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Abstract

have not been described previously.

Background: Epistasis is recognized ubiquitous in the genetic architecture of complex traits such as disease
susceptibility. Experimental studies in model organisms have revealed extensive evidence of biological interactions
among genes. Meanwhile, statistical and computational studies in human populations have suggested non-additive
effects of genetic variation on complex traits. Although these studies form a baseline for understanding the
genetic architecture of complex traits, to date they have only considered interactions among a small number of
genetic variants. Our goal here is to use network science to determine the extent to which non-additive
interactions exist beyond small subsets of genetic variants. We infer statistical epistasis networks to characterize the
global space of pairwise interactions among approximately 1500 Single Nucleotide Polymorphisms (SNPs) spanning
nearly 500 cancer susceptibility genes in a large population-based study of bladder cancer.

Results: The statistical epistasis network was built by linking pairs of SNPs if their pairwise interactions were
stronger than a systematically derived threshold. Its topology clearly differentiated this real-data network from
networks obtained from permutations of the same data under the null hypothesis that no association exists
between genotype and phenotype. The network had a significantly higher number of hub SNPs and, interestingly,
these hub SNPs were not necessarily with high main effects. The network had a largest connected component of
39 SNPs that was absent in any other permuted-data networks. In addition, the vertex degrees of this network
were distinctively found following an approximate power-law distribution and its topology appeared scale-free.

Conclusions: In contrast to many existing techniques focusing on high main-effect SNPs or models of several
interacting SNPs, our network approach characterized a global picture of gene-gene interactions in a population-
based genetic data. The network was built using pairwise interactions, and its distinctive network topology and
large connected components indicated joint effects in a large set of SNPs. Our observations suggested that this
particular statistical epistasis network captured important features of the genetic architecture of bladder cancer that

Background

Identifying associations between genetic and phenotypic
variation is crucial to understanding the genetic basis of
disease susceptibility and disease etiology [1], and to
devising diagnostic tests and useful treatments [2,3].
With the rapid expansion of open-access single nucleo-
tide polymorphism (SNP) databases [4], the progress in
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genotyping technologies [5], and the availability of
immense computational resources [6], mapping the
genes that underlie common diseases and quantitative
traits is now feasible.

Genome-wide associations studies (GWAS), in which
thousands to millions of SNPs across the human gen-
ome are tested for associations with disease phenotypes,
have emerged as a particularly promising approach for
drawing causal inferences between traits and genetic
variation [2,3,7,8]. However, although GWAS have
uncovered numerous disease susceptibility loci [3,8,9],
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the majority of them have had relatively subtle indivi-
dual associations with disease risk. The success of
GWAS analyzed only for individual SNP effects largely
depends on fundamental assumptions about a lack of
genetic complexity and a simple single-gene architecture
of diseases, and becomes greatly compromised when
gene-environment or gene-gene interactions modify the
relationship between genotypes and phenotypes [10-13].

The genetic architecture of common human diseases
is, in fact, characterized in part by interactions between
genes, i.e., epistasis [13-19]. Accordingly, the focus of
recent research has shifted from identifying single locus
susceptibility [2,7] to quantifying interaction effects
between multiple candidate loci throughout the human
genome [13,16,20,21]. However, the study of epistasis
faces an initial challenge arising from the existence of
fundamental differences between the concepts of biolo-
gical and statistical interaction (e.g. [21]). These differ-
ences imply that statistical epistasis, defined at the
population level as the non-additive mathematical rela-
tionship among multiple genetic variants, cannot be lit-
erally translated into biological epistasis, which is the
physical interaction among two or more molecules at
the cellular level of an organism, and vice-versa [17].
Moreover, detecting gene-gene interactions and
accounting for them in GWAS further represents a sta-
tistical and computational challenge [12,13,20,22]. The
statistical challenge results from the prohibitive amount
of data necessary to support the huge number of
hypotheses involved in modeling interactions, even
when considering only pairwise interactions [3,11]. The
computational challenge, in turn, arises from the neces-
sity to exhaustively evaluate all possible combinations of
SNPs, which becomes infeasible when interactions
involve more than two SNPs: the computational com-
plexity, which is in the quadratic order for pairwise
interactions, increases exponentially with higher-order
interactions, rendering any exhaustive assessment
impossible [12,13,21].

The necessity to overcome these difficulties calls for
efficient tools to detect genetic interactions [2,7,23].
Methods such as machine learning [24-26] and dimen-
sionality reduction [27,28] have recently proven useful
in detecting influential interactions. However, these
approaches are aimed at identifying best models consist-
ing of several SNPs and thus ignore the broader gene-
gene interaction landscape.

A particularly intuitive approach to explore the
genetic architecture of common human diseases and to
identify genetic interactions is to use networks. A net-
work is generally defined as a collection of vertices
joined in pairs by edges and is a powerful tool to repre-
sent and study complex systems [29,30]. In biological
systems, for instance, networks can be used to
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characterize interactions at all levels of organization,
from the molecular level with metabolic [31,32], pro-
tein-protein interaction [33], and genetic regulatory net-
works [34], to the macroscopic level with food webs
[35].

Networks allow for a structured representation of a
collection of entities and their relationships, which pro-
vides a well-suited framework for the study of epistasis.
The use of networks does not resolve the dimensionality
problems inherent in exploring high-order interactions
amongst multiple SNPs. An intuitive solution that has
previously proven helpful is to filter out the considerable
noise masking the useful genotypes and to reduce the
search space to a subset of high-susceptibility SNPs
before constructing a network of genetic interactions.

An example of such a sequential approach is the work
of McKinney et al. [36], who developed a genetic-asso-
ciation interaction network to visualize and interpret
synergetic interactions between pairs of SNPs. Loci were
initially chosen based on the strength of their main
effects. Although useful, purging databases for irrelevant
genetic variants and preliminarily selecting high-suscept-
ibility SNPs inevitably comes at the risk of discarding
loci comprised in significant higher order interactions.
Hence, alternative solutions for reducing the space of
possible interactions in GWAS are needed.

In the present study, we propose to infer genetic inter-
action networks that are not dependent on statistical
main effects. We first rank all possible pairwise interac-
tions between SNPs according to their relative strength
and subsequently build and analyze statistical epistasis
networks including only those interactions whose
strength exceeds a given threshold. Hence, the approach
we apply distinguishes itself from existing ones in the
following ways: 1) We qualify the strength of all pairwise
interactions identifiable in the complete data set rather
than a subset of high main-effect SNPs; 2) We organize
our genetic network around the strongest pairwise inter-
actions rather than around the strongest main effects; 3)
We analyze network topologies to systematically identify
the network that best captures the genetic architecture
inherent in the data; 4) In contrast to many existing
techniques that aim at identifying a classification model
consisting of a subset of susceptibility SNPs, our epista-
sis network captures a broader landscape of gene-gene
interactions through exhaustively enumerating all possi-
ble pairwise interactions.

In the United States, bladder cancer is one of the most
common types of cancer in both men and women.
Although the main known cause of bladder cancer is
smoking [37], recent case-control studies also suggest
that there exist heritable susceptibility factors [38-40].
Thus, we used the network approach to characterize the
space of pairwise interactions in a bladder cancer data
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set consisting of 1,422 SNPs sampled across 491 patients
newly diagnosed bladder cancer and 791 controls [41].
Statistical epistasis networks were built by incrementally
adding edges between SNPs if the strength of their pair-
wise interactions was greater than a given threshold. We
identified one threshold value for which the resulting
network showed unique topological characteristics,
which we believe, capture the complex structure intrin-
sic in the data. Its distinctively large connected compo-
nent suggests that a group of SNPs may jointly modify
the disease outcome. Thus, the network may serve as a
scaffold to explore the landscape of higher-order
interactions.

Methods

Bladder cancer data set

The data set used in this study consisted of cases of
bladder cancer among New Hampshire residents, ages
25 to 74 years, diagnosed from July 1, 1994 to June 30,
2001 and registered in the State Cancer Registry. All
controls were selected from population lists. Controls
less than 65 years of age were selected using population
lists obtained from the New Hampshire Department of
Transportation, while controls aged 65 and older were
chosen from data files provided by the Centers for Med-
icare & Medicaid Services (CMS) of New Hampshire.
This data set also shared a control group with a study
of non-melanoma skin cancer in New Hampshire cover-
ing an overlapping diagnostic period of July 1, 1993 to
June 30, 1995 and July 1, 1997 to March 30, 2000. Addi-
tional controls were selected for bladder cancer cases
diagnosed in the intervening period frequency matched
to these cases on age (25-34, 35-44, 45-54, 55-64, 65-69,
70-74 years) and gender.

Informed consent was obtained from each participant
and all procedures and study materials were approved
by the Committee for the Protection of Human Subjects
at Dartmouth College. Consenting participants under-
went a detailed in-person interview, usually at their
homes. Recruitment procedures for both the shared
controls from the non-melanoma skin cancer study and
additional controls were identical and ongoing concomi-
tantly with the case interviews.

DNA was isolated from peripheral circulating blood
lymphocyte specimens harvested at the time of interview
using Qiagen genomic DNA extraction kits (QIAGEN
Inc., Valencia, CA). Genotyping was performed on all
DNA samples of sufficient concentration, using the
GoldenGate Assay system by Illumina’s Custom Genetic
Analysis service (Illumina, Inc., San Diego, CA). Out of
the submitted samples, 99.5% were successfully geno-
typed and samples repeated on multiple plates yielded
the same call for 99.9% of SNPs. The missing genotypes
were imputed using a frequency-based method. That is,
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the missing value of an individual was filled using the
most common genotype of the corresponding SNP in
the population. The data set used in our analysis con-
sisted of 491 bladder cancer cases and 791 controls and
most (> 95%) of the subjects were of Caucasian origin.
More details on this data set and the methods are avail-
able in [40,41].

Network construction

Networks are formalized mathematically by graphs, and
we use these two terms interchangeably in this article. A
graph G is composed of a set V (G) of vertices and a set
E(G) of edges [42]. In our epistasis networks, each ver-
tex corresponds to a SNP, and we use v, to denote the
vertex corresponding to SNP A. An edge linking a pair
of vertices, for instance v4 and v, Corresponds to an
interaction between SNPs A and B.

We first assigned a weight to each SNP and each pair
of SNPs to quantify how much of the disease status the
corresponding SNP and SNP pair genotypes explain. In
analogy to statistical models, those weights correspond
to the strength of the main and the interaction effects
and stronger effects translate into higher weights. In
information theoretic terms, those weights correspond
to the so-called mutual information and information
gain [43]. Specifically, the weight of SNP A is I(4; C),
the mutual information of SNP A’s genotype and C, the
class variable with status case or control. Intuitively, I(A;
C) is the reduction in the uncertainty of the class C due
to knowledge about SNP A’s genotype. Its precise defini-
tion is

I(4; C) = H(C) — H(C|A), (1)
where H(C) is the entropy of C, i.e., the measure of
the uncertainty of class C, and H(C|A) is the conditional

entropy of C given knowledge of SNP A. Entropy and
conditional entropy are defined by

1
H(C) = ;p(c) log 1y’ )
1
H(CIA) = ;p(a, Ylog 4y 3)

where p(c) is the probability that an individual has
class ¢, p(a, c) is that of having genotype a and class ¢,
and p(c|a) is that of having class ¢ given the occurrence
of genotype a. In our implementation, p(c) is the fre-
quency of diseased (case) or healthy (control) individuals
respectively, p(a, ¢) is the frequency of individuals in
either the case or the control group that carry genotype
a, and p(c|a) = p(a, ¢)/p(a), where p(a) is the frequency
of individuals that have genotype a. Given that in most
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cases a SNP has two alleles and there are consequently
three possible genotypes for each SNP in the diploid
human genome, the sum in equation (3) is over all six
possible combinations of genotypes a and classes c.
Mutual information I(A; C) takes only non-negative
values. If the class C is independent of a SNP A’s geno-
type, I(A; C) = 0, i.e,, SNP A does not predict the dis-
ease status. If a correlation exists between the class C
and SNP A, I(4; C) > 0, i.e., SNP A has a main effect
and predicts some of the disease status. Larger values of
I(4; C) indicate stronger correlations between A and C.

Given the pair of vertices v4 and vp, its weight is the
information gain IG(A; B; C), where

IG(A; B; C) = I(A, B; C) — I(A; C) — I(B; C). (4)

As such, IG(A; B; C) is the reduction in the uncer-
tainty, or the information gained, about the class C from
the genotypes of SNPs A and B considered together
minus that from each of these SNPs considered sepa-
rately. In brief, IG(A; B; C) measures the amount of
synergetic influence SNPs A and B have on class C. A
higher value indicates a stronger synergetic interaction.
Note that IG(A; B; C) can take non-positive values. A
negative value indicates that the genotypes of two SNPs
tend to vary together (redundant information), while a
value of zero indicates either that the genotypes of the
two SNPs are independent or, more likely, that they
interact with a mixture of synergy and redundancy. The
synergetic part of the mix tends to make the informa-
tion gain positive while the redundant part lowers the
information gain.

Information theory has previously been applied in
epistasis studies. For instance, Moore et al. [44,45] used
interaction dendrograms based on information gain to
interpret their epistasis models. McKinney et al. [36]
used information gain to quantify synergic interactions
between pairs of SNP in their genetic-association inter-
action network. In a more general framework, Jakulin
and Bratko [46] used mutual information and informa-
tion gain to quantify the information shared by single
class variables and their corresponding attributes.
Although there are many other approaches, such as
MDR, random forest, and logistic regression, that are
able to measure the strength of main and interaction
effects of SNPs, we specifically chose information theo-
retical measures in this study because they are more
computationally efficient than the others. This is very
important in the era of GWAS since inferring interac-
tions on a genome-wide scale is very computationally
intensive.

We then built a series of statistical epistasis networks
by incrementally adding edges. These networks were
denoted by G,, where edges between SNPs were added
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only if their pair weights were greater than or equal to a
threshold ¢. The threshold ¢ varied between 0 and the
maximum pair weight estimated based on the data. The
networks G, grew as the threshold ¢ decreased. For t;
<ty, Gy, contained all the edges and vertices of Gy,

Network analysis

Our analysis method relies on comparisons between the
real data set and its derivatives generated by permuta-
tion testing. First, permuted data were used to assess
the significance level of the interaction strength of each
SNP pair. Second, and more importantly, by comparing
networks built from real data and permuted data, we
can determine the statistical significance of the network
properties themselves. We repeated the network con-
struction and characterization exactly the same way on
both real data and permuted data. Thus, any network
features observed in the real data that were not consis-
tent with the distribution of features from the permuted
data can be inferred to be due to real genetic
associations.

We generated 1,000 permuted data sets by randomly
shuffling the disease status of the 1,282 samples 1,000
times. This removed all biological signals from the data.
For each permuted data set, we then calculated the
weights for all pairs of SNPs and constructed a series of
networks using the same thresholds as when we built
the real-data networks. Once all the networks were
assembled, we first evaluated the significance of each
pair of SNPs in the real data set by calculating the frac-
tion of permuted data sets with pair weight greater than
that obtained from the real data. Then, we investigated
and compared some basic properties of these series of
networks.

The four basic properties of a network considered
here are the number of edges, the number of vertices,
the size of the largest connected component, and the
vertex degree distribution. The definitions of these stan-
dard graph-theoretic terms [42] are summarized as fol-
lows. A connected component of a graph is a maximal
connected subgraph, and the size of a connected com-
ponent refers to its number of vertices. A graph H is a
subgraph of G if both the vertex set and edge set of H
are subsets of those of G. A subgraph is connected if any
two vertices in it can be joined by a sequence of edges.
The degree of a vertex v, denoted by d(v), is the number
of edges incident with v. The fraction of vertices in a
network that have degree d is denoted by p(d). Thus, p
(d) can be viewed as the probability that a randomly
chosen vertex in the network has degree d. The quanti-
ties p(d) make up the vertex degree distribution of a net-
work. In the context of epistasis networks, the degree of
vertex v4 indicates how many SNPs interact with SNP
A, while the clustering of vertices within a connected
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component may help narrow the search for informative
SNPs likely to jointly modify disease outcome.

Results
Measures of main and interaction effects in the bladder
cancer data
As shown in Figure 1-A, most of the 1,422 SNPs had
relatively small main effects (mean + stdev = 0.00122 +
0.00125) and a few SNPs had very strong main effects.
The highest weight was 0.01551 for SNP IGF2AS 04
and the second highest weight, which was about half of
the highest, was 0.00832 for LRP5_12. The distribution
of interaction strengths (Figure 1-B) had mean + stdev =
0.00235 + 0.00171. The highest weight was 0.01967, and
corresponded to the interaction between SNPs ESR2_02
1422
2
SNPs, there were 778 pairs with a weight of zero, and
3,083 with negative weights.

and TERT 25. Of all ( ): 1,010,331 pairs of

Network investigations

The four topological features of G, and of the permuted-
data networks were investigated. All these features were
found to distinguish the structure of G, from the per-
muted-data networks. The network Gg 13 was of special
interest by showing the most significant network topolo-
gies, and is considered in some detail at the end of this
section.
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Numbers of edges and vertices

Recall that the existence of an edge linking SNPs A and
B in the epistasis network G, indicates an interaction of
strength IG(A; B; C) = t between them and the networks
G, grow as t decreases. Accordingly, the numbers of
edges and vertices of G, increased monotonically as ¢
decreased from 0.02 to 0 in increments of 0.001 (Figure
2). Moreover, the networks G, had overall more edges
and vertices than the corresponding permuted-data net-
works. Statistically significant differences (p < 0.01
drawn from permutation testing) in the numbers of
edges and vertices present were detected for threshold
values satisfying 0.018 > ¢ > 0.009.

Size of the largest connected components

Figure 3 shows the size of the largest connected
component in the network G, and in the permuted-
data networks as ¢ decreased from 0.015 to 0.007.
The largest connected component of G, grew quickly
with decreasing ¢. A dominant connected component
(larger than any other connected components)
emerged at t = 0.013 and its growth became consid-
erably steeper subsequently. The largest connected
components of the permuted-data graphs, on the
other hand, did not start growing before lower values
of the threshold were reached, resulting in the major
increase in growth happening later than in G,.
Accordingly, their sizes were smaller for most values
of the threshold.

500 5

400 —

300 — | H

200 —

Frequency

100 —

[ T T 1
0.000 0.005 0.010 0.015

1(A;C)

pairs of SNPs. The values of IG(A; B; C) range from -0.00591 to 0.01967.

Figure 1 Frequency distributions of the mutual information and the information gain from the real data set. A Frequency distribution of
main effects for all 1,422 SNPs. The values of /(A; C) range from 0 to 0.01551. B Frequency distribution of pairwise interactions for all 1,010,331
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— real data
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t

from 0.02 to 0 in increments of 0.001.

Number of vertices

Figure 2 Network growth with decreasing threshold t. A Increase in the number of edges. B Increase in the number of vertices. In both
graphs, the red line represents G, of the real data and the gray lines represent networks of 1,000 permuted data sets. The threshold t decreases
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One might speculate that those observations were
not surprising since, for a fixed value of the threshold
t, G, had more edges than did, on average, the graphs
constructed from the permuted data (Figure 2).

1400 —
— real data
—— permuted data

-
n
o
o

Size of largest connected component
S [o2] @ 8
o o o o
o o o o

n
o
o

0.013 0.011 0.009 0.007

t

Figure 3 The size of the largest connected component in the
networks with decreasing threshold t. The red line represents
the real-data network G, and the gray lines represent the networks
of 1,000 permuted data sets. The largest connected components
include increasingly more vertices as t decreases and eventually

include all 1,422 vertices.

However, networks of more edges and vertices do not
necessarily have larger and faster growing connected
components. The size of the largest connected compo-
nent essentially characterizes to which extend the ver-
tices of a network are connected to each other. In fact,
even for comparable numbers of edges, the differences
in growth between the largest connected components
of both G, and the permuted-data graphs persisted.
For example, in the real-data graph, an increase in the
number of edges of G; from 255 to 490, as the thresh-
old decreased from 0.013 to 0.012, was accompanied
by an increase in the size of the largest connected
component of 148, from 39 to 187. In the permuted-
data graphs on the other hand, the size of the largest
connected component grew only by 54, from 14 to 68,
for an increase in edge number of 335 from 270 to
605 as the threshold decreased from 0.012 to 0.011.
Thus, both the size of the largest connected compo-
nent and the rate at which it grew distinguished the G,
from the networks constructed from the permuted
data. Based on above observations, ¢ = 0.013 emerged
as a threshold of particular interest.

Comparison of vertex degree distributions for the threshold
0.013

Table 1 shows the degree distribution of the network
Go.013 and of the 1,000 networks constructed from the
permuted data using the same value of t. Permuted-
data networks had, on average, more vertices with
degree one and fewer vertices of higher degrees. In
particular, p(d) for the real-data networks always lay
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Table 1 Vertex degree distribution of networks for real

versus permuted data

854 x 107, 1.09 x 107
314><1O 342 x 107

0
313 x 107

d pld)
Real Data Set Permuted Data Sets (mean + stdev)

1 0677 [0.747,0.831]

2 0.201 [0.119. 0.186]

3 0.0533 [0.0199, 0.0528]

4 0.0345 [0.00184, 0.0210]

5 0.0125 [-0.00168, 0.0124]

6 125 x 107 [-1.85 x 107,572 x 107

7 0 [173><1O 5.81 ><10}

8 627 X 10° [-162 x 103,341 x 107]

9 0 [[1.07 x 107,165 x 107]
- ’]
- “

- O

The network from the real data has significantly fewer vertices with degree 1
than the networks from the permuted data sets, but more vertices with high
degrees.

more than one standard deviation away from the mean
of p(d) for the permuted-data networks, except for the
three degrees for which the real-data networks had no
vertices. This unexpected bias toward high-degree ver-
tices in G013 led us to consider its degree distribution
in more detail and to compare it with the degree dis-
tributions of other real-data networks obtained by
varying £.
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Vertex degree distributions of G;,

To lessen the risk of including edges likely to exist
mostly by chance in G, we used G,, the subgraph of G,
including only edges with significance p < 0.01. This
changed nothing for ¢ = 0.013, as the edges of Gg 3 all
had significance p < 0.001, but resulted in filtering out
edges for lower thresholds.

Figure 4 illustrates part of the vertex degree distribu-
tions of the networks G, for 0.013 > ¢ > 0.006, i.e., only
the points (d, p(d)) with p(d) = 0. Logarithmic scales
are used on both axes, so that only points correspond-
ing to nonzero-vertex degrees can be shown. The net-
works constructed using threshold ¢ > 0.014 had very
few vertices overall and none with degree > 5, and the
networks constructed using ¢ < 0.005 showed very
similar patterns to those observed for ¢ = 0.006. There-
fore, we did not show the degree distributions of these
networks.

The vertex degree distributions of G, with ¢ = 0.013,
0.012 and 0.011 were approximately linear (Figure 4-A).
Since the scale of Figure 4 is logarithmic, these degree
distributions can be approximated by functions of the
form p(d) = ¢ x d”7 for suitable positive constants ¢ and
7. The graphs of such functions are referred to as power
curves. We used least squares to find the power curves
that best fit the points (d, p(d)) for d varying from 1 to
the highest nonzero-vertex degree of G,. The values of y
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Figure 4 Vertex degree distributions of networks éz with t ranging from 0.013 to 0.011 (panel A) and from 0.01 to 0.006 (panel B).
Both axes are on logarithmic scale. Each point represents one vertex degree value. Points are only connected by lines if their degree values
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we found for ¢ = 0.013, 0.012, and 0.011 were 2.01, 1.73,
and 1.3, respectively. However, according to the Kolmo-
gorov-Smirnov test, the resulting functions ¢ the degree
distributions of Gy, and G o;; very poorly: for both
networks, the null hypothesis that the observed degree
distribution follows the best-fitting power curve was
rejected with p < 0.0005. For G, 5 on the other hand,
the corresponding p value was 0.366, suggesting that the
null hypothesis was still plausible. Figure 5 shows the
degree distribution of G, ;5 and the fitting power curve
for p(d) = 0.615 x d>°",

The vertex degree distributions of G, became increas-
ingly bell-shaped as ¢ decreased from 0.010 to 0.006
(Figure 4-B). This occurred as more edges of low weight
were likely to be included in G, due to chance rather
than to biological significance and G, therefore progres-
sively resembled random networks. The vertex degree
distributions of such random networks follow a Poisson
distribution p(d) = [*; e *, where A is the mean, in our
case the average vertex degree (see Additional file 1 for
the Poisson distribution fitting curves for each cutoff ).

A vertex degree distribution can still follow a Poisson
distribution even if it is not bell-shaped, which happens

when A is small. For Gy o3 A = 25422525 ~ 0.366, where

255 was the number of edges in 6;0_013 and 1,422 was
the total number of SNPs. For such a small value of 1, a
Poisson distribution is not bell-shaped. Hence, ruling

0.8

0.6

p(d)

0.4

0.2

0.0

Figure 5 Vertex degree distribution of network C0_013. The red
points show the observed values and the line in black is the fitting
power-law curve of p(d) = 0615 x d>°".
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out the possibility that G, ,,; follows a Poisson degree
distribution required further investigation.

We therefore tested the hypothesis that the vertex
degrees of G o5 followed a Poisson distribution. The
construction process of the networks G, can be
described as attaching edges to 1,422 vertices and then
removing the vertices of degree zero. If this attachment
were random, and no degree-zero vertices were
removed, the vertex degrees would follow a Poisson dis-
tribution. When degree-zero vertices are removed, as
was the case here, the theoretical Poisson distribution
has to be adjusted as follows:

R
fd>1
Po(d) = § ¢ " it d= 5)
Py(0)=0

where k =1 - P (0) = 1 -e” normalized the adjusted
distribution Py(d) since Py(0) = 0. According to the Kol-
mogorov-Smirnov test, the null hypothesis that the ver-
tex degrees of Gy 5 were drawn from the adjusted
Poisson distribution Py(d) or, equivalently, that its edge
attachment was random was rejected with p = 0.001.

Networks with degree distributions of the form p(d) =
¢ x d”* are said to have power-law distributions and are
often called scale-free in the literature [30]. Although
the term is usually only applied to very large networks,
at least two to three magnitudes larger than those con-
sidered here, our results nevertheless suggest that the
network Gy ;3 was scale-free, or at least approximately
s0.
Network Gy ;3
The network Gy 013 (Figure 6) had 255 edges, 319 ver-
tices, and 79 connected components (see Additional
files 2, 3, 4 for subdivided graphs with only the largest
component, other relatively large components, and the
rest small components). All of those 255 edges have
significance p < 0.001. This could be partially
explained by the fact that these top 255 edges had
relatively high weights and thus more likely obtained
smaller p-values using permutation testing. The largest
connected component had 39 vertices. This was more
than twice as large as the second largest connected
component of size 18. In Figure 6, the size of a vertex
is proportional to the main effect of the corresponding
SNP and the width of an edge is proportional to the
strength of the interaction between the two SNPs it
joins (see Additional files 5 and 6 for the standard net-
work vertex and edge files). The network provides a
clear visualization of the pairs of SNPs which had the
strongest synergetic effect on bladder cancer, as well as
the strength of these effects and of the individual SNPs
involved in the strongest interactions. Most impor-
tantly, the network shows which synergetic pairs
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layout purposes only. The graph is rendered by the software Graphviz.

Figure 6 Statistical epistasis network é0.013' There are 319 vertices and 255 edges. The network has 79 connected components and the
largest one has 39 vertices. The width of an edge and the size of a vertex are in proportion to their weights. The length of an edge is for

J

shared a SNP, and thereby captures the entire pairwise
interaction space.

As is the case for biological pathways, this statistical
epistasis network showed very few cycles. In particular,
there were no connected triangles. That is, vertices did
not interact with their neighbors’ neighbors. Moreover,

in accordance with its power-law degree distribution,
the network had a few vertices with degrees that were
much higher than the average, while the majority of ver-
tices connected directly to only one other vertex. Finally,
vertices with high degrees or connected with wide edges
were not necessarily of large size (see Additional file 7
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for the linear regression showing no correlation between
vertex size and vertex connection).

Discussion

The goal of this study was to infer and characterize sta-
tistical epistasis networks in a large population-based
study of bladder cancer susceptibility. We observed dis-
tinguishing topologies of the networks assembled using
the cancer data and the implication that a group of
SNPs may jointly modify the disease outcome. Specifi-
cally, the networks G, had many more high-degree ver-
tices and their largest connected components emerged
earlier and grew faster than expected. These characteris-
tics were the most apparent when ¢ = 0.013. The net-
work Gg 13 was shown to be approximately scale-free,
an important property found in various natural and
social networks. This property was no longer observable
when ¢ further decreased and edges representing weaker
and possibly less biologically relevant pairwise interac-
tions were added.

The network Gy ;3 allows for some interesting obser-
vations about the structure of the pairwise interaction
space of the genetic data. First, SNPs aggregate to form
connected components, which may indicate that multi-
ple SNPs jointly modify disease outcome. In Gg 13,
SNPs are grouped into 79 connected components of
size ranging from 2 to 39. These connected components
show various structural patterns, also known as motifs,
including lines, crosses, and stars. The largest connected
component has a tree-like structure. This may imply the
existence of unique interaction patterns among groups
of SNPs.

Second, the network has an approximately scale-free
topology and an ensemble of particularly high-degree
vertices, which suggests that it may be exceptionally
robust. Scale-free networks permeate natural and social
sciences [47-49]. The most well-known scale-free net-
works are the backbone of the Internet and social net-
works. In biology, scale-free topologies have been found
in metabolic networks [31], protein-protein interaction
networks [33], and gene-regulatory networks [34]. Those
various scale-free networks share an intriguing property:
the value of y in the degree distributions p(d) = ¢ x d
mostly satisfies 2 < y < 3 [47], which is also the case for
Goo13 (Y = 2.01). As more scale-free networks are being
discovered in a variety of fields, a question remains: how
can systems as fundamentally different as the cell and
the Internet have a similar architecture and obey the
same laws [47]? Scale-free networks typically have many
vertices with low degrees and a few vertices with high
degrees, also known as hubs [30]. This essentially differ-
entiates scale-free networks from random networks
where the majority of vertices have average degrees. The
probability p(d) of degree d in the Poisson distribution
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decreases exponentially as d increases, and thus random
networks are very unlikely to have hubs with degrees
much larger than the average. The existence of hubs in
a scale-free network implies strong robustness against
failures. Because random vertex removal is very unlikely
to affect hubs, the connectivity of the network most
likely remains intact. In biological networks, this robust-
ness translates into the resilience of organisms to intrin-
sic and environmental perturbations. For instance, in
protein-protein interaction networks [33], most proteins
interact with only one or two other proteins but a few
are able to interact to a large number. Such hub pro-
teins are rarely affected by mutations and organisms can
remain functional under most perturbations. The simul-
taneous emergence of scale-free topologies in many bio-
logical networks suggests that evolution has favored
such a structure in natural systems. Moreover, it sug-
gests that the robustness of natural systems does not
only result from inherent genetic redundancy but also,
and maybe more importantly, from the topological orga-
nization of entities and interactions [33]. Although our
epistasis network is developed based on statistical rather
than on real bio-chemical interactions, it is interesting
to observe similar topologies between biological and sta-
tistical networks.

Third, the existence of main effects does not necessa-
rily correlate with the occurrence of interactions. This,
in turn, suggests that many current main-effect-priori-
tized methods might have overlooked SNPs contributing
to the disease susceptibility through their interactions
with other SNPs rather than through their main effects.
As shown in the graph, large main-effect SNPs do not
necessarily associate with strong pairwise interactions or
interact with many other SNPs. Instead, SNPs involved
in potential important pairwise interactions, such as
those located on the central path of the largest con-
nected component, often have relatively small main
effects.

The statistical epistasis network approach has many
advantages. 1) Networks allow for efficiently visualizing
both main and epistatic effects and how they interplay.
2) Networks serve as a very intuitive tool to study pair-
wise interactions and to characterize the entire epistatic
interaction space. Moreover, they may also help identify
higher-order interactions by grouping SNPs into con-
nected components. High-order epistasis does not
necessarily require detectable pairwise interactions
between SNPs. However, given that current computa-
tional power allows only for exhaustively enumerating
pairwise interactions in moderate-size data sets, pairwise
interaction networks may serve as a useful guide to
explore higher-order epistasis among SNPs that exhibit
lower-order interactions. 3) Our network model is
assembled using the entire set of available SNPs without
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limiting ourselves to only high main-effect ones. This
reduces the risk of overlooking candidate SNPs that are
involved in important interactions but with low main
effects. 4) Network topological analyses are used to sys-
tematically determine the best network that captures the
genetic architecture of a data set. 5) Networks, along
with graph theory, are well-developed fields, and many
advanced techniques and analytical tools are likely to
benefit future network-based epistasis studies. In parti-
cular, additional topological properties such as motif
distribution and network diameter [30,42] are worth
investigating.

Among the limitations of this approach is that it is
still under development and no user-friendly interface is
available yet. Different data sets may require different
analytical tools and a fully automated analysis software
may therefore not be appropriate. Moreover, since the
approach aims at highlighting pairs of SNPs with strong
pairwise interactions, it is likely to overlook SNPs that
are only involved in higher-order interactions. As men-
tioned previously, strong three- or higher-order interac-
tions may exist despite the absence of pairwise
interactions.

The statistical epistasis network approach we used can
be extended in the following ways. 1) The network
Go.013 will be further studied for bladder cancer associa-
tion. Through a closer investigation, such as gene ontol-
ogies and biological pathways, on those 319 SNPs in the
network, especially those 39 SNPs in the largest con-
nected component, we expect to prioritize gene cate-
gories with high bladder cancer susceptibility, and to
testify whether SNP interactions tend to happen within
the same category or across categories. Other possible
applications include using the network to train classi-
fiers in predicting bladder cancer risk [50] and to super-
vise data mining methods for identifying high-order
genetic interactions [27]. 2) The approach can also be
applied to other data sets. We are particularly interested
in investigating network topologies in larger data sets or
data associated with other diseases. 3) To corroborate
the present results, future studies could use metrics
other than information theoretical measures, such as
SNP and gene annotation or SURF scores, which are
obtained by directly assessing genetic variants depending
on their phenotype relevance using machine learning
techniques [51]. 4) Given the effect of smoking [37] and
arsenic exposure [41,52] on bladder cancer prevalence,
an additional next step is to account for gene-environ-
ment interactions in our analyses. This can be achieved
by adding these environmental factors to our model,
and investigating how the environmental background on
which the genes are expressed modify the conclusions
we draw.
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Conclusions

In this study, we proposed a statistical epistasis network
approach that is able to capture the global landscape of
gene-gene interactions in a large population-based blad-
der cancer data set. Through an exhaustive enumeration
of all possible pairwise interactions and network topolo-
gical analyses, a distinctive network is systematically
identified which shows unique properties. It has a signif-
icantly large connected component and an intriguing
approximate scale-free topology that permeate natural
and technical networks. Specifically in the context of
biological networks, scale-free is well recognized as an
outcome interaction topology of robust organisms
resulted by natural evolution. The observation of such a
network topology in the bladder cancer data set may
indicate a global interactive structure embedded in the
genetic architecture of bladder cancer.

The derived network from this study may further ben-
efit bladder cancer studies through closer examinations
of SNP characteristics. In addition to a global interac-
tion picture of bladder cancer depicted by this network,
further studies on individual gene ontology and biologi-
cal pathway categorization may provide important
insight on prioritizing inter- or intra-category genetic
interactions. Moreover, the proposed network approach
holds the promise characterizing a broader gene-gene
interaction landscape in epistasis studies, and is
expected to be applied to other data sets, especially
large-scale ones.

Additional material

Additional file 1: Poisson vertex degree distribution fitting curves
of networks Cz with t ranging from 0.013 to 0.011 (panel A) and
from 0.01 to 0.006 (panel B). If networks G, were built through the
process of randomly linking two vertices and then removing degree-zero
vertices, their vertex degrees would follow an adjusted Poisson
distribution Py (d) = )Ld' e~ d > 0, where the normalizing factor k =
PO =1- et and'A is ﬁ'\é average vertex degree of networks Gy Both
axes are on logarithmic scale.

Additional file 2: The largest connected component in network
Go.013 There are 39 SNPs connected in the largest component.

Additional file 3: Other large connected components in network
Go.o13 The sizes of the other large connected components are ranging
from 5to 18.

Additional file 4: Small connected components in network éo 013
The small connected components only have 2 to 4 SNPs.

Additional file 5: Standard network vertex file of éo o013 he file
shows a list of vertices and their weights. ’

Additional file 6: Standard network edge file of éo o013 The file
shows a list of edges and their weights. ’

Additional file 7: Vertex main effect as a function of degree (panel
A) and the total weight of attached edges (panel B) in network
C0_013‘ The vertex main effect is independent of its degree and
summed weight of all attached edges. Lines show the correlations using
linear regression.
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