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Abstract

Background: Motifs are patterns found in biological sequences that are vital for understanding gene function,
human disease, drug design, etc. They are helpful in finding transcriptional regulatory elements, transcription factor
binding sites, and so on. As a result, the problem of identifying motifs is very crucial in biology.

Results: Many facets of the motif search problem have been identified in the literature. One of them is (ℓ, d)-motif
search (or Planted Motif Search (PMS)). The PMS problem has been well investigated and shown to be NP-hard. Any
algorithm for PMS that always finds all the (ℓ, d)-motifs on a given input set is called an exact algorithm. In this
paper we focus on exact algorithms only. All the known exact algorithms for PMS take exponential time in some
of the underlying parameters in the worst case scenario. But it does not mean that we cannot design exact
algorithms for solving practical instances within a reasonable amount of time. In this paper, we propose a fast
algorithm that can solve the well-known challenging instances of PMS: (21, 8) and (23, 9). No prior exact algorithm
could solve these instances. In particular, our proposed algorithm takes about 10 hours on the challenging instance
(21, 8) and about 54 hours on the challenging instance (23, 9). The algorithm has been run on a single 2.4GHz PC
with 3GB RAM. The implementation of PMS5 is freely available on the web at http://www.pms.engr.uconn.edu/
downloads/PMS5.zip.

Conclusions: We present an efficient algorithm PMS5 that uses some novel ideas and combines them with well-
known algorithm PMS1 and PMSPrune. PMS5 can tackle the large challenging instances (21, 8) and (23, 9).
Therefore, we hope that PMS5 will help biologists discover longer motifs in the futures.

1 Background
The discovery of patterns in DNA, RNA, and protein
sequences has led to the solution of many vital biological
problems. For instance, the identification of patterns in
nucleic acid sequences has resulted in the determination
of open reading frames, identification of promoter ele-
ments of genes, identification of intron/exon splicing
sites, identification of SH RNAs, location of RNA degra-
dation signals, identification of alternative splicing sites,
etc. In protein sequences, patterns have proven to be
extremely helpful in domain identification, location of
protease cleavage sites, identification of signal peptides,
protein interactions, determination of protein degrada-
tion elements, identification of protein trafficking ele-
ments, discovery of short functional motifs, etc. Motifs
are patterns found in biological sequences that are vital
for understanding many biological subjects like gene

function, human disease, drug design etc. As a result, the
identification of motifs plays an important role in biologi-
cal studies. The motif search problem has been attracting
many researchers. In the literature, many versions of the
motif search problem have been enumerated. Examples
include Simple Motif Search (SMS), Planted Motif Search
(PMS) - also known as (ℓ, d)-motif search, and Edit-dis-
tance-based Motif Search (EMS) (see e.g., [1]). In this
paper, we will focus on the PMS problem (or PMS for
short).

The definition of Planted Motif Search (PMS)
PMS is stated as follows. It takes as input n sequences, two
integers ℓ and d. For simplicity, we assume that the length
of each sequence is m. The problem is to identify all
strings M of length ℓ such that M occurs in each of the n
sequences with at most d mismatches. Formally, string M
has to satisfy the following constraint: there exists a string
Mi of length l in sequence i, for every i (1 ≤ i ≤ n), such* Correspondence: rajasek@engr.uconn.edu
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that the number of mismatches between M and Mi is less
than or equal to d. The number of mismatches between
two strings of equal length is known as the Hamming dis-
tance between them. String M is called a motif. For exam-
ple, if the input sequences are GCGCGAT, CAGGTGA,
and CGATGCC; ℓ = 3; and d = 1, then GAT and GTG are
some of the (l, d)-motifs. PMS is a well-studied problem
and it has been shown to be NP-hard. As a result, all
known exact algorithms for PMS take exponential time in
some of the underlying parameters in the worst case. Two
kinds of algorithms have been proposed in the literature
for PMS: exact and approximate. While an exact algorithm
always finds all the motifs, an approximate algorithm may
not always find all the motifs. Typically, approximate algo-
rithms tend to be faster than exact algorithms. Some exam-
ple approximate algorithms are due to Bailey and Elkan [2],
Buhler and Tompa [3], Lawrence et al. [4], Pevzner and Sze
[5], and Rocke and Tompa [6]. These algorithms are based
on local search techniques such as Gibbs sampling, expec-
tation optimization, etc. The WINNOWER algorithm of
[5] is based on finding cliques in a graph. Some other
approximate algorithms are: PROJECTION [3], MULTI-
PROFILER [7], PatternBranching [8], CONSENSUS [9],
GibbsDNA [4], MEME [2], and ProfileBranching [8].
Although approximate algorithms are acceptable in

some cases in practice, exact algorithms are preferable
since they are guaranteed to report all the (l, d)-motifs.
For biologists, the motifs found by an algorithm could be
much more important than its run time. As a result, we
focus in this paper on efficient exact algorithms. Some
exact algorithms known for PMS are: [10-18], and [19].
Buhler and Tompa [3] have employed PMS algorithms

to find known transcriptional regulatory elements
upstream of several eukaryotic genes. In particular, they
have used orthologous sequences from different organisms
upstream of four different genes: preproinsulin, dihydrofo-
late reductase (DHFR), metallothioneins, and c-fos. These
sequences are known to contain binding sites for specific
transcription factors. The authors point out the differences
between experimental data and synthetic data that PMS

algorithms are typically tested with. For example, the back-
ground DNA in experimental data is not random. Their
algorithm successfully identified the experimentally deter-
mined transcription factor binding sites. They have used
the values of l = 20 and d = 2. The same sites have also
been found using our PMS2 algorithm [11]. The algorithm
of [3] is an approximation algorithm whereas PMS2 is an
exact algorithm. Buhler and Tompa have also employed
their algorithm to solve the ribosome binding site problem
for various prokaryotes [3]. This problem is even more
challenging since here the number of input sequences
could be in the thousands.
Eskin and Pevzner [13] used PMS algorithms to find

composite regulatory patterns. They point out that tradi-
tional pattern finding techniques (on unaligned DNA
sequences) concentrate on identifying high-scoring mon-
ads. A regulatory pattern could indeed be a combination
of multiple and possibly weak monads. They employ
MITRA (a PMS algorithm) to locate regulatory patterns
of this kind. The algorithm is demonstrated to perform
well on both synthetic and experimental data sets. For
example, they have employed the upstream regions
involved in purine metabolism from three Pyrococcus
genomes. They have also tested their algorithm on four
sets of S.cerevisiae genes which are regulated by two
transcription factors such that the transcription factor
binding sites occur near each other. Price and Pevzner
[8] have employed their PatternBranching PMS techni-
que on a sample containing CRP binding sites in E.coli,
upstream regions of many organisms of the eukaryotic
genes: preproinsulin, DHFR, metallothionein, & c-fos,
and a sample of promoter regions from yeast. They
report finding numerous motifs in these sequences.
The performance of an exact algorithm is typically eval-

uated on random benchmark data generated as follows.
Twenty input DNA sequences, each of length 600, are
generated randomly from the alphabet Σ = {A, C, G, T}. A
motif M of length ℓ is also generated randomly and
planted in each of the input sequences within a Hamming
distance of d to make sure that there always exists a motif
in the input. Based on the values of ℓ and d, certain
instances of PMS have been identified to be challenging.
An instance is challenging if the expected number of the
motifs that occur by random chance (in addition to the
planted one) is one or more. For example, the following
instances are challenging: (9, 2), (11, 3), (13, 4), (15, 5), (17,
6), (19, 7), (21,8), (23, 9), etc.
To compare the performance of exact algorithms, the

challenging instances are commonly used. For example,
the exact algorithm MITRA of [8] can solve the challen-
ging instances (9, 2), (11, 3), and (13, 4). It takes either
too much time or too much memory on the challenging
instance (15, 5) or any larger instances. Both the exact
algorithm Voting in [20] and the exact algorithm

Table 1 A comparison between N (�, d) and E[Bd(x, y, z)]
for different values of ℓ and d

ℓ d N (�, d) E[Bd(x, y, z)]

9 2 352 6.35 × 10-4

11 3 4,984 7.04 × 10-3

13 4 66,379 6.49 × 10-2

15 5 853,570 5.39 × 10-1

17 6 1.07 × 107 4.20

19 7 1.33 × 108 3.12 × 10

21 8 1.63 × 109 2.26 × 102

23 9 1.99 × 1010 1.60 × 103
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RISOTTO in [21] can solve the challenging instances up
to (15, 5). In most of the cases, Voting runs faster than
RISOTTO. The best up-to-date exact algorithm is Pampa
given in [10]. Pampa can solve the challenging instance
(19, 7) within about 4.8 hours. The second best exact
algorithm is PMSPrune [22] that can solve the challen-
ging instance (19, 7) within about 10 hours.
In this paper we present an exact algorithm (named

PMS5) that can solve the challenging instances (21, 8) and
(23, 9). PMS5 takes about 10 hours on the challenging
instance (21, 8) and about 54 hours on the challenging
instance (23, 9). These run times are on a single 2.4GHz
PC with 3GB of RAM. To the best of our knowledge, no
other exact algorithm can solve these instances.

2 Methods
2.1 Notations and Definitions
In this section we introduce some notations and defini-
tions that will help us describe our algorithm clearly.
Definition 2.1. A string x = x[1] ... x[ℓ] of length ℓ is

called an ℓ-mer.
Definition 2.2. Given two strings x and y of equal

length, we say the Hamming distance between x and y,
denoted by dH(x, y). is the number of mismatches
between them,
Definition 2.3. Given a string x = x[1] ... x[ℓ], we define

the d-neighborhood of x, Bd(x), to be {y | dH(x, y) ≤ d}.

Note that |Bd(x)| =
∑d

i=0

(
�
i

)
(|�| − 1)i, where Σ is the

alphabet of interest. Notice that Bd(x) depends only on
ℓ, d and |Σ|. For this reason, we define

N (�, d) =
∑d

i=0

(
�
i

)
(|�| − 1)i .

Definition 2.4. Given two strings x = x[1] ... x[ℓ] and s
= s [1] ... s[m] with ℓ <m:

1. We use the notation x Îℓ s if x is a substring of s
(equivalently, s = axb for some strings a and b). We
also say that x is an ℓ-mer of s.
2. We define d̄H(x, s) = minr∈�sdH(x, r).

Definition 2.5. Given a string x = x[1] ... x[ℓ] and a
set of strings S = {s1, ..., sn}with |si| = m for i = 1, ..., n
and ℓ <m, we define d̄H(x,S) = max1≤i≤nd̄H(x, si).
It is easy to see that x is an (ℓ, d)-motif of S if and

only if d̄H(x,S) ≤ d.
Definition 2.6. Given a set of strings S = {s1, ..., sn}, we

define M�,d(S)to be the set of (l, d) motifs of S.
The goal of PMS is to compute M�,d(S), given ℓ, d

and S.

2.2 PMS5 - A fast algorithm
The idea of our algorithm is based on the following
observations about M�,d(S).

Observation 2.1. Let S, S ′and S ′′be three sets of
strings such that S = S ′ ∪ S ′′and S′ ∩ S′′ = ∅. It is easy to
observe that M�,d(S) = M�,d(S ′) ∩ M�,d(S ′′).
Observation 2.2. For any string s,

M�,d({s}) =
⋃

x∈�s
Bd(x).

From Observation 2.1 and Observation 2.2, we can
obtain the following observation.
Observation 2.3. Let S∗ = S\{s1} = {s2, ..., sn}. We have

M�,d(S) =
⋃

x∈�s1

[
Bd(x) ∩ M�,d(S∗)

]
.

Observation 2.3 tells us that M�,d(S) can be computed
from Bd(x) ∩ M�,d(S∗).
Without loss of generality, we can assume that the

size of S∗ is even, i.e., |S∗| = n − 1 = 2p, for some inte-
ger p. Otherwise we can add a copy of sn into S∗, in
which case M�,d(S∗) will remain the same. Next, we par-
tition S∗ into pairs of strings S1, ...,Sp, where
Sk = {s2k, s2k+1} for k = 1 ... p. From Observations 2.1
and 2.2, we can make the following observations.
Observation 2.4.

Bd(x) ∩ M�,d(S∗) =
⋂

1≤k≤p

[
Bd(x) ∩ M�,d(Sk)

]
.

Observation 2.5.

Bd(x) ∩ M�,d(Sk) =
⋃

y∈�s2k ,z∈�s2k+1

[
Bd(x) ∩ Bd(y) ∩ Bd(z)

]
.

Based on the above observations, we note that the pro-
cess of computing M�,d(S) can be reduced to computing
Bd(x, y, z) = Bd(x) ∩ Bd(y) ∩ Bd(z) repeatedly. We will dis-
cuss how to compute Bd(x, y, z) efficiently in Section 2.2.2.
The pseudocode of our algorithm PMS5 is given below.

Algorithm
PMS5
1: for each x Îℓ s1 do

2: for k = 1 to p =
⌊
n − 1
2

⌋
do

3: Q ← ∅.
4: for each y Îℓ s2k and z Îℓ s2k+1 do
5: Compute Bd(x, y, z) = Bd(x) ∩ Bd(y) ∩ Bd(z).
6: Q ¬ Q ∪ Bd(x, y, z).
7: end for
8: if k = 1 then
9: Q’ ¬ Q.
10: else
11: Q’ ¬ Q’ ∩ Q.
12: end if
13: if |Q’| is small enough then
14: break the for loop.
15: end if
16: end for
17: for each r Î Q’ do
18: if d̄H(r,S) ≤ dthen
19: Output r as an (ℓ, d) motif.
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20: end if
21: end for
22: end for
In the pseudo code, the process of computing

Bd(x) ∩ M�,d(Sk) for each k is from line 3 to line 7. After
line 7, Q is actually Bd(x) ∩ M�,d(Sk). Within the loop at
line 2, Q’ is Bd(x) ∩ M�,d(S1) ∩ · · · ∩ M�,d(Sk) for each k
after line 12. At line 13, if |Q’| is less than a certain thresh-
old, the algorithm simply exits the loop and will not try
other values of k. In practice, we set the threshold to be
between 5000 and 10000. From line 17 to line 21, the algo-
rithm checks if each string r Î Q’ is actually an (ℓ, d)-motif
or not. To check if d̄H(r,S) ≤ d for any r, we only have to
use the remaining sequences (s2k+2, s2k+3, ..., sn).
2.2.1 Analysis
PMS5 is correct From the observations, it is straightfor-
ward to see that PMS5 outputs M�,d(S). Therefore,
PMS5 is correct.
The worst-case run time of PMS5 Theorem 2.1. The
worst-case run time of PMS5 is O(nm3dN (�, d)). Recall
that N (�, d) = |Bd(x)| =

∑d
i=0

(
�
i

)
(|�| − 1)i.

Proof. It is easy to see that the run time of PMS5 is
dominated by the computation time of Bd(x, y, z) in line
5. In Section 2.2.2, we will show that Bd(x, y, z) can be
computed in O(ℓ + d|Bd(x, y, z)|) time. In the extreme
case in which x = y = z, |Bd(x, y, z))| = |Bd(x)| = N (�, d).
Since N (�, d) is much larger than ℓ, the computation
time of Bd(x, y, z) is O(dN (�, d)). Also, it is straightfor-
ward to see that the number of times Bd(x, y, z) is com-

puted is at most
n

2
(m − � + 1)3. Hence, the run time of

PMS5 is O(nm3dN (�, d)).
The expected run time of PMS5 We can compute the
expected run time of of PMS5 by computing the
expected value of Bd(x, y, z). Let x, y, and z be three
random ℓ-mers. How many ℓ-mers are there that are at
a distance of ≤ d from each of x, y, and z? Let u be a
random ℓ-mer.

Prob.[dH(x, u) ≤ d] = p�,d =
∑d

i=0

(
�
i

)
(3/4)i(1/4)�−i. This

means that
Prob.[dH(x, u) ≤ d&dH(y, u) ≤ d&dH(z, u) ≤ d] = p3l,d.
Therefore, the expected number of u’s such that u is at
a distance of ≤ d from each of x, y, and z, E[Bd(x, y, z)],
is 4�p3�,d.
As a result, the expected run time of PMS5 is

O
(
nm3d4�p3

�,d

)
, where p�,d =

∑d
i=0

(
�
i

)
(3/4)i(1/4)�−i.

Table 1 gives a comparison between N (�, d) and E[Bd

(x, y, z)] for different values of ℓ and d.
2.2.2 Computing the intersection of the d-neighborhoods
In this section, we consider the problem of computing
the intersection of the d-neighborhoods Bd(x, y, z).

Given three ℓ-mers x, y, z and integer number d, we
would like to list all of the ℓ-mers in Bd(x, y, z). In this
section we offer an algorithm FULLPRUNE for this task
that runs in O(ℓ + d|Bd(x, y, z)|) time.
FULLPRUNE is the heart of algorithm PMS5. The

idea of FULLPRUNE is as follows. We first represent Bd

(x) as a tree Td(x) in which each node is an ℓ-mer in Bd

(x) and its root is the ℓ-mer x. The depth of Td(x) is d.
We will describe Td(x) in detail later. We traverse Td(x)
in a depth-first manner. At each node t during the tra-
versal, we output t if t is in Bd(y) ∩ Bd(z). We also check
if there is a descendent t’ of t such that t’ is in Bd(y) ∩
Bd(z). If there is no such descendent, we prune the sub-
tree rooted at node t. We will show that checking the
existence of such a descendent can be done quickly in
O(1) time, later. Formally, Td(x) is constructed from the
following rules.
Rules to construct Td(x).

1. Each node in Td(x) is a pair (t, p) where t = t[1] ...
t[ℓ] is an ℓ-mer and p is an integer between 0 and ℓ

such that t[p + 1] ... t[ℓ] = x[p + 1] ... x[ℓ]. We refer
to a node (t, p) as ℓ-mer t if p is clear.
2. Let t = t[1] ... t[ℓ] and t’ = t’[1] ... t’[ℓ]. A node (t,
p) is the parent of a node (t’, p’) if and only if

(a) p’ >p.
(b) t’[p’] ≠ t[p’] (From Rule 1, t[p’] = x[p’]).
(c) t’[i] = t[i] for any i ≠ p’

3. The root of Td(x) is (x, 0).
4. The depth of Td(x) is d.

Clearly, each ℓ-mer in Bd(x) is uniquely associated
with a node in Td(x) and vice versa. Figure 1 illustrates
the tree T2(1010) with alphabet Σ = {0, 1}.
It is not hard to see that Td(x) has the following

properties.
Properties of Td(x).

1. If a node (t’, p’) is a child of a node (t, p), then dH
(x, t’) - dH(x, t) = dH(t, t’) = 1. As a result, if a node
(t, p) at level h, then dH(x, t) = h.

��������������� ���������� �����

�����

��������������� �����

Figure 1 T2(1010) with alphabet Σ = {0,1}. The value of p at
each node is the location of its shaded letter. For example, p = 2 at
node 1110, p = 3 at node 0000.
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2. Consider two nodes (t, p) and (t’, p’) with t = t[1]
... t[ℓ] and t’ = t’[1] ... t’[ℓ]. Then (t’, p’) is a descen-
dent of (t, p) if and only if:

(a) p’ >p.
(b) t’[1] ... t’[p] = t[1] ... t[p].
(c) dH(x, t’) ≤ d.

Now we consider the subproblem of checking
whether there is a descendent (t’, p’) of (t, p) such
that t’ is in Bd(y) ∩ Bd(z). Solving the subproblem is
very crucial for FULLPRUNE because it will help us
know beforehand for sure which nodes should be
explored. The second property above is important to
solve the subproblem. Let t = t[1] ... t[ℓ], x = x[1] ... x
[ℓ],y = y[1] ... y[ℓ] and z = z[1] ... z[ℓ]. Let t1 = t[1] ... t
[p] and t2 = t[p + 1] ... t[ℓ]. We define x1, x2, y1, y2, z1
and z2, similarly. Notice that x2 = t2. Because of the
second property t’ must have the form t’ = t1w, where
w is an (ℓ - p)-mer. Therefore, there is a descendent
(t’, p’) of (t, p) such that t’ is in Bd(y) ∩ Bd(z) if and
only if there is an (ℓ - p)-mer w satisfying the follow-
ing constraints:

1. dH(x, t’) = dH(x1, t1) + dH(x2, w) ≤ d.
2. dH(y, t’) = dH(y1, t1) + dH(y2, w) ≤ d.
3. dH(z, t’) = dH(z1, t1) + dH(z2, w) ≤ d.

We will show that the constraints can be expressed by
an integer linear program of ten variables. Each location
i in x2, y2 and z2 is one of five types.

• Type 1 (or Type aaa): x2[i] = y2[i] = z2[i].
• Type 2 (or Type aab): x2[i] = y2[i] ≠ z2[i].
• Type 3 (or Type aba): x2[i] = z2[i] ≠ y2[i].
• Type 4 (or Type baa): x2[i] ≠ y2[i] = z2[i].
• Type 5 (or Type abc): x2[i] ≠ y2[i], x2[i] ≠ z2[i], y2
[i] ≠ z2[i].

Let n1 (resp. n2, n3, n3, n4, and n5) be the number of
locations of Type 1 (resp. Type 2, Type 3, Type 4, and
Type 5). Given x2, y2 and z2, nj is determined for j = 1
... 5. Notice that n1 + ··· + n5 = ℓ - p.
Consider any (ℓ - p)-mer w = w[1] ... w[ℓ - p]. We

define the following variables.

• Let N1,a be the number of locations i of Type 1
such that w[i] = x2[i]. We should have N1,a ≤ n1.
• Let N2,a (resp. N2,b) be the number of locations i
of Type 2 such that w[i] = x2[i] (resp. w[i] = z2[i]).
We should have N2,a + N2,b ≤ n2.
• Let N3,a (resp. N3,b) be the number of locations i
of Type 3 such that w[i] = x2[i] (resp. w[i] = y2[i]).
We should have N3,a + N3,b ≤ n3.

• Let N4,a (resp. N4,b) be the number of locations i
of Type 4 such that w[i] = y2[i] (resp. w[i] = x2[i]).
We should have N4,a + N4,b ≤ n4.
• Let N5,a (resp. N5,b, N5,c) be the number of loca-
tions i of Type 5 such that w[i] = x2[i] (resp. w[i] =
y2[i], w[i] = z2[i]). We should have N5,a + N5,b + N5,c

≤ n4.

Now it is straightforward to calculate dH(x2, w)
through the variables. The number of mismatches
between x2 and w caused by the locations of Type 1
(resp. Type 2, Type 3, Type 4, and Type 5) is n1 - N1,a,
(resp. n2 - N2,a, n3 - N3,a, n4 - N4,b, and n5 - N5,a).
Therefore, dH(x2, w) = (n1 - N1,a) + (n2 - N2,a) + (n3 -
N3,a) + (n4 - N4,b) + (n5 - N5,a). Similarly, dH(y2, w) =
(n1 - N1,a) + (n2 - N2,a) + (n3 - N3,b) + (n4 - N4,a) + (n5
- N5,b), and dH(z2, w) = (n1 - N1,a) + (n2 - N2,b) + (n3 -
N3,a) + (n4 - N4,a) + (n5 - N5,c). So the following integer
linear program (ILP) expresses the constraints.
Integer Linear Program (ILP).

1. (n1 - N1,a) + (n2 - N2,a) + (n3 - N3,a) + (n4 - N4,b)
+ (n5 - N5,a) ≤ d - dH(x1, t1).
2. (n1 - N1,a) + (n2 - N2,a) + (n3 - N3,b) + (n4 - N4,a)
+ (n5 - N5,b) ≤ d - dH(y1, t1).
3. (n1 - N1,a) + (n2 - N2,b) + (n3 - N3,a) + (n4 - N4,a)
+ (n5 - N5,c) ≤ d - dH(z1, t1).
4. N1, a ≤ n1.
5. N2, a + N2, b ≤ n2.
6. N3, a + N3, b ≤ n3.
7. N4, a + N4, b ≤ n4.
8. N5, a + N5, b + N5,c ≤ n5.
9. All of the variables are non-negative integers.

Clearly, there exists one or more w’s satisfying the
constraints if and only if the integer linear program has
a solution. Notice that n1 + n2 + n3 + n4 + n5 = ℓ - p.
We can rewrite the first three constraints of the integer
linear program as follows.

1. N1, a + N2, a + N3,a + N4,b + N5,a ≥ ℓ - p - d + dH
(x1, t1).
2. N1, a + N2, a + N3,b + N4,a + N5,b ≥ ℓ - p - d + dH
(y1, t1).
3. N1, a + N2, b + N3,a + N4,a + N5,c ≥ℓ - p - d + dH
(z1, t1).

Because the integer linear program has only ten vari-
ables, checking whether it has a solution can be done in
O(1) time. Notice that the integer linear program only
depends on eight parameters n1, ... n5, d - dH(x1, t1), d -
dH(y1, t1), and d - dH(z1, t1). The first five parameters
are in the range [0, ..., ℓ] and the other parameters are
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in the range [0, ... d]. Therefore, we will store the results
of all possible integer linear programs in a 8-dimen-
sional table of size (ℓ + 1)5(d + 1)3 to speedup the
checking time for the integer linear programs during the
traversal on the tree in FullPrune. Notice that we only
need to compute the table once before FULLPRUNE is
executed, and reuse it as many times as needed. The
pseudocode of FULLPRUNE is given below.
Algorithm FULLPRUNE

1. Compute dH(x, y) and dH(x, z).
2. Compute n1, n2, n3, n4 and n5 for each p = 0... (ℓ - 1).
3. Traverse the tree Td(x) in a depth-first manner. At
each node (t, p), do the following steps.

(a) Incrementally compute dH(x, t), dH(y, t), and
dH(z, t) from its parent.
(b) Incrementally compute dH(x1, t1), dH(y1, t1),
and dH(z1, t1) from its parent. (Notice that t1 = t
[1] ... t[p], x1 = x[1] ... x[p], y1 = y[1] ... y[p] and
x1 = z[1] ... z[p]).
(c) If dH(x, t) ≤ d, dH(y, t) ≤ d and dH(z, t) ≤ d,
then output t.
(d) Solve the integer linear program (ILP) with
parameters n1, n2, n3, n4, n5, ℓ - p - d + dH(x1,
t1), ℓ - p - d + dH(y1, t1), and ℓ - p - d + dH(z1,
t1).
(e) If dH(x, t) ≥ d and/or the ILP does not have a
solution, then prune the subtree rooted at node
(t, p). Otherwise, explore its children.

Theorem 2.2. Given three ℓ-mers x, y and z, FULL-
PRUNEcomputes Bd(x, y, z) in O(ℓ + d|Bd(x, y, z)|) time.
Proof. From the discussion above, FULLPRUNE out-

puts all of the ℓ-mers in Bd(x, y, z). Now let us analyze
its run time. In the pseudocode of FullPrune, step 1 and
step 2 take O(ℓ) time. We will show that step 3 takes at
most O(d|Bd(x, y, z)|) time, that will complete our
proof. Since in Td(x) a node and its parent differ at
exactly one location, step 3a and step 3b take at most O
(1) time. It is easy to see that the other steps inside step
3 (from step 3c to step 3e) also take O(1) time. There-
fore, FULLPRUNE spends at most O(1) time at each
node it visits. As a result, the run time of step 3 is pro-
portional to the number of the visited nodes. We will
argue that the number of visited nodes is no more than
d|Bd(x, y, z)|. Consider the tree T consisting of all the
nodes visited by FullPrune. Obviously, Td(x) contains T .
Because of the property of the integer linear program,
every leaf in T is an element in Bd(x, y, z). Therefore,
the number of leaves in T is at most Bd(x, y, z). On the
other hand, in any tree the number of nodes is no more
than its depth times the number of its leaves. Since
Td(x) contains T , the depth of T is less than or equal to
the depth of Td(x), which is equal to d. Hence, the

number of nodes in T , which is equal to the number of
nodes visited by FullPrune, is at most d|Bd(x, y, z)|.
We conclude this section with a remark that our algo-

rithm FULLPRUNE can be generalized as follows. Right
now we use the computation of the common d-neigh-
borhood of three ℓ-mers as the basic step. This can be
generalized so that the basic step is that of computing
the common d-neighborhood of k ℓ-mers (for any value
of k ≤ n).

2.3 Extended PMS5 for Solving the q-PMS Problem
In this section, we consider a generalized version of the
PMS problem called the q-PMS Problem (see e.g., [22]).
In the q-PMS problem, we relax the constraints on the
motifs. An ℓ-mer x is a motif if there are at least q
sequences si in S such that dH(x, si) ≤ d. Apparently, the
q-PMS problem becomes the PMS problem if q = n. In
practice, the q-PMS problem is a more realistic model
of motifs since these motifs usually appear in some of
the given sequences, instead of appearing in all of them.
We can extend the algorithm PMS5 to solve the q-

PMS problem by exploiting the heart of PMS5, i.e., the
algorithm FULLPRUNE that computes Bd(x,y, z). One
simple and straightforward way to extend PMS5 for the
q-PMS problem is as follows. We consider every tuple
of sequences (si, sj, sk), 1 ≤ i <j <k ≤ n. For each tuple
(si, sj, sk), we compute Bd(x, y, z) where x, y, and z are in
si, sj and sk, respectively. For each ℓ-mer t in Bd(x, y, z),
we check whether there are at least q-3 sequences sp in
S\{si, sj, sk} such that dH(t, sp) ≤ d. If t satisfies this con-
straint, we output t as a motif. The psuedocode is pro-
vided below.
Extended Algorithm PMS5 for q-PMS
1: for each tuple of sequences (si, sj, sk), where 1 ≤ i

<j <k ≤ n do
2: for each tuple (x, y, z) of ℓ-mers where x Îℓ si,y

Îℓ sj, and z Î ℓ sk do
3: Compute Bd(x, y, z) using FULLPRUNE.
4: for each t Î Bd(x, y, z) do
5: if there are at least q-3 sequences

sp ∈ S\{si, sj, sk} such that dH(t, sp) ≤ d then
6: output t.
7: end if
8: end for
9: end for
10: end for
The two following theorems are immediate:
Theorem 2.3. The worst run time of the above algo-

rithm is O
(
n4m3dN (�, d)

)
.

Theorem 2.4. The expected run time of the above

algorithm is O
(
n4m3d4�p3

�,d

)
, where

p�,d =
∑d

i=0

(
�
i

)
(3/4)i(1/4)�−i
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2.4 Challenging Instances for q-PMS
The challenging instances for q-PMS have to be defined
appropriately. For every value of ℓ, we can define a cor-
responding challenging instance with a relevant value
for d. We define the challenging instance corresponding
to a given value of ℓ to be the pair (ℓ, d) if d is the
smallest value for which the expected number of (ℓ, d)-
motifs that occur by random chance is at least 1. In fact
the same definition is used for the PMS problem as
well. However, the identification of such instances is
slightly different. We could identify the challenging
instances for q-PMS as follows. Let S1, S2, ..., Sn be the
given input strings. Consider a random ℓ-mer w. Let S
be any one of the input strings and x be an ℓ-mer in S.
Probability that the Hamming distance between w and

x is ≤ d is P =
∑d

i=0

(
�
i

) ( 3
4

)i(1
4

)�−i. Probability that the

Hamming distance between w and x is >d is (1 - P).
Probability that the Hamming distance between w and
each ℓ-mer of S is >d is Q’ = (1 - P)ℓ-m+1. Here we
assume that the ℓ-mers of S are independent, which is
clearly incorrect. A similar assumption has been made
in prior analyses (see e.g., [3]) and in practice conclu-
sions made using such analyses seem to hold nearly.
Probability that S has at least one ℓ-mer x such that the
Hamming distance between w and x is ≤ d is Q = 1 -
Q’. If the Hamming distance between w and x is ≤ d,
call x as an instance of w.
Probability that w has at least one instance in at least

q of the n input strings is R =
∑n

i=q

(
n
i

)
Qi(1 − Q)n−i.

Therefore, the expected number of motifs that occur by
random chance is 4ℓR. Table 2 displays the expected
number of random motifs corresponding to various
values of ℓ and d with n = 20, m = 600 and q = 10.
Challenging instances are shown in bold face.

3 Results and Discussion
3.1 Performance of PMS5 on the challenging instances
In this section, we show the performance of PMS5 on
the challenging instances as described in Section 1. We
also compare the performance of PMS5 with that of
other well-known exact algorithms such as Pampa [10],
PMSPrune [22], Voting [20], and RISSOTO [21]. Algo-
rithms for planted motif search are typically tested on
random input datasets. Any such dataset will consist of
20 random strings each of length 600 (n = 20, m = 600).
A random motif of length ℓ is planted at a random posi-
tion in each of the strings, mutating it in exactly d
places. We test the algorithms for varying ℓ and d
values. In particular, we have employed the following
challenging instances: (13, 4), (15, 5), (17, 6), (19, 7),
(21, 8), and (23, 9).
To have a fair comparison, we have run all of the

algorithms on the same machine. The configuration of
the machine is Windows XP Operating System, Dual
Core Pentium 2.4GHz CPU with 3GB RAM. PMS5 is
written in C language. Pampa, PMSPrune and RISSOTO
were also written in C language. Only Voting was writ-
ten in C++. All of the algorithms were compiled using
Microsoft Visual C++ 6.0 Compiler.
Table 3 shows the performance of the algorithms on

the challenging instances. In Table 3, the letter ‘-’ means
that the corresponding algorithm either uses too much
memory or takes too long on the challenging instance.
In other words, the algorithm cannot solve the challen-
ging instance in the experimental settings. We see that
PMS5 outperforms the other algorithms on all of the
challenging instances except on (13,4) and notably
PMS5 is the only algorithm that can solve the two chal-
lenging instances (21, 8) and (23, 9). PMS5 takes more
time than Pampa, PMSPrune and Voting on (13,4)
because it takes an additional amount of time to load
the table that stores the results of the integer linear pro-
grams. This process takes about 50 seconds. On the lar-
ger challenging instances, this amount of time is
negligible.
While comparing PMS5 and PMSPrune, we notice an

interesting fact that as the challenging instance increases
in size, the ratio between their run times increase expo-
nentially. In particular, the ratio is roughly 2,4, and 8 on

Table 2 The expected number of random motifs for q-
PMS corresponding to various values of ℓ and d with n =
20, m = 600 and q = 10

1 d Expected Number of Random Motifs

9 2 1.599

9 1 0.159

11 2 1.424

11 1 8.643 × 1012

13 3 22.090

13 2 1.530 × 10-9

15 4 154

15 3 7.150 × 10-8

17 5 640

17 4 5.277 × 10-6

19 6 1883

19 5 8.504 × 10-6

Challenging instances of q-PMS are shown in bold face.

Table 3 Time comparison on challenging instances

Algorithm (13,4) (15,5) (17,6) (19,7) (21,8) (23,9)

PMS5 117s 4.8 m 21.7 m 1.7h 9.7h 54h

Pampa 35s 6 m 40 m 4.8h - -

PMSPrune 45s 10.2 m 78.7 m 15.2h - -

Voting 104s 21.6 m - - - -

RISOTTO 772s 106.4 m - - - -
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the challenging instances (15,5), (17,6), and (19,7),
respectively. This fact perhaps explains why PMS5 can
solve the challenging instances (21, 8) and (23, 9) but
PMSPrune cannot. If this observation is true in general,
PMSPrune will probably take about 16 × 9.7 = 155.2
hours on the instance (21, 8), and 32 × 54 = 1728 hours
on the instance (23, 9).
Notice that the run time of PMS5 does not include

the time for building the ILP table. It takes 1.5 hours
and 500MB to build and store the ILP table for ℓ = 23
and d = 9.

3.2 PMS5 on real data: predicting transcript factor-
binding sites
In this section, we discuss how to use algorithm PMS5
to find transcript factor-binding sites in the real data
provided in [23]. The real data is broadly used to test
many existing algorithms [23], [11], [22], [3]. Each data-
set in the real data is comprised of DNA sequences with
verified transcript factor-binding sites. The datastes are
from many species including mouse, human and yeast.
We have used the algorithm PMS5 to find transcript

factor-binding sites as follows. For any given dataset, we
have run PMS5 with ℓ = 21, d = 8, and obtained a set
of motifs. Some of these motifs could be spurious hits.
Hence, we need a scoring scheme to rank the motifs.
We have used the simple scoring function ∑1≤i≤n dH (M,
si), where dH(M, si) is the hamming distance between
motif M and sequence si. We take the motif with the
lowest score and then predict transcription factor-

binding sites based on it. Notice that we have only used
one value for ℓ (namely, 21) because smaller values of ℓ
have been tested in [22].
We provide the detailed results in Table 4. In Table 4,

the first column is the name of the dataset. The dataset
is from mouse (resp. human) if the dataset’s name starts
with “mus” (resp. “hm”). The second column is the
motif with the lowest score produced by algorithm
PMS5. The third column is the verified transcription
factor-binding sites that overlap with the predicted tran-
scription factor-binding sites at least 60% of the motif
length. We find that there are 10 out of 37 datasets in
which the predicted transcription factor-binding sites
are correct. In particular, one of the verified transcrip-
tion factor-binding sites in dataset hm22r contains the
predicted transcript factor-binding site. Therefore, we
conclude that the results in Table 4 once again reaffirm
the accuracy of the PMS model. In practice one could
use PMSPrune (for values of ℓ up to 19) and PMS5 (for
values of ℓ larger than 19) together to identify motifs. In
this case the sensitivity will be better than using
PMSPrune alone (or any of the algorithms reported in
[24,25]).

3.3 Performance of Extended PMS5 on the q-PMS
challenging instances
In this section, we show the performance of Extended
PMS5 on the q-PMS challenging instances as described
in Section 2.4. The experiment setting is the same as
that in Section 3.1. Any dataset will consist of 20

Table 4 PMS5 on real datasets: predicting transcript factor-binding sites

Dataset Best motif found by PMS5 Matched binding sites at:

mus05r AGAGGAAAAAAAAAAGGAGAG seq 1: GGAAAAACAAAGGTAATG

mus07r GCTGCCCACCCTCTGCAACCC seq 4: CCCAACACCTGCTGCCTGAGCC

mus11r AGGGCGGGGGGCGGAGCGGGG seq 2: GCCGCCGGGGTGGGGCTGAG

seq 3: GGGGGGGGGGGCGGGGC

seq 4: GTGGGGGCGGGGCCTT

seq 9: GAACAGGAAGTGAGGCGG

hm03r AAAAGAAAAAAAAATAAACAA seq 1: CGGGTGTTATTCAAGCAAAAAAAATAAATAAATACCTATGCAATAC

seq 2: GGATGTTACACAAGCAAACAAAATAAATATCTGTGCAATAT

seq 3: TGGGTGTTATATGAGCAAACAAAATAAATACCTGTGCAACAT

hm08r CAGCGTGCAGTCCCCTTCATC seq 10: TATGGTCATGACGTCTGACAGAGC

hm19r CCCCCTTCCACCACCCACAGA seq 2: CACTTTTAGCTCCTCCCCCCA

hm20r CCTCCTTCCTCCCCCTCCCCC seq 10: TCCTCCCCACCTTCCCCACCCTCCCCACCCTCCCCATAAGCGCCCCTCCCG

seq 11: GCAAACTCCGCCTCCCCCAA

seq 14: GTCCCTCCTCCTCCCGCCC

hm22r GGACACGGCAGAGCCTGGGGA seq 4: GAGGCAGACCACGTGAGAGCCTGGCCAGGCCTTCC

hm24r CGCCTGCGCCCCGCCCCGCCC seq 2: CCCCGCCCCGCGCTCCCC

hm26r CCCCCCGCCTCCCGCTCCCAG seq 3: CCCCGCCTCAGGCTCCCGGGG

seq 7: CTCAGCCTGCCCCTCCCAGGGATTAAG

seq 8: GCGCCGAGGCGTCCCCGAGGCGC
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random strings each of length 600 (n = 20, m = 600).
We choose the parameter q = 10, which requires motifs
to appear in at least 50% of input sequences. Note that
this choice of q corresponds to the worst case run time
(from among all possible values of q). Table 5 shows the
run time of Extended PMS5 on the q-PMS challenging
instances. Extended PMS5 can solve q-PMS challenging
instances (17, 5) in 15.9 hours and it fails to solve q-
PMS challenging instances (19, 6).

4 Conclusions
In this paper we have presented an efficient exact algo-
rithm for the (ℓ, d)-motif search problem. This algo-
rithm is more efficient than any known exact
algorithm for PMS. In particular, using this algorithm
we can solve the challenging instances (21, 8) and (23,
9). No prior exact algorithms could solve these
instances. Therefore, we hope that PMS5 will help
biologists discover longer motifs in future. Our algo-
rithm is based on some novel ideas that will be of
independent interest to solve PMS and other variations
of the motif search problem. One of the basic ideas we
employ is that of computing the common d-neighbor-
hood of three ℓ-mers. This is done using an integer
programming formulation. An open problem will be to
exploit this idea to further improve the performance of
our algorithm. One possible direction is to use a basic
step where the d-neighborhood of k ℓ-mers is com-
puted (for some relevant value of k). We have
extended our algorithm to solve the q-PMS problem as
well. Challenging instances for the q-PMS problem
have been defined and computed. Our extended algo-
rithm can solve the following q-PMS challenging
instances: (9,1), (11, 2), (13, 3), (15, 4), and (17, 5). In
comparison, the exact algorithms MITRA, RISOTTO,
and Voting also can only solve challenging instances
up to d = 5 (but for the version where the motifs
occur in all the input strings).
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