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Multivariate analysis of microarray data:
differential expression and differential connection
Harri T Kiiveri

Abstract

Background: Typical analysis of microarray data ignores the correlation between gene expression values. In this
paper we present a model for microarray data which specifically allows for correlation between genes. As a result
we combine gene network ideas with linear models and differential expression.

Results: We use sparse inverse covariance matrices and their associated graphical representation to capture the
notion of gene networks. An important issue in using these models is the identification of the pattern of zeroes in
the inverse covariance matrix. The limitations of existing methods for doing this are discussed and we provide a
workable solution for determining the zero pattern. We then consider a method for estimating the parameters in
the inverse covariance matrix which is suitable for very high dimensional matrices. We also show how to construct
multivariate tests of hypotheses. These overall multivariate tests can be broken down into two components, the
first one being similar to tests for differential expression and the second involving the connections between genes.

Conclusion: The methods in this paper enable the extraction of a wealth of information concerning the
relationships between genes which can be conveniently represented in graphical form. Differentially expressed
genes can be placed in the context of the gene network and places in the gene network where unusual or
interesting patterns have emerged can be identified, leading to the formulation of hypotheses for future
experimentation.

Background
Differential expression analyses of microarray data [1]
typically ignore any correlation between genes. In this
paper we consider a model for microarray data which
explicitly includes correlation structure between genes
and we explore its implications for estimation and sig-
nificance testing.
The model presented below involves the use of large

sparse inverse covariance matrices [2,3] and an asso-
ciated graphical representation of the inverse covar-
iance matrix [4] which we use to encode the (linear)
relationships between genes. We discuss the estimation
of mean and covariance structure, including the pro-
blems of determining the pattern of zeroes in the
inverse covariance matrix and fitting the matrix to
data once the pattern has been determined. For the
purposes of hypothesis testing we will describe a per-
mutation procedure [5] to test the significance of a

hypothesis overall as well as a breakdown into compo-
nents involving differential expression and “differential
connection”.

Results
The model
Consider p expression measurements, measured on n
individuals, arranged in an n × p data matrix X. In addi-
tion, each individual is subject to known “treatments”.
We assume that individual i is subject to a treatment
(combination) given by row i of an n × r design matrix
D and that the p gene expression measurements for
each individual have common covariance matrix Σ. If
we denote the operation of making a vector from a
matrix row by row by vec{...}, then we can write the
joint model for this data set as

vec X N vec DB I      ,  (1)

where B is an r × p matrix of treatment effects and ⊗
denotes the tensor product. From (1) it is easily seen
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that the ith row Xi and jth column Xj of X have distribu-
tions

X N D B

X N DB I
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Where sjj is the jth diagonal element of Σ, Di. is the ith

row of D and B.j is the jth column B. For those more
familiar with stacking matrices column by column, see
the Methods section. From (2) we see that each row of
X has a multivariate normal distribution with mean
structure dependent on the treatment and covariance
structure defined by Σ. Similarly each column of X has a
mean structure defined by the design matrix D and var-
iance structure a multiple of the identity matrix, a typi-
cal structure in regression models.
In the above we consider Σ to be a function of some

parameters θ. In particular, we will assume that Σ-1, the
inverse covariance matrix, is sparse and the parameters
θ correspond to the nonzero elements of the inverse
covariance matrix. Such matrices define (sparse) Gaus-
sian graphical models (sometimes referred to as covar-
iance selection models), see for example [3] and [4].
These models have conditional independence interpreta-
tions. Writing Xi for the ith variable (gene), X-i for the
vector of the remaining variables, μi for the mean of
variable i and sij for the i,jth element of the inverse cov-
ariance matrix Σ-1 we have
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(3)

Where E denotes conditional expectation and V con-
ditional variance.
The interpretation of zero elements of the inverse

being equivalent to regression coefficients (bij = -(sij/
sii)) being zero makes this class of models attractive for
analysing microarray data as it provides useful informa-
tion about the (linear) interrelationships between genes.
We define the set of neighbours of variable (gene) i to
be the set of variables with non zero regression coeffi-
cients in (3) above.
An undirected graph can be associated with any pat-

tern of zeros in the inverse covariance matrix by the
relation: there is an edge between vertices i and j if and
only if sij ≠ 0, where vertex i denotes variable Xi. An
example of this is given in Figure 1 below.
The cliques, maximal sets of vertices which are all

connected, of the graph are {1, 2}, {1, 4}, {2, 3, 5}, and
{3, 4, 5}. From this graph we can see for example that
the regression of variable 1 on the rest has nonzero
regression coefficients for variables 2 and 4.

Unlike traditional microarray analysis [1], the above
model will enable the analysis of microarray data in a
way which makes use of correlations between genes and
respects the idea of genes being connected in a network.
Note that the model in this section is an example of a

(very high dimensional) mean linear hierarchical mixed
graphical model as defined in [6,7]. See also the supple-
mentary information [Additional file 1].

Parameter estimation
To implement the model described in section 2 above we
require estimates for the matrix parameter B and for the
non-zero entries of the inverse covariance matrix Σ-1. We
discuss these topics below.

Estimating parameters in the mean structure
We use maximum likelihood to estimate the parameter
matrix B. From (1), the log likelihood function is

L f vec X DB I vec X DB

f trace X

T        

    

  



 



1 1

1
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.

.

*

* DDB X DB
T     1

(4)

where f denotes a function of Σ-1 independent of B.
Using matrix calculus [8,9], and differentiating this
expression with respect to B we obtain

       L B vec D X DBT/  1 (5)

It follows that the maximum likelihood estimate of B is

B̂ D D D XT T  1 (6)

From equation (6) we see that the estimates of the
columns of B are simply obtained by individual regres-
sion of each column of X on the design matrix D.

Estimating parameters in the variance structure
The discussion in this section involves computationally
intensive methods aimed at discovering (linear) relation-
ships between genes. It is precisely this information
which is ignored in traditional microarray analysis.

Figure 1 Example zero pattern in inverse covariance matrix
and corresponding graphical representation. (* denotes non-
zero).
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In principle, estimating the parameters in Σ-1 involves
two computationally demanding problems. Firstly, iden-
tifying the pattern of zeroes, and secondly, estimating
the inverse covariance matrix for a given pattern of zer-
oes. The difficulties are caused by the high dimensional-
ity of the data e.g. the number of genes can be of the
order of p = 20000 or more. For example, with p =
20000 there are approximately 200 million unique ele-
ments in Σ-1 to work with. Without care, attempting to
do these tasks can result in very large memory require-
ments and very long cpu times. In this high dimensional
setting standard methods for these tasks become very
slow or even infeasible. However, some progress can be
made and we begin by discussing methods for determin-
ing the pattern of zeroes in the next section below.

Determining the pattern of zeroes
There are two common methods for determining the
pattern of zeroes for a given a data set. The first method
involves computing p individual regressions of each vari-
able on the remaining variables. This is intuitively rea-
sonable given our earlier discussion about the
interpretation of elements of the inverse covariance
matrix in terms of regression coefficients, see Equation
(3). The regression method used for the individual
regressions could incorporate a sparsity penalty, as in
the zero pattern finding method in [10], or simply be
some form of consistent stepwise variable selection,
either using a forward stepwise variable selection
method as in [11], or a combination of forward and
backward selection with a modified BIC criterion
[12,13]. A simple forward stepwise regression algorithm
is described in the supplementary information [Addi-
tional file 1]. Major advantages of these methods in the
high dimensional setting are the ability to use existing
software and to easily distribute the problem over multi-
ple processors. However some care is required to avoid
overfitting.
A second class of methods is maximum likelihood

estimation with L1 (more generally sparsity) constraints
on the elements of sigma inverse. These methods
accomplish simultaneous model selection and fitting, see
for example [14,15] and [16]. A likelihood approxima-
tion with L1 constraint is considered by [17] and [18].
Note that if we use these methods as a pattern selector,
we still may wish to compute maximum likelihood esti-
mates of parameters for the selected pattern of zeroes.
Of the above methods, the method of [15] is a good

benchmark for problems with a few thousand variables.
However, this second class of methods is not well suited
for data with tens of thousand of variables or more,
both from the viewpoint of memory requirements and
cpu time. The method of [15] transforms the problem
into a series of L1 regressions which are solved

efficiently via a coordinate ascent procedure. Unfortu-
nately, experiments have shown that, in the case of very
large numbers of variables, the overhead in creating
these Ll regression problems is too large and the cyclic
updating procedure can converge very slowly for pro-
blems with realistic structure, see for example (Kiiveri H
and deHoog F: Fitting very large sparse Gaussian graphi-
cal models, submitted). The methods of [15], [17] and
[18] are implemented in R (R Development Core Team
(2009)) as packages glasso, space and spice. They clearly
are not designed for very high dimensional problems as
they use dense matrix computations. In addition, con-
vergence for a regularisation parameter value of 0 can
be a problem, in particular when the sample covariance
matrix is not full rank. As a consequence, high dimen-
sional problems will not run on a desktop computer,
and there are other problems as well. For example, the
current implementation of the likelihood approximation
method space doesn’t allow specification of a pattern of
zeroes in Σ-1 a priori. Individual iterations for a fixed
regularisation parameter must be done instead and can
be very slow for models with large numbers of variables.
The specification of a sparse model can also be clumsy,
requiring vectors identifying all zero elements.
However, in the interest of computing speed, simpli-

city and easy accessibility, we propose using an efficient
forward stepwise algorithm as implemented in the R
package lars [19] coupled with a modified BIC criteria.
One modified BIC criterion [13] is

BIC n k k n pr
k










       log log (log )^ 

2
2 (7)

where s s2 (k) is the maximum likelihood residual var-
iance estimate for a linear regression model with k pre-

dictors, 0 ≤ g ≤ 1 and
p

k
p p k k









    !/ ! ! denotes

the number of subsets of size k when there are p vari-
ables to chose from. Note that when g= 0, (7) corre-
sponds to the usual BIC. In the case of very many more
variables than observations the recommended value of g
is one. We also compared an alternative version of BIC
defined by

BIC n k k pp2
2

2








    log log^ (8)

see [12].
To determine the zero pattern in Σ-1 we adopt a sim-

ple strategy. For each gene we do forward variable selec-
tion up to a pre-specified model size kmax (see the
discussion), considering all other genes as potential

Kiiveri BMC Bioinformatics 2011, 12:42
http://www.biomedcentral.com/1471-2105/12/42

Page 3 of 14



predictors i.e. for each column i in turn, we use forward
selection to chose predictors for the ith column of the
expression matrix X from amongst the remaining col-
umns using a forward stepwise algorithm. We then
choose the model size with minimum modified BIC as
in (7) or (8). Each of these regressions contribute to a
sparse neighbour matrix A defined by

A =
if gene jchosen as a predictor of gene i

otherwiseij
1

0

,

,





Finally the zero pattern is determined by computing N
= A + AT and setting all diagonals and nonzero entries
to 1 in the resulting matrix.
Clearly we can use other regression strategies such as

L1 constrained regression in a similar manner, however
they will typically be at least 2 to 3 times slower in
terms of computing time if cross validation is used to
select the regularisation parameter.

Simulation study
We conducted a simulation study to explore the proper-
ties of the forward stepwise procedure outlined above.
Choices are somewhat constrained by the difficult tasks
of simultaneously controlling the median neighbourhood
size, signal to noise ratios and positive definiteness for
very large matrices. The simulations are also cpu
intensive.
Sparse inverse covariance matrices with known struc-

ture were generated as follows.
1. Generate the p × p neighbour matrix A by ran-

domly selecting q elements of each row to be non-zero.
Compute the matrix N = A + AT, set the diagonals and
all non-zero entries of the resulting matrix to one. Note
that as a result of the last step, neighbour sizes can and
do vary from the selected q. The parameter q can be
varied to control the median neighbour size. i.e. the
median number of non-zero entries in a row of Σ-1

excluding the diagonal.
2. Construct Σ-1 as follows. Set the non-zero upper tri-

angular elements of Σ-1 to be the same as those of N.
Generate each individual non-zero value from a uniform
distribution over the interval [-1,0.5]∪[0.5,1]. (Note that
these intervals were chosen in order to exclude “small”
values in Σ-1 Multiplying the resulting matrix by a scalar
will increase the range of the parameters but doesn’t
really add interesting structure). Finally, symmetrise the
matrix.
3. Set the ith diagonal of Σ-1 to be the sum of the

absolute values of the elements in the ith row excluding
the diagonal, times a constant d, 0 < d ≤ 1, chosen so
that the resulting matrix is still positive definite. This

was done by stepping down from 1 in steps of .05 until
the matrix was no longer positive definite. The smallest
value for which the matrix was positive definite was
chosen. The motivation for this step is to improve the
typically poor signal to noise ratios in diagonally domi-
nant matrices.
The simulation considered all combinations of the

three factors

• Median neighbour size m = 5, 10
• Number of genes p = 5000, 10000 and 20000
• Sample size n = 100, 200 and 500

For each combination of median neighbour size m
and number of genes p, inverse covariance matrices
were constructed as described above. Multivariate nor-
mal samples of sizes of 100, 200 and 500 were then
drawn from each of these. Sparse matrix calculations are
essential for this step. The zero pattern finding proce-
dure was applied to each data set with different versions
of BIC and the resulting structure compared to the
known structure. This entire process was repeated 10
times.
A typical covariance matrix for m = 5 had 90% of

neighbour sizes in the range 3 to 8 with maximum size
15, and for m = 10, 90% of the neighbour sizes were in
the range 8 to 15 with maximum neighbour size 21.
Results for the case m = 5 are given in Figure 2 below.
We note a dramatic improvement in the false negative

rate as sample size increases. The results for the usual
BIC and BIC0.5 are very similar and consistently produce
the best false negative rates. They also produce similar
false positive rates, however they are now consistently
worse compared to BIC1.0 and BIC2p.
Results for m = 10 are given in Figure 3 below
The same qualitative patterns as in Figure 2 are evident

in Figure 3. Note however that the false negative rates are
much higher here for m = 10. This can be partly explained
by differences in the number of observations per para-
meter ≈ n/m in each regression relationship, this ratio
being twice the size when m = 5. The remaining difference
may be explained by differences in the signal to noise
ratios for the two cases, a factor which appears to be diffi-
cult to control precisely when generating these large cov-
ariance matrices. For an interesting discussion of the effect
of the relationship between m and n and p and n in the
ability to recover regression relationships in high dimen-
sional data see [20].
Tables 1 and 2 below give the mean confusion

matrices and standard deviations in the case m = 10, p
= 20000 and n = 500 for BIC0.0 and BIC1.0. Results for
other combinations are qualitatively similar.
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It is clear from these tables that the improved false
negative rate in Table 1 compared to Table 2 comes at
the expense of a very large number of false positives.
On the basis of the above simulations we recommend
the use of BIC1.0. This version of BIC seems to have
good control of the false positive error rate, a fact also
noticed by [13]. The ratio m/n then appears to deter-
mine the false negative rate and our main source
of error will be the inability to detect relationships

as opposed to wrongly detecting non existent
relationships.

Estimating the non-zero elements of sigma inverse
Given the estimate of B in (6) above, we can write the
log likelihood function as

L n trace S           
/ log det2

1 1   (9)

Figure 2 Results of simulations for m = 5. Mean error rates over 10 simulations are plotted. The standard deviations were typically less than
5% and difficult to distinguish on the plots so they were omitted. In the plots bic0.0 corresponds to g = 0 in (7), bic0.5 to g = 0.5, bic1.0 to g =
1.0 and bic2p corresponds to BIC defined by equation (8). We use a log scale for the false positive rates because the number of zero entries is
so large that it is difficult to make sense of the numbers in the original scale.
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where S = RT R/n and R X DB  ˆ . When the para-

meters θ correspond to the nonzero elements of Σ-1, dif-
ferentiating L with respect to theta and equating to zero
we see that the likelihood equations can be expressed as

 ij ij
ijs if 0 (10)

where, for example, sij denotes the ijth element of Σ
and sij denotes the ijth element of Σ-1, for details see [2]

and (Kiiveri H and deHoog F: Fitting very large sparse
Gaussian graphical models, submitted). From (10) we
see that, at the maximum likelihood estimate, the ele-
ments of the estimated covariance matrix must be equal
to those of the sample covariance matrix S whenever
there is an edge between i and j in the graph and the
elements of the estimated inverse covariance matrix
must simultaneously be zero whenever there is no edge
between i and j in the graph.

Figure 3 Results of simulations for m = 10. Mean error rates over 10 simulations are plotted. The standard deviations were typically less than
5% and difficult to distinguish on the plots so they were omitted. In the plots bic0.0 corresponds to g = 0 in (7), bic0.5 to g = 0.5, bic1.0 to g =
1.0 and bic2p corresponds to BIC defined by equation (8). We use a log scale for the false positive rates because the number of zero entries is
so large that it is difficult to make sense of the numbers in the original scale.
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A necessary and sufficient condition for existence of
the maximum likelihood estimate is that the sample
covariance matrices restricted to the variables in the cli-
ques of the graph associated with the model are all posi-
tive definite, [3]. This is almost certainly true provided
the clique sizes are small relative to the sample size.
Solving the likelihood equations requires special care

when p is large. Sparse matrix representations are
required to minimise memory requirements. We use the
methods of (Kiiveri H and deHoog F: Fitting very large
sparse Gaussian graphical models, submitted) to obtain
maximum likelihood estimates for the high dimensional
setting in this paper.

Significance testing
Testing hypotheses about B should really take into
account the correlations between gene expression mea-
surements. In this section we consider how to do this.
Our tests will be conditional on the fitted (inverse) cov-
ariance matrix.
Beginning with (1), suppose we have an r × s matrix

of orthogonal contrasts C, with 1 ≤ s < r and we wish to
test the hypotheses

C BT  0 (11)

For example, in a study with n treatment subjects and
m control subjects, we might have

D n

m











1 0

0 1

where 1k is an k × 1 vector of ones. A contrast matrix
of interest in this case with s = 1 might be

CT   1 1 2, / in which case we are interested in

testing for treatment differences relative to controls.
We can re-parameterise the problem so that (11) cor-

responds to testing for zero values in a new parameter
matrix as follows. Expand C into an orthogonal matrix
Q such that

Q AC Q Q     1 2

where A is r × (r-s). From (1) we can write

DB DQQ B

D

T
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(12)

where D DQ and Γ = QTB. If we partition Γ and

D conformably with Q so that   D D D  1 2 and Γ =

[Γ1 Γ2], then (11) now corresponds to Γ2 = 0 in our new
parameterisation.
From the result that
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it follows that vec( )
^

 has distribution

N vec D DT( { },( ) )    1 (14)

Under the Null hypothesis, ̂2 has distribution

N vec G( { }, )0 22   (15)

where 0 is an s × p matrix of zeroes and

G D DT 1 1( )  is partitioned as

G G
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From (15) we define our test statistic for the null
hypothesis Γ2 = CTB = 0 to be
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vec vec G

t

T

T







 

 

( ) ( ) ( )

( ) (( ) )

^ ^

^ ^

  

  

2
22 1

2

2
22 1

2
1

rrace G
T

{( ) }
^ ^22 1
2

1
2

   

(17)

Table 1 Mean confusion matrix for m = 10, p = 20000
and n = 500 using BIC0.0

true no edge Predicted
edge

no edge 199830772.5 59249.8

(227.8) (229.7)

edge 31001.4 68976.3

(117.3) (119.7)

Standard deviations in brackets.

Table 2 Mean confusion matrix for m = 10, p = 20000
and n = 500 using BIC1.0

true no edge Predicted
edge

no edge 199888674.5 1347.8

(39.9) (38.8)

Edge 50587.9 49389.8

(156.7) (158.4)

Standard deviations in brackets.
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Now writing (G22)-1 = LLT, we can write (17) as

T trace T ( )   2
1

2 (18)

Where  2 2 LT ˆ . The diagonals in the trace can be

decomposed as follows. Let g = (g1, g2,....,gp)T denote the

kth row of 2 then
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(19)

where bij = -sij/sii, n(i)denotes the neighbours of

variable (gene) i and ( )
( )

   N i i ij j
j n i

 

 are the

neighbour corrected contrast values.
We could attempt to use the chi squared distribution to

derive significance levels for T, however, due to the fact
that Σ will be estimated and most likely contains specifica-
tion errors, we will instead use permutation distributions.
Motivated by [5] we propose the following procedure

for generating permutation distributions..
1. Fit the mean model under the Null hypothesis that

Γ2 = 0. This gives fitted values

ˆ ( ) ˆF D D D D X DT T     
1 1 1

1
1 1 (20)

2. Compute the residuals R under the null hypothesis

R X F  ˆ.

3. For k = 1,..,q, generate new data sets X(k) according to

X k F P Rk( )
^

 

where each Pk is a randomly chosen permutation
matrix

4. Compute ˆ( ) k using (13), namely

ˆ( ) ( ) ˆ ( ) k D D D X kT T   1 (21)

5. Build up an empirical null distribution of T in (17)

above using the ˆ ( )2 k from step 4 above. At the same

time we can also build up empirical null distributions
for each of the components of Γ2 and Γ2nb = Σ-1ΓT

which make up the test statistic T in (17).

It is easy to see that for our model the residuals in
step 2 above have distribution

vec R N vec I D D D DT{ } ( { },( ( ) ) )    0 1 1 1
1

1   (22)

Hence for any permutation matrix Pk we have

vec P R N vec I P D D D D Pk k
T

k
T{ } ( { },( ( ) ) )    0 1 1 1

1
1   (23)

When D c n1 1 it can be seen that (22) and (23) are

identical. Such is the case, for example, when testing for
the equality of the means of all groups in a study, see
below. More generally, if the elements of D are bounded
and (DTD)/n®V for some positive definite matrix V as
n tends to infinity then (23) tends to (22) as n tends to
infinity since

   D D D D D D D D

n D D D n D n

T T T T

T T

1 1 1
1

1 1 1 1
1

1

1 2
1 1 1

1
1

1

( ) ( )

( / )/

 

  



 //2
(24)

To avoid complicated notation, in (24) above we have
omitted a subscript n on D1 taking the dependence on n
as understood.
In this paper the use of the normal distribution can be

regarded as convenient way of keeping track of linear
operations on means and covariances. However the results
can all be interpreted as simply depending on means and
covariances i.e. first and second order moments indepen-
dent of specific distributional assumptions.
Testing the components of Γ2nb = Σ-1ΓT is a new element

which for want of a better term might be called testing for
differential connection. Testing the individual components
of Γ2 is analogous to testing for differential expression.
Null distributions for the individual components of

the first equation in (19) can also be derived by permu-
tation to test for significantly large sub components.
The method described above can also be used to gener-
ate null distributions for the two components involving
g in the last equation of (19). Testing for the second
component ((gN)i is the new element due to the correla-
tion between genes. To understand this second compo-
nent, from equations (14) to (18) above, in the non null
case, we can write

 

 





N

N

( , )

( , )

0

1 1
0

1



    

where  0
T is the kth row of LTΓ. Some simple calcula-

tions show that

( ) ( , / )
( )

    N i i ij

j n i

j
iiN 0 0 1


 (25)

Kiiveri BMC Bioinformatics 2011, 12:42
http://www.biomedcentral.com/1471-2105/12/42

Page 8 of 14



where, for example, g0i is the ith component of g0.
Under the null hypotheses g0 = 0, or equivalently, Σ-1g0 =
0 the mean in (25) is zero. If this hypothesis is rejected
then the expected contrast value at gene i is not “smooth”
i.e. a specified weighted linear combination of neighbour-
ing contrast values. We have termed such a case differen-
tial connection. Intuitively, if nothing “unusual” is
happening local to a specific gene, then we expect its
contrast value to be roughly equal to a weighted linear
combination of its neighbouring contrast values.
Note that testing for no differential expression can be

regarded as testing a hypothesis concerning the marginal
distribution of a particular gene whilst testing for no dif-
ferential connection is testing a hypothesis concerning
the conditional distribution of a gene given all the other
genes, see the section on mixed graphical models in the
supplementary information [Additional file 1] informa-
tion for more details.
A simple example of using differential expression and

differential connection to generate hypotheses for
further investigation is given in the supplementary infor-
mation [Additional file 1].

A two group example
We illustrate some of the ideas above with an example
involving n1 samples from a treatment group and n2
samples from a control group where the interest is in
testing for equality of the treatment and control group
means. Here the design matrix D, after suitable reorder-
ing can be represented as

D n

n











1 0

0 1
1

2

and the contrast matrix C is defined as

CT  [ , ] /1 1 2 . The orthogonal completion Q is

Q 












1
2

1 1

1 1

The matrix D is

D n n

n n













1
2

1 1

1 1
1 1

2 2

Writing N = n1 + n2, we also have

I D D D D I N

F X N

R I N X

P R

T
N N

T

N N
T

N N
T

k

  



 



   
1 1 1

1
1 1 1

1 1

1 1

( ) /

/

( / )

^

PP X X Nk N N
T1 1 /

Hence it can be seen that step 3 of the method for
generating permutation distributions given above simply
involves permuting the rows of X. The statistic T in
(17) is a scalar multiple of ( ) ( )

^ ^ ^ ^
   1 2

1
1 2 T

where for example ̂1 is the p × 1 vector of sample

means for the treatment group.

Example
We use the smoking data of [21], with n = 57 subjects
and p = 22283 gene expression measurements. There
are two classes 34 smokers and 23 non smokers. We
used the zero pattern finding strategy (with BIC1.0)
defined earlier to determine the zero pattern in the
inverse covariance matrix. For the regressions, the maxi-
mum neighbour size for each gene was restricted to 3
giving a ratio of observations per parameter (m/n) of
approximately 1/20. The actual neighbour size distribu-
tion had minimum value 0, maximum value 26 and 90%
of the neighbour sizes were in the range 1 to 6. The cli-
que size distribution is given in Table 3 below
Using 20000 permutations of the rows of the data

matrix X we obtained the null distribution of the test

statistic T d dT ̂ 1 for testing the equality of the two

class means, where d is the vector of differences of the
means of the two classes. The value of the test statistic
for our data was 3077.7. The quantiles of the null distri-
bution were Table 4
so we can see that test value is highly significant lead-

ing us to conclude that the mean expression values of
the smokers and non smokers are different. A histogram
of the null distribution is given in Figure 4 below.
We also derived null distributions for the two compo-

nents of the last equation in (19). Testing the first of
these is equivalent to testing for differential expression
in this case.
We used the modified Bonferroni procedure of [22] to

adjust for multiple testing. When testing m hypotheses
the usual Bonferroni procedure with parameter a rejects
all hypotheses whose p values is less than a /m where 0
<a < 1. The modification of [22] allows, a > 1 in which
case a is an upper bound on the expected number of
false rejections i.e. false positives. This procedure exhi-
bits strong control of the per family error rate under
any dependence between p values. For details and a
comparison with the Benjamini-Hochberg procedure see
[22]. In setting the a parameter here, we note that we

Table 3 Clique size distribution

clique size 1 2 3

count 202 32400 76
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are performing approximately 40000 tests, and if we are
willing to accept an expected number of false positives
of 8 (say roughly 4 for each of the tests involving the gi
and the (gN)i) the significance level to use in the tests is
8/40000 = .0002.

Applying the above procedure, 339 differentially
expressed genes were identified and 1372 differentially
connected genes were identified. Of the 97 genes identi-
fied by [21] as being differentially expressed using t-tests,
82 were also identified as differentially expressed using
permutation tests and the procedure described above.
With this analysis, any gene of interest can be dis-

played in the context of a gene network. Define a
neighbourhood of size r for any particular gene to be
the set of genes which can be reached from this gene
by traversing r edges in the associated graph derived

Table 4 Quantiles of null distribution for T statistic in
(17) for smoking data example

percentile 90% 95% 99% 99.995%

quantile 976.7 1023.7 1140.3 1491.6

Figure 4 Histogram of null distribution.

Kiiveri BMC Bioinformatics 2011, 12:42
http://www.biomedcentral.com/1471-2105/12/42

Page 10 of 14



from Σ-1. For example, a neighbourhood around each
differentially expressed gene could be generated to
identify interesting relationships. Figure 5 below shows
the neighbourhood of size 3 of the differentially
expressed gene ALDH3A1.
A related method for constructing local networks near

genes of interest is given by [23]. Its focus is on creating
local networks near a gene of interest, however, unlike
the method described in this paper, it does not provide
a joint model for the data or even a locally consistent
model i.e. a positive definite covariance matrix. Note
that Figure 5 is derived from a global consistent model.
The gene ALDH3A1 is also differentially connected.

Figure 6 below displays the relationship of this gene to
its neighbours RPS6KA2, PTPN11 and TKT. In the plot
the null distributions for the contrasts for each of the
genes is presented as a boxplot.
The red line joins the actual observed values of the

contrast between smokers and non smokers for each of
the genes. The genes to the right of the dotted line are
the predictor genes for ALDH3A1. The associated
regression coefficients are given at the bottom of the
plot. The value 0.3 is the variance of the error in the
regression model. Note that the actual observed
weighted average of the contrasts of the predictor genes
is much lower than expected

From this plot the role of TKT and possibly RPS6KA2
in the expression of ALDH3A1 in smokers and non
smokers needs to be investigated. Other explanations
for this result such as post transcriptional processes may
also be suggested.
Restricting attention to the differentially expressed

genes, the subgraph defined by these genes has 247 clus-
ters of connected genes. Table 5 below gives the distri-
bution of these clusters by size of cluster.
Figure 7 below displays the genes and their connec-

tions in the largest cluster. Note that connections to
non-differentially expressed genes are not shown.
A literature search revealed that all but 2 of the genes

in Figure 6 are known to be connected. Some of the
functions of genes in this sub network are xenobiotic
metabolism, (ALHD3A1, ADH7, CYP4F11) and regula-
tion of oxidant stress and glutathione metabolism
(TALDO1, PGD, GPX2,CYP4F3), known to be impor-
tant in cigarette smoking, see [21].
Graphical queries such as which is the closest differ-

entially expressed gene to a specified gene and which is
the shortest pathway between two given genes can also
be answered.
Mixed graphical models based on trees and forests

have also been used by [24] to analyse microarray data.
Software for their approach is described in [25].
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Figure 5 Neighbourhood of size r = 3 around the gene ALDH3A1. Grey denotes non- differentially expressed genes (probesets), red
differentially expressed genes, green differentially connected genes and yellow genes which are both differentially expressed and differentially
connected.
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Discussion
The parameter kmax in the strategy for determining
the pattern of zeroes would not be necessary if we had
large sample sizes. Unfortunately, in practise, this is
not usually the case. Simulations in this paper and
(Kiiveri H and deHoog F: Fitting very large sparse
Gaussian graphical models, submitted) support the
general conclusion that more connections are detected
and the bias and variability in the estimates of Σ-1 is
reduced when the ratio kmax/n decreases. Based on
limited evidence to date, a tentative upper limit on this
ratio would be about 1/20 which corresponds to 20
observations per parameter in the largest regression

models. It is easy to see that for any given example, a
model derived from a smaller value of kmax will pro-
duce a sub-model of one derived from a larger kmax.
Determining the pattern of zeroes and fitting Σ-1 will
typically be faster for smaller values of kmax. There
are also other reasons one might wish to limit the size
of kmax. For example, as a preliminary exploratory
analysis, it would not be unreasonable to look for only
a few of the strongest connections between genes to
ovoid being overwhelmed by large numbers of network
connections.
The inclusion of correlations into the analysis via

sparse inverse covariance matrices comes at a substan-
tially increased computational cost. The three main
computational steps are
(i) identifying the pattern of zeroes in the inverse cov-

ariance matrix
(ii) fitting the inverse covariance matrix and
(iii) computing permutation distributions

Figure 6 Neighbours of differentially connected gene ALDH3A1. The red dots denote the observed values of the contrast for the specified
genes. The green dot is the predicted contrast value values based on the neighbours of ALHD3A1.

Table 5 Distribution of clusters of differentially expressed
genes

cluster size 1 2 3 4 5 6 8 9 17

no of clusters 210 22 5 3 2 1 2 1 1
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Steps (i) and (iii) can be done in a day or so on a
single desktop machine. A single lars stepwise fit
stopped at kmax terms requires O(npkmax + kmax3)
operations and the computation of (22) requires O(nr2

+ p(nr + r2)) operations, see [19] and [[26], p240].
However these steps are also very easy to parallelise
and so can be speeded up with very little effort if more
processors are available. Depending on the structure of
sigma inverse, step (ii) can also be performed in a day
or less. However, there are cases when this step is
more difficult and can take longer. We are currently
exploring ways of parallelising this calculation
as well as a promising alternative optimisation
method. Another approach, given a pattern of non-
zeroes in sigma inverse, could be to estimate the ele-
ments of Σ-1 simply by regression i.e. a regression of
each gene on its neighbours. The equations
   ij

ij ii
i

iiv  ( / ), /2 1 where bij is the regres-
sion coefficient of gene i on gene j, and vi

2 is
the residual variance for the regression then provide a
means for “estimating” the elements of Σ-1. However
such an analysis would at best be an approximation
since the estimated Σ-1 may not be exactly symmetric,
nor positive definite. None the less it could be a
method worth exploring as such a method would be
asymptotically consistent if the neighbour structure
was correct.
The advantage of the maximum likelihood estimate of

sigma inverse is the possibility of doing simulations, for

example of the likely effects of controlling the expres-
sion of specified genes.
The method can generate many interesting hypoth-

eses involving the connections between genes, explana-
tions for differential expression in terms of
neighbouring genes and connected pathways, and
places in the network where connected genes are act-
ing unusually.
Note that the extension to the case that the contrast

matrix C in (11) is full rank rather than orthogonal is
straightforward.
R code implementing the methods of this paper is

freely available in the library mvama, see [27].

Conclusion
There is a wealth of information about relationships
between genes in a microarray experiment which is
currently underutilised. In this paper we have present
a practical strategy for accessing some of this informa-
tion. We have presented a method for incorporating
correlations between genes into the analysis of micro-
array data. A by-product is a method for the analysis
of differential expression which does not require the
empirical Bayes model of the traditional approach of
[1] nor any need to estimate the number of differen-
tially expressed genes a priori. The new approach pro-
duces a gene network for all the genes and allows
differential expression to be placed within the context
of the gene network.
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Future work
In future work we hope to consider transformations of
expression data to make it have an approximate multi-
variate normal distribution, a comparison of different
methods for identifying the pattern of zeroes in sigma
inverse and faster algorithms for fitting the inverse cov-
ariance matrix.

Methods
Relationships between matrices stacked row by row and
column by column
Suppose A, B, X and Z are matrices such that the
appropriate matrix products below are well defined. Let
vec{X} denote the vector obtained from the matrix X by
stacking rows sequentially beginning with row 1. Let
vecc{X} denote the vector obtained from X by stacking
columns in a similar way. It is easy to see that

vec X vecc X T     (26)

vecc X vec X T     (27)

An important identity [8] which we use in this paper is

( ) { } { }A B vec X vec AXBT  (28)

Note the special cases when A = I or B = I. Using
(26), from (28) we can see that

( ) { } { }A B vecc X vecc BX AT T T 

Replacing XT by Z gives us the equivalent identity

( ) { } { },A A B vecc Z vecc BZ T

see equation (5) in [7].
Another useful identity is

vec A vec B vecc A vecc B

trace AB trace BA

T T T T

T T

{ } { } { } { }

{ } { }



 
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