern of expansion on the two branches leading
to S. kudrizvzevii and S. mikatae (Table 2), which agrees
with the previous result [8] except that the total number
of gene families in the current study is 1254 while it
was 3517 in the previous study. The expansion pattern
on the branches leading to S. mikatae and S. kudrizvze-
vii is consistent with the fast rates estimated for these
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branches (Figure 4). The Bayesian analysis under the
heterogeneous rate model identified 11 unlikely gene
families (PPP < 0.05) (Table 3), in contrast to 58 unli-
kely gene families found in the previous study [8]. Only
4 of the most significantly unlikely gene families (Table
2 in Hahn et al. [8]) found in the previous study are
confirmed by the Bayesian analysis. The Dihydrourdine
and alpha/beta hydrolase families, (2(2(6(2 2)))) and (1(1
(6(1 1)))), were identified as unlikely gene families in the
previous study, because the numbers of gene copies of
species S. mikatae (highlighted in the Newick notation)
for these gene families are significantly greater than
those of other species. The Bayesian analysis for 1254
gene families under the homogeneous rate model identi-
fied alpha/beta hydrolase (1(1(6(1 1)))) as an unlikely
gene family, but not Dihydrourdine. It indicates that the
difference is probably due to the exclusion of 2263 gene
families in the Bayesian analysis. Interestingly, neither
Dihydrourdine nor alpha/beta hydrolase were identified
as unlikely families by the Bayesian analysis under the
heterogeneous rate model. In contrast to the homoge-
neous rate model, the heterogeneous rate model esti-
mates a relatively high birth and death rate (Figure 4)
on the branch leading to species S. mikatae, which can
explain the observed large number of gene copies for
species S. mikatae. Thus alpha/beta hydrolase is not
identified as an unlikely gene family under the heteroge-
neous rate model.

Discussion
Simulation results suggest that the maximum likelihood
method tends to underestimate the birth and death rate,
while the Bayesian approach is able to produce more
accurate estimates of the birth and death rate and other
parameters in the BD model. It is not intended in this
paper, however, to claim that the Bayesian method is, in
general, superior to the maximum likelihood method in
estimating model parameters. There might be some
cases for which the maximum likelihood method out-
performs the Bayesian method and provides more accu-
rate estimates of parameters in the BD model. It
demands an extensive simulation study and a sufficient
number of empirical data analyses to get a clear picture
of how the two methods perform in various situations,
which is certainly beyond the scope of this paper.
Recently, Cohen and Pupko [18] developed several
probabilistic-evolutionary models for analyzing gene
family data. These models assume that the evolution of
gene family content follows a continuous time two-state
Markov process. The models coupled with stochastic
mapping are able to identify horizontal gene transfer
events on the lineages of the phylogenetic tree [18].
These models allow the gain and loss rates to vary
across gene families [18,40]. Similarly, the Bayesian
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Figure 4 The estimates of the birth and death rates on the branches of the phylogenetic tree for 1254 gene families of the five yeast
species. The birth and death rates were estimated under the Bayesian heterogeneous rate model. The interval on each branch is the 95%
credible interval for the birth and death rate A. The branch lengths t in the tree are given in millions of years [4]. The branch numbers are

highlighted in red.

model developed in this paper can be extended to hand-
ling variable rates over gene families by assuming a
probability distribution for the gene-family-specific rates.

Choosing the appropriate prior distribution for model
parameters is always challenging in Bayesian analyses. A
non-informative prior is desirable if there is no prior
knowledge about the probability distribution of

Table 2 The Bayesian estimates of the numbers of gene
families in the reduced yeast dataset (1257 gene
families) that showed expansions, no change, or
contractions on the eight branches of the phylogenetic
tree in Fig.4.

Branch number Expansions No change Contractions
1(t=12) 84 1120 50

2(t=12) 48 1129 77

3(t=22) 616 510 128

4 (t=27) 496 635 123
5(t=32 51 1107 96

6 (t=10) 36 1126 92

7 (t=05) 3 1146 5

8(t=05) 50 1134 70

Numbers in the first column are the branch numbers highlighted in Fig. 4.

parameters, but it is often difficult to find a non-infor-
mative prior for model parameters. It is reasonable to
specify a flat prior (uniform distribution, see the section
“A Bayesian model for gene family evolution”) for para-
meters A and 6 if there is no prior information available
for A and 6. Alternatively, an informative prior may be
used in the Bayesian analysis of gene family data.

Table 3 The most unlikely gene families identified by the
Bayesian hypothesis test.

Family ID Gene family PPP
3 (2 (8 (15 (34 83))) 0.000
18 (1714 (15 (1 5))) 0.000
28 (1336234 0.000
13 (716 (7 (20 17)) 0.002
34 (50104 2) 0.003
6 (15 (33 (24 (30 31)))) 0.004
397 aa@as 0.006
77 [PACRCREED)) 0019
256 aeean 0019
89 [CACRCRPI)) 0.021
262 T@Ean 0.025
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Nevertheless, concerns about the choice of prior distri-
bution will be greatly alleviated when gene family data,
especially those from genomic studies, have a large sam-
ple size (for example, the yeast dataset analyzed in this
paper involves 3517 gene families).

Both ML and Bayesian methods involve intensive
computation. It is unfair, however, to directly compare
the computational time for the ML and Bayesian meth-
ods because the ML method (implemented in CAFE)
produces only the point estimates of model parameters,
while the Bayesian method estimates the posterior prob-
ability distribution of model parameters. Thus we here
only provide the computational time for the Bayesian
method (Table 4). The computational time for running
the Bayesian analysis for 10000 iterations (conducted on
a Lenovo notebook T61) increases linearly with respect
to the number of gene families and the number of spe-
cies. However, the MCMC algorithm will probably need
much more than 10000 iterations in order to converge
when there is a large number of species in the dataset.
For example, the Bayesian analysis for the yeast dataset
took about 24 hours (for 10000000 iterations) on a Mac
computer (2.16 GHz Intel Core 2 Duo, 1 GB of RAM).

The Bayesian p-value appears to be useful in identify-
ing unlikely gene families. It should be noted, however,
that neither the classical p-value nor the Bayesian p-
value represents the probability that the null hypothesis
is true. Thus they do not provide direct evidence for
accepting or rejecting the null hypothesis. The Bayesian
p-value can be interpreted as a measure of discrepancy
between the observed data and those expected from the
assumed probabilistic model under the null hypothesis.
Gene families with small (typically < 0.05) or large (>
0.95) Bayesian p-values can be regarded as outliers (or
unlikely gene families), which are unlikely to be
observed under the null hypothesis. The Bayesian p-
value provides a general way to handle the problem of
nuisance parameters [28]. Regardless of the type of p-
values (the Bayesian p-value or the maximum condi-
tional p-value) in use, the hypothesis test for unlikely
gene families does not appear to have much power
when the unlikely gene family has a slow birth and
death rate (Figure 3e).

Table 4 The computational time (seconds) for running
the Bayesian analysis (10000 iterations) on a Lenovo
notebook T61 (Intel 2 Duo CPU, 2.4 GHz, 2.48 GB of
RAM)

number of gene families 5 species 10 species 20 species
10 11 22 42

20 20 38 52

40 40 64 104
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Conclusions

Accurately estimating the birth and death rate as well as
the numbers of gene copies at the internal nodes of the
phylogenetic tree is the major goal of the statistical ana-
lyses of gene family data. In this paper, we develop a
Bayesian approach for estimating these parameters from
gene family data. The results of the simulation study
and the empirical data analysis suggest that the Bayesian
method can accurately estimate the parameters in the
BD model. The source code for implementing the Baye-
sian analysis is written in C and available at http://code.
google.com/p/begfe.
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