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Abstract

Background: Many microarray experiments search for genes with differential expression between a common
“reference” group and multiple “test” groups. In such cases currently employed statistical approaches based on
t-tests or close derivatives have limited efficacy, mainly because estimation of the standard error is done on only
two groups at a time. Alternative approaches based on ANOVA correctly capture within-group variance from all
the groups, but then do not confront single test groups with the reference. Ideally, a t-test better suited for this
type of data would compare each test group with the reference, but use within-group variance calculated from all
the groups.

Results: We implemented an R-Bioconductor package named Mulcom, with a statistical test derived from the
Dunnett's t-test, designed to compare multiple test groups individually against a common reference. Interestingly,
the Dunnett’s test uses for the denominator of each comparison a within-group standard error aggregated from all
the experimental groups. In addition to the basic Dunnett’s t value, the package includes an optional minimal fold-
change threshold, m. Due to the automated, permutation-based estimation of False Discovery Rate (FDR), the
package also permits fast optimization of the test, to obtain the maximum number of significant genes at a given
FDR value. When applied to a time-course experiment profiled in parallel on two microarray platforms, and
compared with two commonly used tests, Mulcom displayed better concordance of significant genes in the two
array platforms (39% vs. 26% or 15%), and higher enrichment in functional annotation to categories related to the
biology of the experiment (p value < 0.001 in 4 categories vs. 3).

Conclusions: The Mulcom package provides a powerful tool for the identification of differentially expressed genes

when several experimental conditions are compared against a common reference. The results of the practical
example presented here show that lists of differentially expressed genes generated by Mulcom are particularly
consistent across microarray platforms and enriched in genes belonging to functionally significant groups.

Background

A frequent approach to analyse gene expression data
involves the use of t-tests, or their derivatives, to identify
lists of genes with differential expression between two
experimental groups [1]. Indeed, several microarray
expression datasets encompass multiple experimental
points to be compared with a common reference point
such as time-course designs or multiple different treat-
ments versus a control condition. The analysis is then
aimed at assessing for each gene in which experimental
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group the expression is significantly different from the
control group.

A frequently chosen approach is to run a ¢-test for
each comparison. However, when applied to this type of
data, the ¢-test has two main problems: (i) it does not
correct the result of each comparison for the total num-
ber of comparisons made and (ii) information about
experimental variability (the standard error) is extracted
only from the two groups actually compared. Conse-
quently, in the instance of limited replicates, inaccurate
estimation of standard error leads to high type I and
type II errors in the analysis. For these two reasons, sim-
ple remedies like Bonferroni or other types of multiple
testing correction of the threshold ¢-value may avoid
excessive false positives only at the cost of a significant
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reduction of the power. Alternatively, limitations of the
t-test in this context have been addressed by implement-
ing Bayesian modeling of the error [2] or by implement-
ing sample permutation-based estimation of False
Discovery Rate (FDR), like in the SAM approach [3,4].
In particular, SAM compares the number of null
hypothesis rejections in the dataset organized in the
subgroups of interest against the median number of
rejections on a series of randomly generated subgroups.
These approaches however do not benefit, within each
comparison, from information on within-group variabil-
ity available in the additional experimental groups.

As an alternative, ANOVA-based methods accumulate
within-group variability from all the groups. However,
this strategy does not permit a pair-wise comparison of
each test group with the reference group [5]. Therefore,
if a gene is differentially expressed in only one group ver-
sus the reference, this difference is diluted in the
between-group variance calculated from all the groups.

The ideal approach would therefore be to estimate
within-group variance from all the groups and then to per-
form single pairwise comparisons. Towards this end, we
designed the Mulcom test, a derivative of the Dunnett’s
t-test [6] adapted to microarray data analysis. The test,
implemented as an R-Bioconductor package [7], includes
an optional tuneable fold-change threshold (m) and
Monte Carlo simulation performing sample permutations
to assess FDR in each comparison. We also implemented
a streamlined procedure for automated optimization of
test parameters, to maximize the number of significant
genes at a given FDR.

In the present work we provide a detailed description
of the Mulcom algorithm and the results of comparative
analyses between Mulcom and other widely used Bio-
conductor packages (SAM and Limma). Comparative
analyses were run on a microarray dataset obtained on
two different array platforms from the same set of
samples.

Implementation

The Mulcom test was implemented using the statistical
programming language R [8] with some functions
wrapped from C++ to improve the performance of the
script. The package is included in the open-source Bio-
conductor project [7].

The Mulcom package is designed to analyse Expres-
sionSet objects from the “Biobase” package as well as
standard numeric matrices from the R environment.
The Mulcom algorithm is based on the Dunnett’s t-test
[6], which estimates the within-group variability across
all the different groups to be compared with the com-
mon reference.

The Mulcom analysis takes place according to the fol-
lowing steps:
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For each experimental group E, it compares the aver-
age signal E with that of the common reference group C
to obtain the function.

FC=E-C (1)

It then applies all the experimental groups to calculate
the within-group Mean Square Error (MSE):
2
5
MSEy = 25 , 2)
a
where s% = square error, for each group i, including

the reference group and a = degrees of freedom
Finally, the Mulcom ¢ is calculated:

_ |FC|-m
2% MSE,q 3)
Nh

Where:

FC = fold change (difference), as calculated in (1)

m = minimal difference threshold (optional)

Nh = harmonic mean of sample replicates for the two
conditions tested

t = t-value of the test

MSE,,, = mean square error within group, as calcu-
lated in (2)

To estimate the False Discovery Rate (FDR), steps (1)
to (3) are repeated after random sample permutation for
n times, to generate a distribution of the number of
positive hits from # randomly assembled sample groups.

For each experiment-to-reference comparison, the
median number of positives in permuted sample groups
MRP

EP

is calculated, and FDR is estimated as FpDR =

Where:

MRP = Median Random Positives, i.e. the median
number of null hypothesis rejections by the Mulcom
test in all random sample permutations.

EP = Experimental Positives.

If no m fold change threshold is applied, users can
manually define ¢-value significance thresholds on the
basis of Dunnett’s test alpha tables, such as the one at
http://davidmlane.com/hyperstat/table_Dunnett.html.
The degrees of freedom are obtained by subtracting the
number of groups (including the control) from the total
number of subjects in all groups. If the alpha tables can-
not be used the package implements a set of functions
to choose the best combination of ¢ and m, i.e. one giv-
ing the highest number of positives at a chosen FDR
rate. Furthermore the package also assists the user in
the identification of alternative combinations of ¢ and m,
which can be evaluated and chosen using the Mulcom
Optimization Plot (Figure 1). The plot visualizes the
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Figure 1 Mulcom optimization plot. Optimization plot generated
by Mulcom to choose test parameters (m and t). The heatmap
highlights the number of significant genes for each combination of
m (y-axis) and t (x-axis) with a FDR below the threshold defined by
the user (five percent in this case). Given the FDR threshold of
choice, the box with the colour closest to the top of the scale
indicates t and m values giving the maximum number of significant
genes. Additional boxes to the right and top of the lightest one are
shown to provide an estimate of the number of significant genes
passing the test under more stringent t and m conditions. Whether
such conditions further improve FDR, should be tested by fixing a
lower FDR threshold and repeating the analysis.

number of significant genes for each combination of ¢
and m within the respectively chosen ranges, limiting
the display to those combinations having an FDR below
a threshold of choice. Together with the optional m
threshold value for fold-change, the FDR analysis based
on Monte Carlo simulation is the main difference
between the Mulcom test and the conventional Dun-
nett’s t-test. Additional information on the use of Mul-
com is provided with the package vignette http://
bioconductor.org/help/bioc-views/2.8/bioc/html/Mul-
com.html.

Results and Discussion

A previous spreadsheet-based implementation of the Dun-
nett’s ¢-test was successfully applied to gene expression
studies comparing multiple independent points against a
common reference [9,10]. To evaluate the performance of
the Mulcom test implemented as a Bioconductor package,
we generated and analyzed transcriptomics data on a set
of 10 RNA samples profiled with two independent micro-
array platforms (Affymetrix hgul33a and Illumina RS-8
Human Beadchip). This enabled cross-platform concor-
dance analysis of the results. The experiment explored
gene expression changes induced in MDA-MB-435
human melanoma cells by 1, 6 or 24 hours of stimulation
with Hepatocyte Growth Factor (HGF), known to trigger
proliferation, motility and invasion [11]. The same cells
were also transduced with Integrin-Betad (ITGB4) to sta-
bly up-regulate its expression. Therefore the dataset
encompassed both a time-course experiment and one
positive control condition, each repeated to generate

Page 3 of 5

biological duplicates. Data were normalized and filtered
for significant detection as described in the Preprocessing
section.

Mulcom analysis on Affymetrix data identified a total of
1556 significant probe sets (1249 genes), out of 10137
detected probe sets (8105 unique genes), at a threshold
FDR below 5%. The same data were analyzed with Biocon-
ductor implementations of two other widely used tests,
Limma and SAM [2-4], each tuned to yield a comparable
number of significant probe sets. SAM identified 1235
probe sets (1006 genes) with FDR below 1%, and Limma
identified 1262 probe sets (956 genes) with p-value below
0.05. The intersection between the three lists was of 871
probe sets, showing a notable but partial concordance
(Figure 2). All Affymetrix probe sets were then mapped to
the Illumina dataset by gene symbol, and the three tests
were applied to this second dataset, maintaining the
respective FDR or p-value thresholds, to check cross-
platform consistency. Interestingly, Mulcom displayed the
highest fraction of validated genes (Table 1) and a similar
number of significant genes in the two platforms.

To assess the functional significance of the genes
identified by the three tests, we analysed them using
Ingenuity Pathways Analysis (Ingenuity™ Systems, http://
www.ingenuity.com. For each of the three tests, the list
of significant genes defined in Affymetrix data was

Mulcom SAM

Limma

Figure 2 Overlap between Mulcom and other tests. Venn
diagram showing intersections between lists of significant probe
sets defined by Mulcom, SAM and Limma (Affy dataset). These show
a limited partial but significant overlap.
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Table 1 Validation across microarray platforms of
Mulcom, Limma and SAM tests

Mulcom Limma SAM

HGF 1 h Significant genes in Affy 867 672 723
Validated in lllumina 150 0 48

HGF 6 h Significant genes in Affy 681 518 561
Validated in Illumina 317 237 100

HGF 24 h  Significant genes in Affy 4 0 82
Validated in lllumina 1 0 1

ITGB4 +/-  Significant genes in Affy 26 6 75
Validated in lllumina 1 1 0

Total Significant genes in Affy 1249 956 1006
Validated in lllumina 487 246 151

True positive rate 39% 26% 15%

Number of genes identified by Mulcom, Limma and SAM tests in the
Affymetrix dataset, and the number of validated genes in the lllumina dataset
for all the pair-wise comparisons.

tested for enrichment in specific functional annotation
keywords. Four keywords displayed an enrichment
p-value below 0.001 in at least one of the three lists:
“gene expression”, “cell cycle”, “cell death” and “cellular
movement”. Interestingly, these categories altogether
recapitulate the biological effects of HGF on epithelial
and other adherent cells. As shown in Figure 3, the
Mulcom list was significant in all four categories, and
the most significant in three of them. We then repeated
this analysis on lists generated by the three tests on the
[llumina dataset. Overall, enrichments were lower, and
therefore the significance threshold was lowered to p <
0.005, yielding nine keywords enriched for Mulcom,
seven for Limma and three for SAM (data not shown).
To extend the significance of the results we performed
the same comparison between Mulcom, Limma and SAM
on an unrelated time course experiment (GSE19044) [12].
In this experiment, germ line cell-derived pluripotent stem
cells (GPSC) were induced to differentiate into hepatocytes
and subsequently profiled at different stages. In order
to identify differentially regulated genes between the
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Movement

Gene
Expression
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Figure 3 Functional significance of Mulcom results. Enrichment
in annotation to specific cellular functions for gene lists generated
by Mulcom, SAM and Limma (p-value below 0.001) and analysed
using the Ingenuity pathway.
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reference time 0, and the different temporal stages,
(namely day 2, day 7 day 21 and day 27) we applied the
same settings for the statistical analysis as previously
described (FDR < 0.01 or corrected p-value < 0.01) on the
data series GPSC-A and GPSC-B (two independent cell
lines). Cross validation of the results highlighted that Mul-
com test was the most efficient in identifying a high num-
ber of differentially regulated genes, which were
systematically validated in the second experiment. The
results are presented in Additional file 1, Figure S1.

Conclusions

Overall, these results show that, in a multiple comparison
setting, the Mulcom package is particularly good at gen-
erating reliable lists of biologically informative genes. In
our opinion, the main reasons for the good performance
of Mulcom under these conditions are as follows: (i)
Within-group variability is estimated from all experimen-
tal groups even if only two of them are compared at a
time. It is therefore more reliable when few replicates are
available for each group; (ii) The optional fold-change
threshold m avoids false positives due to aberrantly low
within-group variability and (iii) Automated test optimi-
zation linked to permutation-based FDR analysis allows
sensitivity to be maximised without compromising speci-
ficity. Indeed, such an approach could be prone to over-
fitting i.e. identification of apparently optimal settings,
which are highly dependent on the dataset. Of particular
relevance to this issue is the fact that in the above-
described dual platform-dataset the Mulcom test, albeit
having been separately optimized on each of the two
microarray platforms, yielded the most concordant lists
of significant genes. Mulcom can also easily be applied to
other -omics studies, like miRNomics, proteomics and
metabolomics, where multiple experimental points are
compared against the same reference.

Preprocessing

Microarray Data generation and preliminary treatment
Gene expression profiling was performed on the same set
of RNAs independently on Affymetrix hgul33a and Illu-
mina Human 8-V1 arrays, according to the manufac-
turer’s protocols. Affymetrix raw data were processed
with the R-Bioconductor suite http://www.bioconductor.
org. Technical quality analysis was performed with the
“Afty” package [13]. Probe data was summarized and nor-
malized with RMA [14] Probe sets without a positive pre-
sence call in at least two samples were excluded from
further analyses. Illumina data were processed with the
BeadStudio software 1.5.13 (Illumina) with Rank Invar-
iant Normalization. Probes for which all samples showed
a Detection Score lower than 0.99 were excluded from
further analyses. Raw and normalized microarray data
from both platforms are deposited in NCBI's Gene
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Expression Omnibus
GSE26736).

repository (accession ID:

Ingenuity Pathway Analysis

All lists of gene symbols generated by the various tests
were uploaded on IPA http://www.ingenuity.com and
tested for enrichment in molecular and cellular func-
tions. Enrichment (chi-square p-value) was estimated
against the MDA-MB-435 background provided by the
IPA software.

Availability and requirements
Project name: Mulcom
Project home page: Operating system(s): Platform
independent
Programming language: R
License: GNU GPL
Any restrictions to use by non-academics: none
Availability: http://bioconductor.org/help/bioc-views/
2.8/bioc/html/Mulcom.html

Additional material

Additional file 1: Figure S1: Comparison between Mulcom, Limma
and SAM on a time-course stem cell differentiation dataset. Two
time-course series conducted in parallel have been analyzed, A and B.
Blue, red and green columns indicate the number of significant genes at
each time point detected by, respectively, Mulcom, Limma and Sam.
Internal columns in light blue, orange and light green indicate the
number of genes significant in series A that were also significant in series
B as identified by, respectively, Mulcom, Limma and SAM.

List of abbreviations

EP: Experimental Positives; FC: Fold Change; FDR: False Discovery Rate; GPSC:
germ line cell-derived pluripotent stem cells; HGF: Hepatocyte Growth
Factor; IPA: Ingenuity Pathway Analysis; ITGB4: Integrin-Beta4; MRP: Median
Random Positives; MSE: Mean Square Error; SAM: Significance Analysis of
Microarray
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