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Abstract

Background: Ontologies are widely used to represent knowledge in biomedicine. Systematic approaches for
detecting errors and disagreements are needed for large ontologies with hundreds or thousands of terms and
semantic relationships. A recent approach of defining terms using logical definitions is now increasingly being
adopted as a method for quality control as well as for facilitating interoperability and data integration.

Results: We show how automated reasoning over logical definitions of ontology terms can be used to improve
ontology structure. We provide the Java software package GULO (Getting an Understanding of LOgical definitions),
which allows fast and easy evaluation for any kind of logically decomposed ontology by generating a composite
OWL ontology from appropriate subsets of the referenced ontologies and comparing the inferred relationships
with the relationships asserted in the target ontology. As a case study we show how to use GULO to evaluate the

logical definitions that have been developed for the Mammalian Phenotype Ontology (MPO).

Conclusions: Logical definitions of terms from biomedical ontologies represent an important resource for error
and disagreement detection. GULO gives ontology curators a fast and simple tool for validation of their work.

Background

The steady increase in biomedical data and publications
has led to the need for computational methods for integra-
tion and analysis [1]. Controlled vocabularies and ontolo-
gies for representing biomedical entities, their terms and
their relationships are being developed in order to accom-
plish this task, with the Gene Ontology [2] (GO) probably
being the most successful current bio-ontology. There are
multiple ontologies for specific disciplines in biomedicine,
which enable scientists to deal with the huge amount of
data produced, but a major problem is the lack of intero-
perability between ontologies of different domains of
biomedical knowledge.

The Open Biological and Biomedical Ontologies (OBO)
Foundry aims to coordinate a family of ontologies that are
interoperable and logically well-formed [3]. These ontolo-
gies are constantly growing as knowledge grows (e.g., GO
currently comprises over 35,000 classes and over 60,000
relationships), which implies that new quality checking
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approaches are needed, since manual creation and mainte-
nance of large ontologies is time-consuming and error-
prone.

In principle, a good way to develop ontologies is to
define concepts in terms of other more elementary
(atomic) concepts (building blocks). Groups involved in
the GO [4], the Mammalian Phenotype Ontology (MPO)
[5], the Human Phenotype Ontology (HPO) [6-8], and the
Worm Phenotype Ontology [9] are now developing logical
definitions for ontology terms using terms from other
ontologies, with PATO, an ontology of phenotypic quali-
ties, being a key tool in this effort [10-14]. For instance,
consider the following logical definition of the HPO term
Hypoglycemia, specified in OBO Format:

[Term]

id: HP:0001943 ! Hypoglycemia

intersection of: PATO:0001163 !
decreased concentration

intersection of: qualifier PATO:0000460
! abnormal

intersection of: towards CHEBI:17234 !
glucose
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intersection_of: inheres_in FMA:9670 !
Portion of blood

Hypoglycemia refers to a decreased concentration of
glucose in the blood. The logical definition uses relations
and follows the pattern described in previous work on
defining phenotypes [4]. The logical semantics are made
explicit in the translation to the Ontology Web Language
(OWL) [15]. The translation used in this manuscript
represents a relatively simple design pattern that none-
theless leads to the desired inferences.

Class: Hypoglycemia

EquivalentTo: ‘decreased concentration’
and towards some ‘glucose '

and inheres in some ‘portion of blood’
and qualifier some ‘abnormal’

Note that we use the term labels rather than identifiers
for the purposes of readability. Here, the class Hypoglyce-
mia is defined as being equivalent to the intersection of
all classes of things that are “A concentration which is
lower relative to the normal” (decreased concentration),
“deviate from the normal or average” (abnormal), with
respect to (towards) glucose, and inhering in “blood”
(using the term portion of blood from the Foundational
Model of Anatomy (FMA) [16]). We use the formal
inheres_in relation to relate qualities to their bearers -
here the bearer of the quality is the blood. The relation
towards is used to connect the quality (here, decreased
concentration) to the additional entity type on which the
quality depends (here glucose) [17]. We use this together
with the term for glucose from the Chemical Entities of
Biological Interest (ChEBI) ontology [18], essentially stat-
ing that the concentration is a concentration “of” glucose.
We have thus defined Hypoglycemia as the intersection
of these four classes. Defining ontology terms in this way
assists in automating ontology construction, and provides
a tool for integrative computational analysis of human
and model organism phenotypes against the background
of the knowledge incorporated in ontologies such as GO,
FMA, and ChEBI [14].

In OWL, an ontology is a collection of axioms. An
axiom can be thought of as a statement or a sentence,
and includes ontological relationships such as those
involving is a or part of. In the context of this
paper, we say that axioms can be asserted (i.e. put there
by the ontology curator) or inferred (deduced by a
reasoner).

Having created logical definitions, one can apply auto-
matic reasoners, which are systems for computing the
logical consequences that can be inferred from a set of
asserted axioms. Because reasoning systems can infer the
positions of classes in a subsumption hierarchy based on
their computable, logical definitions, they can serve as
powerful tools in ontology development and maintenance
[4]. The asserted subsumption hierarchy of a target
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ontology (such as the MPO) should be a logical conse-
quence of the definitions of the terms. As seen in Figure 1
the terms abnormal ion homeostasis and abnormal copper
homeostasis of the target ontology, the MPO, are defined
logically. This has been done by referencing the GO term
ion homeostasis for the first and copper homeostasis for
the latter MPO term. Since there exists a subsumption
axiom between the referenced GO terms (and the PATO
terms used are identical) a reasoner will infer that the
MPO term abnormal copper homeostasis is a subclass of
the MPO term abnormal ion homeostasis.

Thus we assume that this relationship should also be
asserted in the MPO, i.e., the knowledge represented in
building block ontologies should generally be reflected
in the target ontology as well.

We assume that a major goal is to create agreement
between the relationships that are asserted in the target
ontology and those that can be inferred from the building
block ontologies. This can pave the way for extensive data
integration with other ontologies to facilitate mining and
querying biological knowledge [17]. The creation of the
logical definitions for ontology terms mainly depends on
manual curation by experts. The curators have to deal
with imprecision, missing knowledge and regular changes
and updates in the referenced ontologies, and so this can
be an enormously complex task. Therefore, one approach
to evaluate a target ontology is to run an automatic rea-
soner over the combined ontologies and logical definitions
and then to check how well the manually asserted class-
level axioms agree with the ones found by the reasoner.
Depending on the knowledge and the kind of disagree-
ment detected, one may either adapt the logical definitions
or revise the subclass relationships of the target ontology.
Of course cases may also exist in which the knowledge of
the target ontology cannot be fully reasoned over, or cases
in which the asserted relationships and inferred relation-
ships represent different views or aspects of knowledge on
a particular entity. In many cases, however, it is likely that
a disagreement between the asserted hierarchy in ontolo-
gies such as the MPO or the HPO with the hierarchies of
ontologies for anatomy, biological process, cell types, etc.,
indicates a logical error that should be manually reviewed
by a curator. The developers of the logical definitions
therefore need simple tools to evaluate their definitions
and the target ontology in a fast and easy way.

Currently, the standard approach is to do minimal asser-
tion in the target ontology, and using a reasoner such as
Pellet [19] or HermiT [20] to deductively infer the target
ontology polyhierarchy. Most ontology environments such
as Protégé4 [21,22] or TopBraid Composer [23] are geared
towards this workflow. However, we are faced with the
reverse situation in application-driven biological ontolo-
gies where the target ontology is often constructed before
the building block ontologies, and we want to leverage
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abnormal ion homeostasis

intersection_of: inheres_in GO:0050801 ! ion homeostasis
\

G0:0050801

intersection_of: PAT0:0000001 ! quality . . intersection_of: PAT0:0000001 ! quality
intersection of: qualifier PAT0:0000460 ! abnormal - ldcntlc‘d] intersection of: qualifier PAT0:0000460 ! abnormal

ion homeostasis

G0:0006878
copper ion
homeostasis

Figure 1 Disagreement of ontologies. In the MPO, abnormal ion homeostasis and abnormal copper homeostasis are not connected by an
ancestor/descendent relation. The results of analysis by GULO of logical definitions of the MPO terms suggests that abnormal copper homeostasis
should be a subclass of abnormal ion homeostasis, because the term copper ion homeostasis is a descendant of ion homeostasis in the GO. These
two terms are used to logically define the corresponding terms in the MPO.

abnormal copper homeostasis

intersection_of: inheres_in GO:0006878 ! copper ion homeostasis

assertions in the target ontology to improve the building
block ontologies and the logical definitions through an
iterative process of mutual alignment. This has been the
case for both the Gene Ontology logical definitions [4]
and for phenotypes [17]. For example, the MPO frequently
classifies phenotypes anatomically, which when combined
with logical definitions allows us to improve anatomical
ontologies. Existing OWL-based deductive reasoning
environments are less well suited to this “two-way” infor-
mation flow scenario [24]. In addition, reasoners can have
unpredictable performance when used with multiple large
ontologies such as the FMA.

Numerous other schemes have been put forward to
increase coverage, consistency and quality of biomedical
ontologies. These include graph-based approaches [25],
linguistic methods for improvement of term names [26],
and others (e.g. [27]). A related approach [25] runs only
in conjunction with Protégé Frames. The lack of a freely
available tool that is based on OBO and OWL semantics
and is able to work with more complex logical defini-
tions motivated the work presented here.

Implementation

In this work, we present and implement a method for
using automated reasoning to evaluate a set of logical
definitions against the target ontology compared with the
knowledge represented by all of the ontologies referenced
in the logical definitions. The method first collects only
the parts of the referenced ontologies that are relevant
for reasoning (Table 1). Note that the referenced ontolo-
gies are expected to be provided with subsumption
axioms. For the ontologies being considered in this work,
it is only necessary to import terms that are directly
referenced in the logical definitions and all of their

ancestors back to the root in order to infer subclass rela-
tionships in the target ontology (Figure 1). We will refer
to the graph made up of all referenced terms on an
ontology as well as all ancestors on all paths back to the
root as the induced ancestral graph of the ontology. Note
that we add all relationships between the extracted terms
to this graph. For example, by looking at the definitions
of the terms from the MPO [28] the induced ancestral
graph contains only 1,528 classes of the 35,000 classes in
the complete GO (Table 1). Since reasoning does not
require any of the other terms in the referenced ontology,
one can obtain identical reasoning results over a smaller
ontology containing just these terms with a substantial
savings in computational resources. There are three types
of disagreements between the logical definitions and the
target ontology that we would like to detect:

1. A subclass relationship (an is_a link) is implied
by the logical definitions but is not explicitly
asserted in the target ontology.

2. A subclass relationship (an is_a link) is asserted
in the target ontology but is not implied by the logi-
cal definitions.

3. The logical definitions imply that two separate
classes (terms) in the target ontology are in fact
equivalent.

While these three kinds of disagreements are trivial to
detect in OWL ontologies, current software such as Pro-
tégé was not designed to present lists of detected dis-
agreements in a way that curators can easily use for
ontology maintenance. The software presented in this
work, GULO (Getting an Understanding of LOgical defi-
nitions; Taxonomic note: Gulo gulo, the wolverine,
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Table 1 10 External ontologies used for the MPO test-run
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Ontology Number classes in Ontology Fraction of terms referenced in logical definitions
Chemical Entities of Biological Interest 44,843 271 %
Gene Ontology 35,090 435 %
Protein Ontology 26,727 0.18 %
Molecule Role Ontology 9,530 0.66 %
Uber-Anatomy (UBERON) 8111 17.70 %
BRENDA Tissue Ontology 4,975 0.28 %
Adult Mouse Anatomical Dictionary 2,994 43.05 %
Phenotype, Attribute and Trait Ontology 2,283 2387 %
Cell Ontology 1,510 30.20 %
Mouse Pathology 643 1897 %
Total 140,453 745 %

Less than 10 % of the terms of the external ontologies are used by the logical definitions of the MPO terms. “Fraction of terms referenced in logical definitions”
denotes the percentage of terms in the ontology that are members of the induced ancestral graph and are used by the logical definitions of the MPO terms.

notably includes owls in its diet), therefore imports the
induced ancestral graphs from all ontologies referenced
in the logical definitions of the the target ontology, uses
computational reasoning to identify the set of all rela-
tionships between terms of the target ontology that are
implied by the logical definitions and the referred ontol-
ogies, and compares them to the relationships that have
actually been asserted in the target ontology. Any dis-
agreement is then presented to the user in a set of easy-
to-use files together with the reasons derived by the rea-
soner for the disagreement derived by the reasoner.
These results can be used by ontology curators for
ontology maintenance and debugging.

We provide a stand-alone software implemented in
Java that parses a set of definition files (the cross-product
logical definitions) and a set of user-defined external
ontologies that are referenced in the logical definitions.
We will now explain the workflow together with the
impact of the several program options that the user can
specify. A schematic summary of the workflow is shown
in Figure 2.

Generation of relevant ontology subsets and running the
reasoner

All the ontology files (definitions, external ontologies, tar-
get ontology) are parsed using the OWL API [29]. Note
that for ontologies in OBO format we use the oboformat
library [30], which provides a parser for OBO format 1.4
syntax and an implementation of a mapping to OWL
using the OWL APIL We also use the OWLTools package
[31], a convenience Java API on top of the OWL API,
which among other things provides convenient graph-
operation capabilities over ontologies.

After parsing the definition file(s) and the external
ontologies, a single composite ontology is constructed. By
default, the composite ontology is generated using only
subsets (the induced ancestral graphs) of the external
ontologies; alternatively, the external ontologies are

imported in their entirety if the option -s is chosen. The
composite ontology (Figure 2: “ontology given to rea-
soner”) is written to file and if desired can be imported
into Protégé for manual inspection. Following this, the
reasoner is started. The reasoners FaCT++ [32], HermiT
[20], or Pellet [19] can be specified using the option -r.
Note that in order to use FaCT++, the corresponding
FaCT++ Java Native Interface library must be defined and
available in the Java library path.

Comparison against target ontology
After reasoning, a new ontology is created from the
inferred axioms (Figure 2: “reasoned ontology”). This
ontology is then compared against the specified target-
ontology (-t). GULO performs a comparison in both
directions; i.e., the reasoned axioms are checked for pre-
sence in the target ontology (“Reasoned ontology —
Target ontology”) and conversely all links between
(defined) terms in the target ontology are sought in the
reasoned ontology (“Target ontology — Reasoned
ontology”).
Output files
GULO writes several files to a user-defined output folder
(option -0). A list of the most important files that are
generated by GULO are given in Figure 2 (Output). The
merged ontology and the ontology generated by the rea-
soner are written to the output folder. During the com-
parison of these two ontologies the axioms that are
found by the reasoner are written to inf ax found.
txt/inf ax not found.txt according to whether
they are present/not present in the specified target
ontology. Similarly we report every link in the target
ontology between decomposed terms that the reasoner
has detected/not detected in the file assert ax
found.txt/assert ax not found.txt

Note that inf ax not found.txt and assert
ax_not found.txt also list the definitions (which
give the users hints for debugging) for all the listed
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workflow. Also files read, created and written are depicted.

Figure 2 Workflow and options of GULO. A schematic representation of the workflow of GULO and how the user-specified options affect the

axioms. Furthermore, a file with inferred equivalence
axioms (equivalence ax.txt) is generated, where
the listed equivalences can either point to duplicates in
the target ontology (in case of true equivalencies) or to
errors in the logical definitions (i.e., when a curator has
accidentally used the same definitions for non-equiva-
lent terms).

Results and Discussion

Software for automated reasoning evaluations

Here we present an application that automatically rea-
sons over a set of logically decomposed terms and eval-
uates the resulting ontology against a specified target
ontology. The goal of this process is to define terms of a
target ontology and use a reasoner to create a new
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ontology by only using the logical definitions. The
resulting ontology ideally has the identical structure as
the target ontology in which the subclass axioms have
been manually asserted. Our program GULO generates
subsets of the external ontologies that only contain the
terms of the induced ancestral graphs that are refer-
enced in the logical definitions.

Finally, mismatches between the manually asserted
subclass axioms and the reasoned axioms are reported
and can be used to improve the structure of the target
ontology or the axioms used to define the terms con-
tained in the target ontology.

The Mammalian Phenotype Ontology

To demonstrate that our software is applicable and
important for developers and curators of ontologies and/
or logical definitions, we tested it by using the Mamma-
lian Phenotype Ontology (MPO) and the corresponding
definition file containing the logical definition of a major-
ity of the MPO terms. Note that for our testing proce-
dure we also generated a bridge between anatomical
terms and UBERON [33], since the MPO logical defini-
tions refer to ontologies that are cross-referenced by
UBERON (e.g. MA and FMA). A bridging file was gener-
ated that transforms the subclass axioms of UBERON
(e.g., MA cochlear duct is a subclass of the generic
cochlear duct) into correspoding equivalence axioms
(e.g., MA coclear duct is defined to be equivalent to the
generic cochlear duct in UBERON). This step makes the
output of GULO easier to interpret. The code and a run-
nable jar (GenerateUberonBridge.jar) can be obtained
from the GULO subversion repository (see section Avail-
ability and requirements). The ontologies used and the
output files are also listed there (see folder dataUsed
gulopaper/).

Running time and memory

For testing the computational requirements of our pro-
gram, we also used the test case of the MPO and the
corresponding definitions and ran GULO on a computer
with an Intel Core 2 Duo (2.66 GHz) and 4 GB RAM.
When using subset creation (Table 1) the reasoning
(using HermiT) and evaluation took ~115 seconds (run
with the VM-option -Xmx500M). Running the same ana-
lysis without the construction of subsets gave us identi-
cal reasoning/evaluation results, but took around 310
seconds (with the VM option-Xmx1100M).

Evaluating the MPO

As described above, GULO can be used to detect dis-
agreements or differences in the representation of
knowledge between an ontology created from automati-
cally reasoned axioms using logical definitions and a tar-
get ontology (MPO), where the axioms between terms
have been generated by manual curation (Table 2). The
first file presents examples where reasoned axioms
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Table 2 GULO results
Inferred axioms referring to the MPO (4,216)

- asserted in XP 19

- not asserted in XP 4,198
Reasoned ontology — Target ontology (MPO)

- number inferred axioms directly found 2,662
- number inferred axioms indirectly found 557
- number new axioms 997
Target ontology (MPO) — Reasoned ontology

- number asserted axioms found 2,662
- number asserted axioms not found 4,095

Statistics of GULO running on the MPO. A total of 4,216 axioms were inferred
by GULO, of which 19 were directly asserted in the logical (XP) definitions. Of
these, 2,662 were explicitly and 557 implicitly asserted by the MPO. 997 new
axioms were identified that require attention by curators.

could not be found in the MPO (inf ax not
found. txt).

In the first example the reasoner infers that abnormal
copper homeostasis (MP_0003951) is a subclass of
abnormal ion homeostasis (MP_0001765). This infer-
ence originates from the knowledge representation in
the GO, where copper ion homeostasis is a descendant
of ion homeostasis (see Figure 1). In the MPO these two
terms are currently not in any ancestor-descendant rela-
tion, which suggests that further manual curation of
these terms is necessary.

A similar example is the reasoned subclass axiom
enlarged inguinal lymph nodes (MP_0009623) and
enlarged lymph nodes (MP_0000702). As before there
is a disagreement between knowledge representation in
the MPO and an external ontology (MA). In this case
the MA ontology states that inguinal lymph node is a
subclass of lymph node, an axiom that is not repre-
sented in the MPO. As before we suggest structural
changes in the MPO, so that this part of the MPO is
aligned with the corresponding part of the MA. Further
examples of links suggested by GULO for addition to
the MPO are increased prostaglandin level subclass of
increased unsaturated fatty acid level, decreased quadri-
ceps weight subclass of decreased muscle weight, and
long radius subclass of increased length of long bones.

Note that in total GULO finds 997 subclass axioms
between MPO terms that are currently not explicitly
asserted in the MPO. These terms and the relationships
between them now represent priority items for further
manual curation.

Evaluating MPO logical definitions

Another important feature of GULO is that it can be
used to identify curator errors made during the creation
of logical definitions. We detected numerous disagree-
ments, but here we will describe only one example. The
file equivalence ax.txt showed us an equivalence
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between abnormal urine uric acid level and abnormal
blood uric acid level owing to an erroneous definition of
abnormal urine uric acid level which used the MA term
for blood instead of the term for urine.

GULO is capable of indicating more complex disagree-
ments. An axiom generated by the reasoner (assert
ax_not found.txt) is the subsumption axiom
between abnormal sperm motility (MP_0002674) and
abnormal locomotor activity (MP_0001392). This axiom
is not contained in the MPO. Both terms were decom-
posed as abnormal (PATO_0000460) and quality
(PATO_0000001). The disagreement here comes from
the third term used to define both MPO terms, which is
in the first case sperm motility (G0_0030317) and loco-
motion (GO_0040011) for the definition of the latter
MPO term. This produces a mixture between a state-
ment about the motility of a single cell (sperm cell) and
about the movement behavior of a whole organism
(here the mouse). Here we are not confronted with a
curator error, rather GO is too unspecific, as can be
seen in the definition of locomotion (“Self-propelled
movement of a cell or organism from one location to
another”). It is hard to say what the best solution to this
problem might be. One solution would be for GO to
restructure terms representing movement such that cel-
lular movement and the movement of an entire organ-
ism are represented by separate hierarchies of terms.

Conclusions
We provide a software package (GULO) for automatic rea-
soning over a set of logical definitions and the ontologies
referenced by the definition statements. The referenced
ontologies are automatically reduced by removing all
classes that are not referred to by the definitions in order
to reduce computation time and memory requirements.
We assume that the ontology generated by the reasoner
optimally should reflect the structure of the manually
asserted links given in the target ontology. The reasoned
ontology and the target ontology are compared with each
other and disagreements are listed. These lists of differ-
ences are a powerful resource for the detection of errors
in both the logical definition statements and the structure
of the target ontology. Of course there may also be cases
in which the knowledge of the target ontology cannot be
fully reasoned over or cases in which the asserted axioms
and inferred axioms represent different views or aspects of
knowledge on a particular entity. The methodology pre-
sented here can thus be used as a system to help expert
curators efficiently identify terms and relationships that
require attention. The method is not intended to be used
to automatically repair or generate an ontology.

The software presented here uses standard techniques
for reasoning over OWL DL ontologies. It is especially
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designed to be used by curators of biomedical ontologies
that use logical, cross-product definitions [4] for the
classes of the ontology. This is currently the case for sev-
eral prominent ontologies in the OBO Language, includ-
ing the GO, the MPO, the HPO, and the Worm
Phenotype Ontology [9]. We have demonstrated the
usage of GULO by applying it to the manually created
logical definitions of the terms of the MPO. We
explained in which way users can get hints for disagree-
ments and errors in both the MPO and the correspond-
ing logical definitions of MPO terms. Curators of logical
definitions of any kind of biomedical ontologies can use
GULO as a tool for validation and consistency checking.

Availability and requirements
« Project name: GULO (Getting an Understanding of
LOgical definitions)
« Project home page: http://compbio.charite.de/svn/
hpo/trunk/src/tools/gulo
+ Operating system(s): Platform-independent
+ Programming language: Java
« Other requirements: Java 1.5 or higher
« License: New BSD License

List of abbreviations

MP/MPO: Mammalian Phenotype (Ontology); HPO: Human Phenotype
Ontology; GO: Gene Ontology; MA: Mouse Anatomy; PATO: Phenotype,
Attribute and Trait Ontology
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