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Abstract

microarray data of Arabidopsis thaliana.

regulatory network of photosynthetic light acclimation.

Background: Photosynthetic light acclimation is an important process that allows plants to optimize the efficiency
of photosynthesis, which is the core technology for green energy. However, currently little is known about the
molecular mechanisms behind the regulation of the photosynthetic light acclimation response. In this study, a
systematic method is proposed to investigate this mechanism by constructing gene regulatory networks from

Methods: The potential TF-gene regulatory pairs of photosynthetic light acclimation have been obtained by data
mining of literature and databases. Following the identification of these potential TF-gene pairs, they have been
refined using Pearson’s correlation, allowing the construction of a rough gene regulatory network. This rough gene
regulatory network is then pruned using time series microarray data of Arabidopsis thaliana via the maximum
likelihood system identification method and Akaike’s system order detection method to approach the real gene

Results: By comparing the gene regulatory networks under the PSI-to-PSII light shift and the PSIl-to-PSI light shift,
it is possible to identify important transcription factors for the different light shift conditions. Furthermore, the
robustness of the gene network, in particular the hubs and weak linkage points, are also discussed under the
different light conditions to gain further insight into the mechanisms of photosynthesis.

Conclusions: This study investigates the molecular mechanisms of photosynthetic light acclimation for Arabidopsis
thaliana from the physiological level. This has been achieved through the construction of gene regulatory
networks from the limited data sources and literature via an efficient computation method. If more experimental
data for whole-genome ChlIP-chip data and microarray data with multiple sampling points becomes available in
the future, the proposed method will be improved on by constructing the whole-genome gene regulatory
network. These advances will greatly improve our understanding of the mechanisms of the photosynthetic system.

Background

Life on earth is dependent on energy derived from the
sun, and photosynthesis is the only biological process
able to harvest this energy. Plants must maintain high
photosynthetic efficiency to ensure sufficient energy for
survival and seed production for the next generation. As
plants are sessile organisms and cannot escape environ-
mental changes that directly affect photosynthetic light
reactions, they have evolved regulatory mechanisms that
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optimize photosynthetic electron transport to acclimate
the photosynthetic process to the prevailing environ-
ment [1,2]. Changes in the intensity and spectral quality
of light received by plants beneath a tree canopy or
within dense plant population contribute to imbalance
in the excitation of energy distribution between photo-
system II (PSII) and photosystem I (PSI). Because PSI
and PSII work electrochemically in series, if either of
the two photosystems is imbalanced the redox state of
the electron transport chain components is changed,
decreasing the efficiency of electron flow [3]. Such
imbalances are counterbalanced by two different accli-
mation responses: state transition, which is a short term
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response, and adjustment of photosystem stoichiometry,
which is a long term response [1]. The focus of this
study is on the regulatory mechanisms of the long term
response (LTR) to fluctuating light quality in the
nucleus.

Adjustment of photosystem stoichiometry is a long
term response that occurs on a time scale of hours to
days. It re-distributes excitation energy between PSII
and PSI mainly by reconfiguring the relative amount of
the two photosystems, enabling them to optimize light
utilization [2-6]. Imbalances in components of the
photosynthetic electron transport chain are sensed
within the chloroplast. The change in redox state of the
plastoquinone (PQ) pool of the electron transport chain
is the critical regulatory signal source for transcriptional
control. This change delivers a signal to the nucleus and
chloroplast to modulate the expression of photosyn-
thetic genes encoding the PSII and PSI proteins (Figure
1). Such redox signals from chloroplast to nucleus are
the so-called retrograde signals, in which photosynthetic
efficiency is thought to be a sensor for fluctuations in
the environment. The retrograde signals represent a
functional feedback control which directs the expression
of genes in the nucleus to respond to disturbances from
the surrounding environment [4]. This long term
response process has been relatively well characterized
at the biophysical level, however the acclimation process
remains poorly understood at the bio-molecular level.
For instance, most subunits of photosystems are
encoded in the nucleus and require special regulation,
but these regulatory processes are not yet understood.
The primary aim of this study is to use a systems biol-
ogy approach to investigate the molecular mechanisms
of photosynthetic light acclimation by constructing
nuclear transcriptional gene regulatory networks under
different PQ pool redox states. This has been achieved
using time series microarray data of Arabidopsis thali-
ana under an artificial light system. The artificial light
system mimics light conditions by preferentially exciting
PSI or PSII to induce more reduced or oxidized states
of the PQ pool by shifting from PSI light to PSII light,
or from PSII light to PSI light.

The foremost purpose of the study of molecular biol-
ogy is to decipher the mechanisms behind the biological
processes of cells. Recently, the development of high-
throughput genomic tools such as DNA microarray [7,8]
and chromatin immunoprecipitation-DNA chip (ChIP-
chip) data [9,10] have provided comprehensive informa-
tion about gene expression activity and potential inter-
actions between transcription factors and genes.
Although this data catalogs significant patterns of the
dynamic expression of thousands of genes, identifying
the characteristics of a biological process under a speci-
fic condition among vast amounts of experimental data
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is still an extremely difficult task. These vast amounts of
data emphasize the need for systematic approaches that
enable the computational reconstruction of dynamic
transcriptional regulatory networks [11,12]. Systematic
approaches are based on integrating computational
methods with high-throughput and genome-wide data
to inspect the nodes and edges of gene networks [13].
These descriptive and mathematical models for gene
regulatory networks can uncover significant dynamic
properties of biological systems from their responses to
internal and external signals. Consequently, the use of a
systematic approach to reverse engineering has become
an extremely important tool for identifying gene regula-
tory networks via gene expression data.

Various approaches of reverse engineering have been
used to identify plausible gene networks, including clus-
tering algorithms, ordinary differential equation (ODE)
models and Bayesian networks (BNs), which have been
extended to construct dynamic Bayesian networks
(DBNSs) [14,15]. Clustering algorithms have been used to
find co-regulated genes based on gene co-expression
properties. They are therefore suitable to find a set of
genes that potentially have the same regulators or func-
tional modules. Besides, both DBNs and ODE network
models have previously been used successfully to model
dynamic processes with time series microarray data.
Furthermore, some studies [16] have incorporated many
other types of heterogeneous data to reconstruct gene
networks. However, in the plant model, Arabidopsis
thaliana, the types of heterogeneous data are limited,
making it difficult to apply a systematic approach to
construct gene networks. In a previous study [17], a
novel Bayesian network-based algorithm was adapted to
construct a gene regulatory network for Arabidopsis
thaliana from a large number of separate microarray
experiments without heterogeneous data. JIAO QingJu,
et al. [18] constructed a gene regulatory network for
Arabidopsis thaliana by utilizing promoter analysis to
predict plausible transcriptional relationship. They were
able to identify large-scale gene regulatory networks
which included photosynthetic genes but did not men-
tion the central molecular mechanism of photosynthesis.
In this study, we have analyzed the molecular mechan-
isms of photosynthetic light acclimation by adapting a
systems biology approach to construct gene regulatory
networks using prediction database and time series
microarray data. We constructed two gene regulatory
networks under different PS-light shifts to gain insight
into the mechanism of photosynthetic light acclimation.
Such gene networks based on our algorithm can find
the TFs integral to regulating the photosynthetic light
acclimation response.

Here we propose a systematic approach based on the
dynamic gene regulatory model and time series
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Figure 1 Effect of light quality on gene expression. The three cell compartments are depicted schematically: chloroplast (green), cytosol
(white) and nucleus (yellow). The integrated cellular network consists of two subnetworks. One network is the signaling transduction pathways
in the cytosol and the other network is the gene regulatory network for transcriptional regulation in nucleus. An important mediator for PQ pool
redox states is the thylakoid kinase STN7. STN7 kinase transmits the decisive signal to the nucleus, resulting in the ensuing regulation of the
relative amount of each of the photosystems. However, the mechanism by which the redox signal is transmitted from the chloroplast double
membrane into the cytosol is poorly understood. In this study, the gene regulatory network (the protein-DNA interaction) in the nucleus is
constructed under different retrograde signals originating from different redox states in the PQ pool. The light environment is perceived by
cytosolic photoreceptors. Although both PQ pool and photoreceptor systems report changes of ambient light environment by different signal
transduction pathways to the nucleus, some common TFs in nucleus may be employed simultaneously in different light-related systems to
respond to the prevailing environment.
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microarray data to gradually refine the rough gene reg-
ulatory network. The first requirement is to identify
the candidate TF-gene interactions and construct a
rough gene regulatory network. Due to the limit of
ChIP-chip data and network-related studies on Arabi-
dopsis thaliana, we have used Plant Promoter Analysis
Navigator (PlantPAN) [19] to compensate for this
insufficiency by inferring potential TF-gene interac-
tions from data mining of the literature and databases.
Pearson’s correlation between each candidate TF-gene
pair is then computed to gain a rough gene regulatory
network. This rough gene regulatory network is added
to using an efficient dynamic model of gene regulation
[20,21] and time series microarray data [22], thus pro-
ducing a dynamic gene regulation system. As a final
step, maximum likelihood system identification meth-
ods [23] and Akaike information criterion (AIC), a
method to detect the order of the dynamic gene regu-
latory system [23], are employed to identify kinetic
parameters in the dynamic gene regulation model and
to delete regulatory genes that do not have a signifi-
cant influence on the target gene in the rough gene
regulatory network. This method of applying an algo-
rithm which combines system identification and AIC
to reduce the insignificant interactions of rough gene
regulatory and protein-protein interaction networks
has been used successfully in many studies, including
the study of a putative gene regulatory network of sys-
temic inflammation in humans [21], a biofilm-related
gene regulatory network in Candida albicans [24], a
cancer-perturbed protein-protein interaction [25] and a
protein-protein interaction under several stresses in
Saccharomyces cerevisiae [26]. These results were vali-
dated by evidence within literature, thus demonstrating
that such systems biology approaches provide a power-
ful and flexible tool which can be used for different
species under different conditions.

The time series microarray data is the profile of each
gene expression at several specific time points under a
specific stress or condition. Using the dynamic model of
gene regulation and system identification method along-
side time series microarray data, false positive interac-
tions between transcription factors and target genes can
be removed to obtain a refined gene regulatory network.
This refined gene regulatory network depicts a real gene
regulatory network under photosynthetic light acclima-
tion responses, as confirmed by real microarray data.
Therefore, pruning the rough gene network based on a
systematic approach and time series microarray data of
Arabidopsis thaliana can produce a refined gene regula-
tory network which deciphers photosynthetic light accli-
mation at both bio-molecular level and a system-wide
level.

Page 4 of 16

Method

In this study, the construction of gene regulatory net-
works for long-term photosynthetic light acclimation in
Arabidopsis thaliana can be divided into two stages.
During the first stage, the candidate TF-gene interac-
tions are identified by data mining of the literature and
PlantPAN [19] to develop a rough gene regulatory net-
work. During the second stage, the rough gene regula-
tory network is pruned by the maximum likelihood
system identification and AIC system order detection.
These pruning methods have been supplemented with
time series microarray data to obtain a refined gene reg-
ulatory network.

Data used for analysis

We have used previous microarray data [22] as our
mRNA expression profile. Plants acclimated to PSI or
PSII lights were shifted to the alternate condition to
induce either a strong reduction (PSI-to-PSII light shift)
signal or a strong oxidation (PSII-to-I light shift) signal.
The LTR to such shifts is followed by collecting samples
prior to the shift (t = 0 control) and at 0.5, 2, 8, and 48
h thereafter. Transcript profiles from those samples
were obtained using an established DNA filter array
with gene-specific tags (GSTs) for nuclear genes encod-
ing chloroplast proteins. The filter array, which carries
3292 GSTs, including 2661 nuclear genes for chloroplast
proteins and 631 genes encoding for non-chloroplast
proteins, was used to test the impact of light-induced
redox signals on their expression.

PSI-to-PSII and PSII-to-PSI experiments were con-
ducted separately in neighboring growth cabinets of the
same climate chamber. Plants were acclimated to PSI
and PSII light. Following this acclimation period the
plants were moved to the alternate light. Three indepen-
dent samples were harvested at each indicated time
point for RNA preparation. Total RNA was isolated
from 200 to 500 individual plants per sample. Three
independent hybridization experiments were performed
for each time point, with different filters and indepen-
dent radioactively label cDNA probes, thus minimizing
variation between individual plants, filters, and probes.

Stage I: Construction of a rough gene regulatory network
for photosynthetic light acclimation

At this stage, the construction of a rough gene regula-
tory network is performed in the following four steps:
Step 1

The target gene pool that is potentially related to the
long-term response of photosynthetic light acclimation
is determined by data mining of the literature and data-
base. According to previous studies [2], the long-term
response of photosynthetic acclimation can counteract
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an imbalance by adjusting the relative amount of the
two photosystems. Therefore we explore the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
to retrieve the nuclear genes encoding photosystems or
light-harvesting protein complexes. From this database,
we also select the genes involved in the photosynthetic
light reaction pathway. Moreover, the tentative target
genes of the long term photosynthetic light acclimation
identified in [27] by analyzing photosynthetic impair-
ment in varieties with double mutated gene are added
into the target gene pool. Our final aim is to select can-
didate regulators of the target gene pool to obtain the
potential TF-gene interactions involved in photosyn-
thetic light acclimation response.
Step 2
Each target gene is imported to PlantPAN, a plant pro-
moter analysis navigator which recognizes candidate
binding sites of transcription factors in the promoter
sequence of target gene, from -1000 (upstream) to +100
(downstream). At this stage, the candidate TFs predicted
by the PlantPAN database could be considered candi-
date regulators for the target genes. Any candidate TFs
that are not present in the original target gene pool
should be added to it in order to find their regulators
iteratively. The iterative procedure is discontinued when
no new interactions are generated from the PlantPAN
database. Based on predictions of the PlantPAN data-
base, it is possible to obtain the potential TF-gene inter-
action pairs involved in photosynthetic light acclimation
response. However, the potential binding of a TF does
not imply that the TF regulates the gene in photosyn-
thetic light acclimation. In order to reduce the false
positive errors, it is necessary to refine the TF-gene
binding pairs. This is achieved by using time series
microarray data of photosynthetic light acclimation to
confirm the existence of these transcriptional bindings.
At this point, we have obtained an extended target
gene pool coupled with its corresponding TF-gene pairs.
However, due to the limited microarray data used in
this study, genes and potential regulators that aren’t pre-
sent in the microarray data probe must be removed.
Following this removal, a new target gene pool is
obtained, with 65 genes containing 7 TFs (see additional
file 1) and the potential TF-gene pairs of each gene (see
additional file 2).
Step 3
In a previous study [28], a TF and its target gene were
said to have a positive or negative temporal relationship
if the target gene’s expression profile is similarly corre-
lated with the TF’s expression profile. The Pearson’s
correlation was computed between each TF-gene pair
based on this assumption. The candidate TF-gene pairs
were then ranked according to the absolute value of cor-
relation. Finally, any TF-gene pair below 10% rank was
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deleted. Because the correlation value is only the first
discrimination parameter in the overall procedure of
gradual refinement, it is necessary to avoid missing any
possible candidate TF-gene pair at this early stage. The
primary aim in this step is to delete only the highly unli-
kely regulatory interactions.

Step 4

At this stage, the first selection of possible regulatory
interactions is selected from the TF-gene pairs identified
in Step 3. They are regarded as candidate TF-gene pairs
with the potential to become transcriptional interactions
in gene regulatory network under photosynthetic light
acclimation. These candidate TF-gene pairs constitute a
rough regulatory network. Refinement of this prelimin-
ary result requires more rigorous pruning methods.

Stage lI: Pruning the rough gene regulatory network
through the use of a dynamic gene regulation model
with system identification methods

Step 1

Dynamic gene regulatory model: the rough gene regula-
tory network constructed in the previous stage using
data mining and the Pearson’s statistical inferences is
expected to contain some false positive TF-gene pairs.
Therefore the rough gene network should be confirmed
by gene expressions of microarray data. Gene regula-
tions that cannot be matched by time profiles microar-
ray data are deleted.

The dynamic gene regulation model is used to depict
the transcriptional regulatory mechanism as a system
with several regulatory genes as transcriptionary inputs
and a target gene’s expression as an output. This allows
the dynamic transcriptional regulation of a target gene
to mimic a subsystem in the rough gene regulatory net-
work. The multi-input single-output stochastic dynamic
gene regulation model is proposed as follows

Yer ) =p(0)+ Y b)) — By + e +k ()

ieS

where y (£) represents the target gene expression level
at time t and S represents the set of potential regulators
of the target gene in the rough gene network and could
be set as S = [L] = {1, 2,..., L}. For each potential regula-
tor i € S, b; explains how the expression of target gene
is affected by the regulatory ability of TF i. B is attribu-
table to the degradation effect of the target gene itself
and k denotes the basal molecular level. In addition, &(£)
represents a stochastic noise due to uncertainty within
the model and measurement error of microarray data in
the target gene. Here ¢(¢) is assumed to be a Gaussian
noise with zero mean and unknown standard deviation.
Because biological systems seem to exhibit nonlinear
characteristics, we assume a sigmoidal regulatory
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binding relationship between the regulator and the tar-
get gene. Furthermore, x; (¢) is the transcriptional regu-
latory function of TFs on their motif binding sites, as
described by following the sigmoid function of mRNA
expression profiles on their corresponding regulatory
genes [29], where the sigmoid function denotes the
threshold of binding for a TF on its promoter binding
site for the transcriptional regulation in equation (1). x;
(t) can be expressed as follows:

1

50 =10 = | e (—r ) (0) = i)

()

where r denotes the transition rate of sigmoid func-
tion and m1; denotes the mean of the TF gene expression
profile.
Step 2
Refinement of the rough gene regulatory network: The
model describes how upstream transcriptional factors
modulate their target genes’ mRNA expression through
a transcriptional gene regulatory network. With the help
of dynamic gene regulation model, the problem of net-
work construction, which is difficult to decipher in biol-
ogy, is transferred into a pre-identified system in
engineering. The rough regulatory network is a large
system which contains several subsystems. Each subsys-
tem consists of a target gene and its regulatory TFs. The
state of each target gene at different time points
depends on the time series microarray data. This pro-
duces a large network system in which each state of the
subsystem is known and the parameters of the subsys-
tem have been estimated. These difficult parameter esti-
mations are conducted using system identification
methods, working with one target gene at a time. This
estimation method involves combining the maximum
likelihood (ML) parameter estimation method with the
most parsimonious model order detection, Akaike Infor-
mation Criterion (AIC), to identify the unknown ele-
ment of the network system. In short, the parameters of
system can be estimated using the maximum likelihood
method and AIC can then delete any interactions with-
out significant influence on this network system. These
deletions are based on the results of the ML method
and the degree detection of interactions in the network
system. By approaching the network one target gene at
a time, it is possible to identify all of the parameters of
the rough gene regulatory network. Finally, to produce
the pruned gene regulatory network, the overall gene
regulatory system is deciphered dynamically and insig-
nificant regulations are eliminated. This pruned gene
regulatory network is close to real gene regulatory net-
work in the cell. The overall flowchart of the proposed
method is shown in Figure 2. Details of system
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identification methods are in the supplementary meth-
ods (see additional file 3).

In summary, the potential regulators of a target gene
are first selected by the data mining of the literature
and the PlantPAN database. Following this any highly
unlikely regulatory relationship is removed via microar-
ray with the help of Pearson’s correlation. These possi-
ble relationships are finally pruned by time series
microarray data of Arabidopsis thaliana via maximum
likelihood system identification and Akaike’s system
order detection through a dynamic gene regulatory
model. We have combined several algorithms and tools
to improve the performance of the gene network con-
struction of the photosynthetic light acclimation. Details
of the proposed gene regulatory networks construction
algorithm are shown in the Supplementary Methods
(see additional file 3).

Results

Based on data collected in Stage 1, we can construct a
rough gene regulatory network of the photosynthetic
light acclimation system. We then established a dynamic
model for the rough gene network. By combining the
system identification scheme and the parsimonious AIC
method, the rough gene network was pruned using time
series microarray data. According to the flow chart of
Figure 2, it is possible to construct two refined gene reg-
ulatory networks, representing the PSI-to-PSII (reduced
state of plastoquinone) and the PSII-to-PSI (oxidized
state of plastoquinone) light shift conditions. These two
gene regulatory networks have been rearranged and
depicted by Cytoscape [30](Figures 3a and 3b). Figure
3a depicts the gene regulatory network under the
reduced state of the PQ pool and identifies 55 nodes
with 109 edges for the network. Alternatively, Figure 3b
depicts the gene regulatory network for the oxidized
state of the PQ pool and identifies 55 nodes with 92
edges for the network. The numbers of nodes, edges
and highly connected hubs at different light conditions
are shown in Table 1.

Once the refined gene networks under different light
shift systems have been constructed, the topology of the
network can be examined. The degree of connection of
each node in the two different conditions has been sum-
marized [see additional file 4]. The results demonstrate
that small-degree nodes are most abundant and high-
degree nodes are relatively rare. This verifies that the
networks constructed via our algorithm are scale-free, as
opposed to random. Scale-free networks have smaller
path-lengths than random networks and can tolerate
random removal of nodes; however loss of the hubs
may cause the network to collapse into clusters. Hence,
smaller path-lengths ensure efficient reaction and higher
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No more new
regulators exist

Figure 2 The flow chart for constructing the gene regulatory network of photosynthetic light acclimation response. The figure depicts
the procedure for construction of the gene regulatory networks. Green is representative of data that is needed while red represents the
procedure to construct the rough gene regulatory network for photosynthetic light acclimation (Stage 1). Blue is representative of the
procedures which prune the rough gene regulatory network using the dynamic model with system identification method (Stage 2).

tolerance of random mutation against internal and two different light conditions. Inactivation of these
external perturbations [31]. highly connected hubs by mutation may lead to collapse

There are two hubs, ATHB-1 and Arabidopsis of the photosynthetic LTR system. Interestingly, the two
Response Regulator 10 (ARR10), which can be regarded  hubs appear to have high importance for different light
as highly connected hubs of signal transduction in the shift conditions. For the reduced state of the PQ pool,



Yao et al. BMC Bioinformatics 2011, 12:335
http://www.biomedcentral.com/1471-2105/12/335

Page 8 of 16

(a)

L ]

o

(b)

Cytoscape [30].

o7 e \\\\\\\\ .
X \\\\i;g::.-;:{iigllll\\\\‘ V!
S % NN QN
s g\ IR
‘0‘; *ﬂ,«sgg\\\
&N T
@ |y @ \\ ®
i@ \[®

Figure 3 The gene regulatory networks of long-term light acclimation response. (a) Under reduced state of the PQ pool (PSI-to-PSII light
shift). (b) Under oxidized state of the PQ pool (PSII-to-PSI light shift). The gene regulatory networks of long term light acclimation response
visualized in a hierarchical form. Yellow represents the transcription factor and green represents the gene. The node size is proportional to the
degree of each node and the edge width represents the magnitude of the regulatory ability b; in equation (1). This figure has been created by
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the gene ATHB-1 is the top rank and the gene ARR10
is the second rank in Table 1. However, for the oxidized
state of the PQ pool, the ranking of these two genes is
reversed. Within the two gene regulatory systems, some
interactive genes can easily be removed whilst others
can be easily added under different external stimuli.
This concept is known as “weak linkage” in network

theory [31]. “Weak linkage” structures enable the addi-
tion or removal of new or old processes to the existing
core process using common versatile mechanisms that
operate on diverse inputs and outputs [32]. As a conse-
quence, “weak linkage” can improve the information
exchange, signal transduction and network robustness in
response to external stimuli [32]. Moreover, the most
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Table 1 Highly connected genes and their gene
connectivities in two different light shift conditions

PSI-to-PSlI light shift PSlI-to-PSI light shift

Node 55 55
Edge 109 92

Gene AGI ID Reduced state of the  Oxidized state of the
name PQ PQ
ATHB-1 At3g01470 33 48
ARR10 At4g31920 51 28
AtPHRT  At4g28610 14 8
RAP2.8  At1g68840 10 9
ATHB-2  At4g16780 10 7
HY5 At5g11260 6 6

important interactions and information exchanges some-
times occur via nodes from otherwise unrelated net-
works implying that the non-hubs may play a critical
role in gene regulation [31,32]. These non-hubs appear
to have evolved by natural selection to improve the
robustness of biological networks.

The gene regulatory networks in Figures 3a and 3b are
too complex to distinguish which transcriptional inter-
actions are present only in reduced state of the PQ pool
or oxidized state of the PQ pool. Due to this, the differ-
ential gene regulatory networks (Figures 4a and 4b)
have been obtained by comparing the network under
PSI-to-PSII light shift conditions with the network
under PSII-to-PSI light shift conditions. By matching
the interactions found in both light shift conditions, we
can identify the specific connections present only in
PSI-to-PSII or PSII-to-PSI light shift conditions. Com-
mon interactions found in both conditions are consid-
ered to be a common subnetwork in both light
conditions, which could be regarded as an inherent reg-
ulation under normal light conditions. The differential
gene regulatory networks produced on elimination of
this common subnetwork provide a clearer representa-
tion of which regulatory interactions effect photosyn-
thetic light acclimation under the different redox states
of the PQ pool. In Figure 44, the differential regulatory
network is found only in reduced state of the PQ pool,
and it is clear that ARR10 is the main hub with the
highest connectivity. In Figure 4b, the differential regu-
latory network is found only in oxidized state of the PQ
pool, and ATHB-1 is the main regulator in this differen-
tial network. These observation of Figures 4a and 4b
further confirm the importance of ATHB-1 and ARR10
in the opposite conditions. Principally, these observa-
tions indicate that ARR10 is responsible for the signal-
ing transduction and transcriptional regulation of
acclimation response under the reduced state of the PQ
pool and that ATHB-1 is prominent under the oxidized
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sate of the PQ pool. Rather than investigating the entire
gene regulatory networks, we can easily obtain the
important information behind it in two antagonistic
conditions by examining the differential networks.

According to these results, the hubs ATHB-1 and
ARRI10 are identified with different significant status in
opposite redox states of the PQ pool. As shown in [22],
the initial transcriptional response occurred in the
nucleus 30 min after PSI-to-PSII light shift. Alterna-
tively, following the PSII-to-PSI light shift experiment,
the initial transcriptional response occurred in nucleus 2
h after the shift. Figure 5 shows the time series expres-
sion profiles of both ATHB-1 and ARR10 in two differ-
ent light shift conditions. Figures 5a and 5b demonstrate
that the gene expression of ATHB-1 has an obvious
change 8 h after the PSII-to-PSI light shift, but it does
not appear to change following the PSI-to-PSII light
shift, verifying that ATHB-1 is involved in the regulatory
mechanism in the oxidized state of the PQ pool. The
transcriptional expression of ARR10 exhibits a more
noticeable change following the PSI-to-PSII light shift
than following the PSII-to-PSI light shift in Figures 5c¢
and 5d. Figure 5¢ shows ARRI10 has significant change 2
h after the PSI-to-PSII light shift, verifying that ARR10
is involved in the regulatory mechanism under the
reduced state of the PQ pool. Furthermore, transcription
factor ARR10 is involved in the regulation of the chloro-
phyll biosynthetic process [33]. There are different types
of chlorophyll in a chloroplast, chlorophyll a and chloro-
phyll b, both of which absorb different light spectra. Due
to the treatment of PS-light shift, certain spectrum light
is deficient which is not enough to excite with adequate
energy to lead to the change of redox state of the PQ
pool. Therefore ARR10 plays a key role in maintaining
homeostasis by regulating chlorophyll biosynthesis to
increase the absorption of the portions of light spectrum
that are deficient. By increasing the absorption of defi-
cient light, any imbalance in the excitation of energy
distribution between PSII and PSI will be counteracted.
This further confirms that ARR10 is involved in the
long-term photosynthetic acclimation response under
different spectral qualities of light.

In Table 1, the connectivity between the TFs AtPHR1
and RAP2.8 is similar to the connectivity between
ATHB-1 and ARR10. The connectivity number of
AtPHRI1 is greater than that of RAP2.8 under the PSI-
to-PSII light shift and this ordering is reversed under
the PSII-to-PSI light shift. This demonstrates that
AtPHR1 and RAP2.8 play different roles under different
light shift conditions. Alternatively, one of the transcrip-
tion factors in Table 1, HY5, does not demonstrate a
change of connectivity between the networks of the dif-
ferent light shifts and consequently is not present in two
differential networks (Figures 4a and 4b). Since the
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Figure 4 The differential gene regulatory networks. (a) Under reduced state of the PQ pool (PSI-to-PSII light shift). (b) Under oxidized state
of the PQ pool (PSII-to-PSI light shift). Yellow represents the transcription factor and green represents the gene. The node size is proportional to
the degree of each node and the edge width represents the magnitude of the regulatory ability b; in equation (1). This figure has been created
by Cytoscape [30].

connectivity is not influenced by the different light transcription factors that have been identified play dif-
shifts, it appears that HY5 may be involved in the inher-  ferent roles under different light conditions, and that
ent process of photosynthesis during the normal light ~ATHB-1, ARR10, AtPHR1, and RAP2.8 participate in
conditions. These results demonstrate that the the long term photosynthetic light acclimation response.
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A total of 7 regulators are considered as potential
Arabidopsis thaliana LTR-related TFs, which are pre-
dicted from our target gene pool via PlantPAN database.
We seek evidence from the literature to validate their
inferred function in regulation of the photosynthetic
light acclimation response. ATHB-1 is involved in
response to blue light [34], while ATHB-2 and HY5 are
strongly induced by far-red light [35,36] and involved in
red or far-red light signaling pathways [37,38]. This

suggests that they are light-related transcription factors
and may be related to the photosynthetic light acclima-
tion. Although red and far-red light signaling may be
induced by the cytosolic photoreceptor phytochrome, it
has not been determined whether signals from photore-
ceptors and the PQ pool converge to a molecular com-
ponent under a long term PSI or PSII light conditions.
Fey et al (2009) [39] identified photoreceptors that are
not essential for adjustment of photosystem
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stoichiometry, however our results indicate that two sig-
nal sources coming from different light systems may
share the same TFs to regulate gene expression in the
nucleus regardless of whether their signal transductions
are coupled or not in the cytosol (Figure 1).

According to the results, the transcription factors
maintain homeostasis under two different qualities of
light by altering regulation of two gene regulatory sys-
tems. Figure 6 provides a visualized representation of
the photosynthetic light acclimation mechanism as a
feedback control system in which the transcription fac-
tors function in the role of mode switching. Based on
this feedback control system, photosynthetic light accli-
mation under the two PS-lights can be regarded as a
mode switch between two different gene regulatory pat-
terns to improve the efficiency of energy conversion.

We explored The Arabidopsis Information Resource
(TAIR) database to obtain annotations of seven TFs in
the gene regulatory networks we constructed for this
study. Interestingly, five of the seven TFs (ARRIO,
AtPHR1, ATE2FA, RAP2.8, and ATHB-2) are involved
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in the leaf senescence stage of Arabidopsis [40]. ARR10
and ATHB-1 are involved in the cytokinin-mediated sig-
naling pathway and respond to cytokinin stimulus
[33,41]. HY5 is involved in photomorphogenesis [42]
and ATHB-1 is involved in the leaf morphogenesis [43].
The diversity of these TFs demonstrates that the long
term acclimation response in plants is complicated and
is connected to many biological processes. For instance,
when a plant is in the shadow of a newly established
building, the building can change the redox state of the
PQ pool for an extended period of time. This phenom-
enon will cause the plant to attempt to maintain home-
ostasis by reconfiguring the relative amount of the two
photosystems via this mode switch. If the mode switch
is not sufficient to maintain homeostasis, the plant may
respond to the change through alternate processes, such
as leaf senescence, cytokinin stimulus and altering leaf
morphogenesis to construct a new leaf structure. For
long-term changes in light quality, the plant will facili-
tate leaf senescence to remove old leaves and allow new
buds to rapidly develop into the leaves with a structure

PSI-light

PSII-light

e (k)

Signal transduction

Chloroplast - pathway
e (k)
Gene set (1) ‘—O
[ y
Transcription
g factor
Gene set (2) ‘—Q

input.

Figure 6 Feedback control system to mimic the photosynthetic light acclimation mechanism. Two PS-lights represent high energy input
(PSII-light) and low energy input (PSI-light), respectively. e” (k) denotes the difference between the oxidized state of PQ pool and the
homeostatic state. e” (k) denotes the difference between the reduced state of PQ pool and the homeostatic state. Chloroplast signals inform the
transcription factors how to cope with changes in the surrounding environment via the signal transduction pathway in the cytosol. The
transcription factors act as mode switch between different regulating gene sets to display different modes which counteract any change in light
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more suitable for the current spectral quality of light.
This response is a reconstruction as opposed to a mode
switch and is also a light-induced long-term response.
Through analysis of these results, it is possible to pre-
dict the important TFs corresponding to opposite redox
states of the PQ pool. More biological insight into the
gene networks in two different photosystem light shift
conditions is given in the discussion section below.

Discussion

The LTR is initiated whenever a photosynthetic organ-
ism is subjected to a stable light gradient for an
extended period of time. Because this response can be
easily investigated by growing plants in the laboratory
under an artificial light source that preferentially excite
PSII or PSI (so-called PSII-light or PSI-light systems),
the response has been well characterized at the biologi-
cal level. However, the integration of gene regulation
and metabolism during the acclimation process is cur-
rently poorly understood. Some studies have attempted
to further our understanding of the LTR by identifying
primary target genes under different light intensities and
spectral qualities [22,27,44-46]. The number of these
identified genes that respond to the photosynthetic
redox signal in artificial light system can then be tested
by observing microarray expression data following muta-
tion of the specific gene or treatment with site-specific
electron transport inhibitors. However, the identification
of tentative target genes may help only in understanding
single aspects of these processes. The full extent to
which the LTR controls gene expression in higher plants
is still poorly understood and will require systems biol-
ogy approaches to assess large scale time series microar-
ray data [47].

This study has employed a systems biology approach,
combined with a prediction database to construct gene
regulatory networks using microarray data. The pro-
posed systematic approach can depict the transcriptional
regulatory mechanism of a photosynthesis network as a
dynamic system. Furthermore, the time profile of
mRNA of each target gene can be described by the
dynamic gene regulatory equation in (1). Some research-
ers have applied similar dynamic equations to construct
regulatory networks in yeast and E. coli with high accu-
racy [48,49]. However, they did not consider that the
potential regulator set S in equation (1) may include
false positive regulators. In this study, we therefore
employed maximum likelihood method (see additional
file 3) and the Akaike Information Criterion (AIC) [23]
via system order detection. To approach the minimum
AIC value (see additional file 3), iteratively removing
insignificant regulators one by one, the correct regula-
tors of the target gene can be obtained. The parameter
estimation method and system order detection method
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are widely applied in systems biology have been shown
to be an efficient tool of reverse-engineering technology.

The adjustment of photosystem stoichiometry is a
long-term response to changed light quality by changing
the relative number of the two photosystems [2-6]. Fig-
ure 7 shows the average expression of genes encoding
each photosystem and its corresponding light-harvesting
protein complex present in two differential gene regula-
tory networks (Figure 4a and 4b), respectively. In Figure
7a, due to the lack of PSI-light, the plant must counter-
act the reduced state of the PQ pool by increasing the
relative expression of PSI-related genes. The average
expression of PSI-related genes is greater than that of
the PSII-related genes at each time point. In contrast,
Figure 7b illustrates that a lack of PSII-light causes the
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Figure 7 The average expression of PSIl and PSIl in two light
shift conditions. (a) represents the average expression of PSI-
related and PSll-related genes in reduced state of the PQ pool, (b)
represents the average expression of PSl-related and PSll-related
genes in oxidized state of the PQ pool. The PSl-related genes
consist of genes encoded the photosystem | reaction center subunit
and LHCI. The PSll-related genes consist of genes encoded the
photosystem Il reaction center subunit and LHCII. Every gene must
be regulated in differential gene regulatory networks.
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plant to counteract the oxidized state of the PQ pool by
increasing the relative expression level of PSII-related
genes. In this situation, the average expression of PSI-
related genes tends to decrease after 8 h. Moreover, the
average expression of PSII-related genes has no signifi-
cant change in both light shift conditions. This result is
consistent with results gathered for mustard (Sinapis
alba L.) [50] which found that the stoichiometry is regu-
lated by only changing the number of PSI, while PSII
remains constant. Although mRNA expression may not
exactly represent its corresponding protein concentra-
tion, mRNA expression is thought to at least partially
reflect protein level [51,52]. Consequently, the results
above demonstrate that the constructed networks have a
high level of confidence.

Recent studies [1,53] have shown that the STN7
kinase mediates the redox states of the PQ pool. STN7
kinase is regarded as a source of retrograde signals
under changes in the spectral quality of light. These
light-related retrograde signals are transported across
the double membrane of the chloroplast and initiate an
unknown signal transduction pathway in the cytosol
which carries the signal into the nucleus to affect the
expression of nuclear genes (Figure 1). The mechanism
by which expression of these genes is altered remains
unknown. Furthermore, upstream TFs in the nucleus
which are directly activated by a signal from cytosol are
also poorly understood. These TFs serve as the interface
between the signaling pathway and the gene regulatory
network (Figure 1). In step 2 of Stage I, the initial rough
regulatory network is developed by iteratively searching
for TF-binding sites via the PlantPAN database. Due to
the limit of microarray data, the iterative procedure is
stopped when no new regulatory interactions are gener-
ated from the PlantPAN database. This searching
method can identify the TFs which are on the top of
overall gene regulatory network and are directly acti-
vated by signals from the cytosol. In this study, the gene
regulatory networks in Figures 3a and 3b are visualized
in a hierarchical form. This shows the stratum of each
gene in the network. In Figure 3a, ARR10 is clearly on
the top of the gene regulatory network and thus can be
considered as the source of the overall gene network for
LTR in the nucleus. When the reduced state of the PQ
pool is signaled to the nucleus, ARRIO is directly
induced. This transduces the signal to the downstream
genes to counteract any imbalance in excitation of
energy distribution between two photosystems. In Figure
3b, ARR10 is also on the top of gene regulatory network
of the oxidized state of the PQ pool. However, it is
noteworthy that ARR10 represses ATHB-1 and then
ATHB-1 activates ARR10. Therefore, we can hypothe-
size that both ARR10 and ATHB-1 may be directly
induced by the signal of oxidized state of the PQ pool.
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Because the microarray data is not the genome-wide
data, this is only a prediction. If the genome-wide
microarray data becomes available, it will be possible to
obtain more TFs by our proposed algorithm.

In this study, we use a multi-input/single-output regu-
latory model to dynamically describe our gene regula-
tory system. The model analyzes multiple regulators in
respect to one target gene, combining time series micro-
array data to determine the regulatory relationship
between this target gene and its upstream regulators. By
using Pearson’s correlation and the Akaike Information
Criterion to prune the complex gene regulatory net-
work, an accurate gene regulatory network of the LTR
system in the nucleus can be formed. While our method
combines many algorithms to construct a gene regula-
tory network for the photosynthetic acclimation system,
the primary obstacle faced in development of this net-
work is the construction of a rough gene regulatory net-
work. Due to the lack of complete ChIP-chip data for
Arabidopsis thaliana, the identification of transcriptional
regulatory relationships relies on the prediction data-
base. The candidate regulators are selected from the
pool of potential regulators typically defined by compu-
tational prediction or sequence similarity analysis. If an
important regulator is not included in the pool, it will
inevitably escape identification by the proposed model-
ing approach.

Conclusions

The photosynthetic light acclimation response is a fun-
damental process in plants which can optimize the effi-
ciency of photosynthesis in fluctuating light quality.
However, little is known about the molecular mechan-
isms that regulate these acclimation responses. In this
study, we investigate this molecular mechanism from
the physiological level by constructing a gene regulatory
network from the limited data sources for Arabidopsis
thaliana using an efficient computational framework.
This type of systems biology approach has become
increasingly common in recent years and can provide
insight into the underlying mechanisms of the photosyn-
thetic light acclimation response. Gene regulatory net-
works under PSI-to-PSII light shift and PSII-to-PSI light
shift are compared to identify the important transcrip-
tion factors involved in the regulation of photosynthetic
long-term response. The hubs and “weak linkages” are
also analyzed for the robust gene network under differ-
ent light conditions. Although the gene regulatory net-
works are a small part of photosynthetic light
acclimation response in plants, they may provide a foun-
dation on which the overall molecular mechanism
underlying the photosynthetic process in organisms may
be deciphered. Moreover, it is hoped that the results of
this study will attract more attention to the topic of
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photosynthetic light acclimation with large-scale experi-
ments. As experimental data for whole-genome ChIP-
chip data and microarray data with more multiple sam-
pling points become available in the future, the perfor-
mance of the proposed method will be improved and
enable more efficient construction of genome-wide reg-
ulatory networks of photosynthetic system. Such gen-
ome-wide gene regulatory networks may provide a
better understanding for the molecular interaction
mechanisms between the chloroplastic, nucleic, and
mitochondrial components of the cell under the long
term photosynthetic acclimation response. For instance,
the regulatory mechanisms for gene network of state
transition, a short-term response, in the chloroplast.
Furthermore, if more protein-protein interaction data
becomes available, the protein interactions of the signal
transduction pathway may be identified and integrated
with the gene transcriptional regulatory network to pro-
vide more insight into the overall photosynthetic light
acclimation response.
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