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Abstract

Background: Peptide microarrays offer an enormous potential as a screening tool for peptidomics experiments
and have recently seen an increased field of application ranging from immunological studies to systems biology.
By allowing the parallel analysis of thousands of peptides in a single run they are suitable for high-throughput
settings. Since data characteristics of peptide microarrays differ from DNA oligonucleotide microarrays,
computational methods need to be tailored to these specifications to allow a robust and automated data analysis.
While follow-up experiments can ensure the specificity of results, sensitivity cannot be recovered in later steps.
Providing sensitivity is thus a primary goal of data analysis procedures. To this end we created rapmad (Robust
Alignment of Peptide MicroArray Data), a novel computational tool implemented in R.

Results: We evaluated rapmad in antibody reactivity experiments for several thousand peptide spots and
compared it to two existing algorithms for the analysis of peptide microarrays. rapmad displays competitive and
superior behavior to existing software solutions. Particularly, it shows substantially improved sensitivity for low
intensity settings without sacrificing specificity. It thereby contributes to increasing the effectiveness of high
throughput screening experiments.

Conclusions: rapmad allows the robust and sensitive, automated analysis of high-throughput peptide array data.
The rapmad R-package as well as the data sets are available from http://www.tron-mz.de/compmed.

Background
Peptide microarrays have emerged as a promising tech-
nique for the simultaneous high throughput analysis of
peptide characteristics. Synthesized peptides are spotted
in a grid-layout on glass slides which allow the screen-
ing of thousands of peptides within a single experiment
with requiring only a small quantity of sample. Applica-
tions range from studying the humoral response to HIV
[1] or food allergens [2] to the detection of cancer bio-
markers [3] and antibody signatures [4] to the character-
ization of protein-protein interactions [5] and of kinase
substrates [6,7].
While peptide microarrays offer enormous potential

for a wide range of applications and while significant
improvements have been made with regard to the

reliable spotting of small amounts of peptides at closely
neighboring, well-defined spatial positions [8,9], a major
bottle neck remains in the automated analysis of the
acquired data.
Numerous tools have been developed for the analysis

of DNA microarray data, see e.g. [10,11] for reviews, but
these cannot easily be transferred and require major
adjustments. For instance, rather than quantifying the
impact of differential expression, peptide microarrays
experiments commonly only result in a single wave-
length measurement per peptide. Usually, only a small
proportion of the spotted peptides is expected to show a
signal and requires reliable identification. Further speci-
fic challenges of the analysis of peptide microarray data
include the diverse sources of noise, ranging from pep-
tide synthesis artifacts to unspecific binding effects to
peptides.
Existing tools specifically developed for the analysis of

peptide microarray experiments can be categorized into

* Correspondence: john.castle@tron-mainz.de
† Contributed equally
1The Institute for Translational Oncology and Immunology (TrOn), 55131
Mainz, Germany
Full list of author information is available at the end of the article

Renard et al. BMC Bioinformatics 2011, 12:324
http://www.biomedcentral.com/1471-2105/12/324

© 2011 Renard et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.tron-mz.de/compmed
mailto:john.castle@tron-mainz.de
http://creativecommons.org/licenses/by/2.0


three groups, graphical analysis tools, differential analy-
sis tools, and general analysis tools.
As graphical tools, a combined approach of clustering

and principal component analysis to visualize similarly
behaving groups of peptides has been introduced [12] as
well as an integrated webserver for the storage of pep-
tide microarray experiment data with several graphical
analysis steps [13].
For differential analysis, several approaches have

adapted differential expression detection schemes to
peptide microarrays, including a support vector machine
driven webtool for distinguishing peptide binding inten-
sities of two experimental groups [14] and adapted sta-
tistical tests for differentiating measured intensities for
two populations [1,15].
The more general question of identifying signal carry-

ing peptide spots and accounting for peptide microarray
specific sources of noise has been addressed using a
robust version of a z-score for the difference of the
intensity of a specific peptide spot to empty spots to
identify signal carrying peptide spots [2] and a linear
model fit on all peptide spot measurements to account
for several systematic effects [16]. This approach was
extended by a signal calling step based on a t-test and a
cutoff based removal of secondary binding spots [17].
Here, we introduce a novel method for the general

analysis of peptide microarray data, that significantly
extends the existing approaches. Using several classes of
control peptides, we apply a linear model for normaliza-
tion and the removal of systematic array effects. Further,
we use a mixture-model to identify secondary antibody
binding peptide spots and apply a probabilistic approach
for signal calling which does not rely on arbitrary
thresholds, but provides a slide specific estimate. Addi-
tionally, we provide a machine-learning driven quality
control procedure to computationally exclude intensity
measurements of low reliability.
After describing our methods in detail, we apply it to

data from a cancer-biomarker detection study and
demonstrate improvements relative to the existing gen-
eral analysis tools, particularly with regards to
sensitivity.

Method
Peptide Microarrays
The layout of the microarray slides used in this study is
based on a three level hierarchy (Figure 1B): Each array
(i) consists of three subarrays (ii) which are identical in
terms of individual peptide placement but are printed
consecutively; thus, each individual peptide is spotted as
a triplicate. Each subarray has 16 blocks (iii) which are
arranged in a four by four pattern; each of these blocks
is printed by a single print tip. Each block has 20 rows

and 20 columns, resulting in 19200 peptide spots per
array.
Printed slides are scanned at 532 nm wavelength for

quality control, with peptide spots being visible due to
scatterlight effects. In brief, the incubation experiment and
image acquisition consist of the following steps: (i) block-
ing of the array surface to reduce unspecific binding, (ii)
incubation of the slides with sample material, (iii) incuba-
tion with a fluorescently labeled secondary antibody and
(iv) scanning at 635 nm wavelength and spot detection.
We refer to a peptide as being reactive if we observe fluor-
escence of the labeled secondary antibody indicating that
primary antibody of the sample bound to the peptide. For
a detailed protocol of microarray incubation experiments
including the motivation of acquisition conditions see [9].
It is noteworthy that our computational methods

described in the further sections accept generic data as
input and are not restricted to the array layout and pro-
cedures mentioned above.

Figure 1 Flowchart. Flowchart of the data analysis pipeline for
extracting a list of signal-carrying peptides from the measured
intensities of a peptide microarray scan.
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Algorithmic Overview
Figure 1 shows an overview of the individual steps of
the workflow. Following the read out of the raw data of
a scanned peptide microarray, we apply a transformation
to reduce the heteroscedasticity (Figure 1A). Using a lin-
ear model fit on selected control peptides, we remove
array effects (Figure 1B). In an optional subsequent step,
we can exclude unreliable spots using a machine learn-
ing procedure (Figure 1C). Finally, we apply a mixture
model to identify peptides binding to the secondary
antibody used for coloring (Figure 1D), before providing
a probabilistic signal call (Figure 1E).
The analysis pipeline is implemented in R [18] and

available from http://www.tron-mz.de/compmed.

Read Out and Transformation of Raw Data
To transform an image file from the scan of a peptide
microarray to individual intensity values for each single
peptide, we apply GenePix Pro, version 7 (Molecular
Devices, Sunnyvale, CA, USA), using the mean fore-
ground intensity (without background subtraction) from
the GenePix Result (gpr) file as a measure for intensity.
It has been previously described [2,16] that peptide

microarray measurements show strong heteroscedasti-
city with larger variances for high intensity measure-
ments. By applying a binary logarithm transformation to
each peptide spot mean intensity, we stabilize the var-
iance allowing the application of a linear model
procedure.

Control Peptide Based Linear Model Fit
Peptide microarray intensity measurements can be per-
turbed by a variety of factors, some of which have been
proposed in the model of [16]. These factors include
array-to-array effect (Ai) resulting from the printing pro-
cess or storage conditions. Further, depending on the
spatial position of a peptide spot, it might be incubated
with a different amount of sample. This relates to the
overall row (Rj) and column (Ck) position of a spot as
well as to the subarray (Sl) to which a spot belongs.
Further, variation might be introduced by the printing
needle (Nm) used. The effect of a peptide itself is then
denoted by Pn. Thus, an intensity measurement Yijklmn

can be modeled as

Yijklmn = Ai + Rj + Ck + Sl +Nm + Pn + εijklmn (1)

With the variance stabilizing logarithm transformation
applied in the previous step, the residuals (εijklmn) can be
assumed to follow a normal distribution with constant
variance. In most applications, the number of repeats
per peptides are very limited and the placement of pep-
tides is not in random order, but rather defined by prac-
tical considerations of the printing process. Thus,

confounding of effects can arise, for instance the place-
ment of predominantly strongly reacting peptides at
positions spotted with one needle might result in the
wrongful attribution of a strongly positive needle effect.
To avoid these confounding effects, we limit the fitting
of the linear model of equation 1 to a set of control
peptides, which are printed with high number of repeats
for each needle and subarray to allow reliable estima-
tion. While this limitation renders the estimation of a
peptide effect Pn infeasible, all remaining coefficients
can be reliably estimated and can be used to correct all
peptide measurements. This allows us to estimate the
parameters Ai, Rj, Ck, Sl, and Nm for all values of i, j, k,
l, and m. We then correct all measurements, for which
we could not estimate the peptide specific effect Pn, by
computing Ŷijklm = Yijklmn − Ai − Rj − Ck − Sl − Nm.

Unreliable Spot Removal
When historic data is available for peptide arrays with
identical slide layout, this data can be used to remove
unreliable spots. Since this is not possible in all setups,
we regard this as an optional step for improving and
robustifying peptide microarray data analysis.
We apply a random forest procedure [19] to identify

potentially unreliable peptide spots [20]. Unreliable
spots may arise from a variety of not explicitly modeled
experimental effects, e.g. the different decay of spotted
peptides, dust effecting peptide spots or errors in the
alignment of spots by software such as GenePix. These
variation can drastically reduce the reproducibility of
peptide array experiments and may result in misleading
conclusions.
Using historic data from previous experiments with

slides of an identical layout, we train a random forest
classifier to detect spots which are not reproducible
between subarrays. A random forest classifier is a
machine learning procedure, which learns label cate-
gories from existing data and then applies them to new,
previously unclassified data sets. It shows good predic-
tive power while being robust to parameter setting [21]
and favorable theoretical properties (e.g. with regard to
overfitting [19]).
For the training of the classifier, we use the fact that

each peptide is repeated on various subarrays (in our
case three). We label all subarray spots which are not
within a 95% linear regression confidence band for a
single linear regression on either of the remaining two
subarray repeats as unreliable and all other spots as reli-
able. We use all columns of the result file besides the
sequence as well as all columns of the quality control
result file of a corresponding scatterlight scan for each
spot as explanatory variable (with a column representing
a property of a peptide spot, i.e. pixel intensity variation

Renard et al. BMC Bioinformatics 2011, 12:324
http://www.biomedcentral.com/1471-2105/12/324

Page 3 of 10

http://www.tron-mz.de/compmed


or spot size; see additional file 1 for a complete listing).
We use random sampling to balance the set of unreli-
able and reliable spots in their size and then use the
prediction of the random forest to label all spots of a
new data set. For each peptide, we directly discard all
those spots indicated as unreliable and only average
over the remaining spots, weighted by their probability
of being reliable. If all spots of one peptide are marked
as unreliable, we exclude this peptide from any further
analysis.

Mixture Model for Secondary Antibody Binding Detection
In peptide microarray experiments, secondary antibody
binding peptides pose a major complication. When pep-
tides show a direct reaction with the dye-coupled sec-
ondary antibody, two effects are confounded. It cannot
be distinguished to which extent a measured intensity is
explained by this undesired and unspecific reaction
rather than the specific reaction of interest. Thus, to
avoid ambiguous results which hinder interpretation and
may result in misleading conclusions, peptides showing
significant unspecific reaction with the secondary anti-
body need to be identified and excluded from further
analysis. Reactivities on empty slides without any sample
have been identified as important indicators [17]. In
experimental settings not allowing empty slides, this
step can be excluded from the overall data analysis pipe-
line with an increased risk of false positives. However,
this approach is tailored to identifying the unspecific
binding of the secondary antibody to the peptide, not to
the slide itself, which should affect all spots in a similar
mode and thereby increase the noise level. This effect is
addressed by the subsequent signal calling step. Rather
than relying on a fixed threshold, we propose a mixture
model strategy to derive a probabilistic criterion for the
identification of secondary antibody binding peptides
from empty slides. For this purpose, we assume that the
normalized intensities of all peptides on the empty slides
stem from two populations: one population for peptides,
which do not show any reaction to the secondary anti-
body besides noise and a second population for peptides
which show a reaction to the secondary antibody. We
model each population by a normal distribution and let
the mean and variance of the first population be
denoted by μ1 and σ 2

1 and for the second population by
μ2 and σ 2

2 . A schematic display of a histogram of the
measured intensities and the two underlying distribu-
tions in red (noise) and green (reaction to secondary
antibody) is given in Figure 1D. The orange line indi-
cates the resulting cutoff.
We apply an expectation maximization algorithm

[22,23] to iteratively adapt the estimates for μ1, μ2, σ 2
1 ,

and σ 2
2 , and for each measured normalized intensity, we

update the likelihood that it belongs to either one of the
two populations [24,25]. For the initialization, we rely
on the empirical mean and variance estimate for two
groups of control peptides. One group for which we do
not expect any reaction with the secondary antibody
and a second group of peptides which are known to
show various degrees of reactivity.
We then use the resulting distribution of the peptides

which do not show any reaction to the secondary anti-
body, to derive a criterion for secondary antibody bind-
ing. Since we expect most peptides not to show any
reaction, we expect this distribution to be more reliably
estimated and mostly driven by random variations. We
regard the upper 5% quantile qempty

0.05 of this distribution
to be the cutoff. Thus, for any measured normalized
intensity on the empty slides Yempty,norm

r , we compute

Yempty,sec
r =

∫ Yempty,norm
r

−∞

1√
2πσ 2

1

e
(x−μ1)

2

2σ 2
1 dx. (2)

Any resulting value of Ysec
r below 0.05 indicates only

low likelihood for this intensity being this large by
chance [24] and thus the corresponding peptide is disre-
garded for the further analysis. With this cutoff genera-
tion we rely on the assumption that at least the
population of peptides not showing a secondary anti-
body binding follow a normal distribution. However our
historic slides at least approximately support this
assumption (see additional file 1).
Instead of this cutoff generation, it is also possible to

directly compute a false discovery rate from the likeli-
hood of the mixture model components (and our code
allows this option), however this relies more heavily on
the correctness of the normality assumption for the
group of the reactive peptide than the proposed
approach, which depends more on the not reactive pep-
tides, in which we are more confident.

Mixture Model for Signal Call
To distinguish those peptide spots which carry a signal
from those spots which only display noise, we again
apply a mixture model. We assume that both, the sig-
nal-carrying peptide spots as well as the noise spots can
be modeled by normal distributions with mean μsignal
respectively μnoise and standard deviations σ 2

signal respec-

tively σ 2
noise. A schematic display of a histogram of the

measured intensities and the two underlying distribu-
tions in red (noise) and green (signal carrying peptides)
is given in Figure 1E; the orange line indicates the
resulting cutoff. We initialize these parameters again
based on suitable control classes. For one class of pep-
tides expected to show a reaction, and for a second
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class of peptides not expected to show a reaction, we
separately compute the empirical mean and variance
and use these as starting values. We then update these
values as well as the likelihood for each data point using
the expectation maximization algorithm as described for
the secondary antibody binding detection.
We then use the distribution of the noise spots to

identify the signal carrying spots which depart signifi-
cantly from the noise distribution by identifying the
upper 5% quantile qnoise0.05 of the noise distribution as a
cutoff. Thus, for any measured normalized intensity
Ynorm
r , we compute Ynoise

r analog to equation 2. Any
resulting value of Ynoise

r below 0.05 indicates only low
likelihood for this intensity being this large by chance.

Experiments
Experiments are conducted on a total of 115,200 pep-
tide spots which were printed on six PepStar peptide
microarrays (JPT, Berlin, Germany) with an identical
design and printed in two batches (print batch 1 and
print batch 2). Two separate batches were chosen to
show the maximum possible inter-experiment varia-
tion. On each slide 10% of the total 19,200 spots are
used as dedicated control spots. 5% of all peptides are
meant as positive controls, expected to show strong
specific reactions, 2.5% are secondary antibody con-
trols, which are expected to show strong reactions
with the secondary antibody. 1% of all peptides are
negative controls not expected to show any reaction
and the remaining 1.5% are process controls. Among
the remaining 17,280 peptide spots per array, 666
spots contain peptides of human PLAC-1 (UniProt
accession Q9HBJ0) and 513 spots contain peptides of
NYESO, VEGFA, and CD20 (UniProt accession
P78358, P15692 and P11836, respectively; all of human
origin). All proteins are represented by peptides with a
length of 15 amino acids and an overlap of 11 amino
acids. The slides were incubated in a HS 4800 Pro
hybridization station (Tecan, Maennedorf, Switzer-
land). One slide per print batch was incubated with
diluent only (empty slide), one slide per batch with a
pooled plasma of six patients without indication of
cancer and low concentration (1 ng/ml) of a PLAC1-
specific spike-in antibody (Michael Koslowski, personal
communication) and the remaining slide per batch
with the same sample material, but high concentration
(3 ng/ml) of the PLAC1-specific spike-in antibody. The
experimental setup is summarized in table 1. A Cy5-
conjugated AffiniPure Mouse Anti-Human IgG (H+L)
(Jackson Immuno Research Laberatories, Avondale,
PA, USA) was used as a secondary antibody. All slides
were scanned with a GenePix 4300 microarray scanner
(Molecular Devices, Sunnyvale, CA, USA) and

converted to a result file using GenePix Pro, version 7
(Molecular Devices, Sunnyvale, CA, USA). All result
files are available from the authors’ website.
The analysis of results is focused on five aspects: We

evaluate (i) the efficiency of the linear model in reducing
the unexplained variance, (ii) the unreliable spot finding
procedure by comparing the reproducibility of the two
print batches before and after quality control, (iii) the
removal of secondary antibody binding peptides by
focusing on the NYESO, VEGFA, and CD20 peptides,
which are not expected to show any reaction with the
given normal sera, with the exception of secondary
binding effects, and (iv) the efficiency of the signal call
by analyzing the specificity and sensitivity of our
approach based on the NYESO, VEGFA, and CD20 pep-
tides which are expected to be non-reactive and the
PLAC1-peptides, which we expect to show a reaction.
We regard NYESO, VEGFA, and CD20 peptides show-
ing a reaction as false positives (fp) and those not show-
ing a reaction as true negatives (tn).
Similarly, we regard PLAC-1 peptides not showing a

reaction as false negatives (fn) and those showing a reac-
tion as true positives (tp). Sensitivity, specificity, and
accuracy are then given by

Sensitivity =
tp

tp + fn
, Specificity =

tn
tn + fp

Accuracy =
tp + tn

tp + tn + fp + fn

(3)

In a final step (v), we compare our approach to the
approaches introduced by [2] and [17] based on the
accuracy.
To judge the significance of the results of experiments

(iii)-(v), we computed 95% bootstrapped confidence
intervals for all sensitivity, specificity and accuracy
values based on 1000 times resampling from the peptide
intensities of each class. In order not to confound the
results of the unreliable spot finding step (ii) with the
subsequent steps and to allow the fair comparison with
the existing methods which do not identify unreliable
spots, experiments (iii)-(v) were run on all peptide spots,
even though some were marked as unreliable.

Table 1 Experimental Setup

Array
number

Print
batch

Spike-in antibody concentration
[ng/ml]

Plasma

1 1 - -

2 1 1 +

3 1 3 +

4 2 - -

5 2 1 +

6 2 3 +

Summary of the experimental setup for the six microarrays used in this study.
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Results
We analyze the effect of the major steps of our
approach including the linear model, the quality control
and the secondary antibody binding detection and signal
call as well as comparing the overall procedure on the
antibody reactivity data.
With regard to the linear model fit, a summary of

results for print batch 1 and the high spike-in antibody
concentration is given in table 2. It is evident that the
peptide effect itself is the major influence of the mea-
sured intensity. Still, all remaining explanatory variables,
which model systematic effects, are highly significant as
shown by the p-values for the corresponding F-Test.
Row and column effects, so the spatial position of a
peptide, show the overall strongest influence of the sys-
tematic effects. The needle and subarray effect are smal-
ler, but still highly significant. However, it should be
noted that a confounding of effects cannot be excluded,
e.g. when considering a single needle only a subset of
row and column positions are addressable on a subarray.
Including all interaction effects requires an unfeasibly
high number of degrees of freedom, while choosing sub-
sets does not significantly improve results (data not
shown). Overall, the systematic effects contribute to
reducing the unexplained variation in the measured pep-
tide intensity data by 65%.
After training on a total of 8 historic slides with iden-

tical layout, the unreliable spot finding procedure marks
8.3% of all spots in print batch 1 and 11.8% of all spots
in print batch 2 as unreliable for the high concentration
experiment. Since peptides are excluded only in cases
when all three replicates for one peptide are marked as
unreliable, this results in the removal of 2.4% of all pep-
tides in print batch 1 and 2.6% of all peptides in print
batch 2. Visual inspection (cf. Figure 2) shows that these
peptides primarily show large variation between the two
data sets. By removing these peptide spots, we see an

improvement of 3% in the coefficient of variation from
R2 = 0.72 to R2 = 0.75. Still, not all outliers are detected
by the approach. Analysis of the missed outliers however
indicates that these undetected outliers consistently
affect replicates of only nine different peptide sequences,
in contrast to the 129 different peptide sequences
marked as unreliable by the unreliable spot finding
procedure.
We evaluated our secondary antibody binding removal

approach by computing the number of peptides which
were excluded from the further analysis because of sec-
ondary antibody removal. Out of 5760 non control pep-
tides 354/501 (print batch 1 and print batch 2,
respectively) were identified with reaction on the empty
slides and excluded from the further analysis. This
affected none of the PLAC-1 peptides which were
expected to show a specific reaction and 0/2 (print
batch 1 and print batch 2, respectively) of the NYESO,
VEGFA and CD20 peptides not expected to show a
reaction. Consequently, when regarding the sensitivity
and specificity which were computed based on these
peptides, we observe that with the secondary antibody
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Figure 2 Unreliable Spot Finding. Scatter plot of intensities from
slides of two print batches with the same high antibody
concentration on a binary logarithm scale. Due to experimental
noise, we see departures from the diagonal line on which we
would expect all data points. The quality control algorithm identifies
approximately 2.5% of all data points in each print batch as
unreliable across all subarrays; these peptides are removed
accordingly (colored in magenta, cyan and orange), resulting in an
increase of the coefficient of variation of approximately 3%. While
not identifying all outlying observation, the removed spots primarly
affect peptide spots which show large variation between the print
batches.

Table 2 Linear model fit summary

Df Sum Sq Mean Sq F value Pr(>F)

Peptide 12 170916 14243.0 57461.65 < 2.2e-16

Subarray 2 24 12.2 49.18 < 2.2e-16

Needle 15 45 3.0 12.08 < 2.2e-16

Row 234 458 2.0 7.89 < 2.2e-16

Column 75 409 5.5 22.03 < 2.2e-16

Residuals 2218 550 0.2

Linear model fit summary. The F-values and the corresponding probabilities
(Pr(>F)) clearly indicate that all explanatory variables used are highly
significant and that each contributes to reducing the variance present in the
arrays. The peptide sequence itself shows by far the strongest effect while
requiring only twelve degrees of freedom (Df), it shows a sum of squares for
its effect (Sum Sq) of 170,916, much stronger than the residuals sum of
squares of 550. While not as strong as the peptide effect, the remaining
explanatory effects reduce the residuals by 65%. Column and row effects are
strongest, but subarray and needle effects require fewer degrees of freedom,
resulting in strong mean sum of squares (Mean Sq) values.
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binding removal the specificity is slightly increased while
the sensitivity remains unchanged when compared to
running our approach without this step.
The sensitivity and specificity for our approach are

shown in Figure 3 in comparison to the approaches of
[2] and [17]. For two print batches, two slides were
incubated with a low and a high concentration of spike-
in antibody, respectively. Overall, we observe for all
approaches that sensitivity is more affected by the
reduction of the antibody concentration than specificity,

which is rather stable. In comparison, our approach
shows best sensitivity across all settings. It shows a sen-
sitivity of 0.96 to 1.00 compared to 0.89 to 0.98 for the
other two approaches for the high antibody concentra-
tion data. This difference is more expressed for the low
antibody concentration data with a sensitivity of 0.77 to
0.81 for our approach compared to 0.50 to 0.65 for the
previous two approaches. Specificity is slightly worse for
our approaches for print batch 1 with values of 0.91 to
0.95 for our approach and 0.92 to 0.98 for the existing
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Figure 3 Sensitivity, Specificity and Accuracy in Comparison. Sensitivity, specificity and accuracy for our approach without and with
secondary antibody binding removal in comparison to the approaches of [2] and [17]. Both, the high (3 ng/ml) and the low (1 ng/ml) spike-in
antibody concentration slides were evaluated for both print batches (left and right). 95% bootstrap confidence intervals were computed based
on 1000 times resampled peptide intensities and are shown by dashed lines. For all approaches, the specificity remains rather constant when
reducing the spike-in antibody concentration, while we see a general decline in sensitivity and accuracy. For the approaches of [2] and [17] the
decline in accuracy is rather steep, our approach shows still good accuracy above 0.8 for the low antibody concentration.
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approaches. Similarly for print batch 2, our approach
features specificity of 0.83 to 0.84 compared to 0.89 to
0.96. As a consequence of the substantially improved
sensitivity, our approach also displays best accuracy.
While this difference is small for the high antibody con-
centration with accuracy values of 0.93 to 0.96 for our
approach compared to 0.92 to 0.96 for the previous
approaches, it is much more substantial for low anti-
body concentration. Here, our approach shows an accu-
racy ranging from 0.80 to 0.85, compared to 0.68 to
0.78 for the two other approaches.
rapmad is based on the assumption of (approximate)

normality, especially for the linear model fit and the
mixture model. For all arrays incubated with plasma, we
analyzed these assumptions and find support for
approximate normality (see additional file 1).

Discussion
Removal of systematic bias
By applying a linear model which explains 65% of the
noise variation in the data, rapmad significantly
improves the reliability of peptide microarray experi-
ments. In addition to previous findings [16], we estab-
lish that also the spatial position on the peptide
microarray is of high impact for removing systematic
effects. This is important for distinguishing low intensity
signals from noise. Since the effects are of a systematic
nature (e.g. a decline in signal intensity associated with
spatial position), it also reduces the risk that systematic
effects are mistakenly identified as peptide signal effects.
Despite the strong reduction in unexplained variation,
not all occurring systematic effects are necessarily
included in the model. For instance, we decided against
including all interaction effects. While it can be of high
interest to model the interaction of a specific peptide
with a specific needle, there is usually not a sufficient
number of replicates to allow a reliable estimation in a
standard experiment. However, for large-scale experi-
ments, it could be beneficial to design specific slides
with sufficient replicates to quantify these effects. The
effects of the secondary antibody are accounted for
within subsequent analysis steps and are thus not mod-
eled explicitly.

Improved data quality after removal of unreliable
measurements and secondary binding peptides
The production of peptide arrays as well as the binding
of the secondary antibody involve sophisticated chemical
processes. In spite of numerous experimental improve-
ments [8,9] and constant monitoring, artifacts resulting
from errors in the spotting of peptides or the unspecific
binding of the secondary antibody can strongly influence
measurements and result in misleading interpretations.
We have proposed two computational statistics driven

approaches to identify and exclude these artifacts and
show that they can be successfully applied.
By marking approximately 2.5% of the peptide spots as

unreliable, we can improve the reproducibility and thus
the data quality. It should be noted however that still
not all unreliable and irreproducible peptides are
detected. The small number of peptide sequences being
connected to the undetected outlying observations show
that this entails a sequence-specific phenomenon rather
than a print process artefact which would affect all
sequences more evenly. While characteristics of the
print process are captured within the available learning
data, for instance in the scatterlight scans, sequence-spe-
cific effects are difficult to detect. In addition, the unre-
liable peptide spot finding procedure is limited by the
available training data. We rely on labels based on the
assumption that a specific replicate which departs from
the remaining two replicates should be labeled as unreli-
able. We are aware that this definition is not necessarily
correct since there are cases when the two remaining
replicates are unreliable, but the specific replicate itself
is correct. This can result in incorrect labels, which
strongly reduce the quality of the random forest predic-
tion. While manually validation could improve the label-
quality, this reduces the applicability of the procedure to
other data than our own. Thus, we accept a possibly
smaller impact of the quality control procedure to allow
the fully automated adaption to other datasets. Historic
data for training is not always available and thus, this is
an optional step for our pipeline.
By identifying 1.2% of the spots as secondary antibody

binding, we can improve the specificity of the procedure
without sacrifying its sensitivity. While the impact on the
data shown here is comparatively small, this step can be
of key importance to avoid wrongful interpretation.
When dealing with peptides prone to printing or

synthesis problems or the binding of secondary antibody
to peptides, any data analysis tool is challenged by the
fact that the relevant information was lost before data
acquisition, rendering the complete recovery of the
information impossible. While not recovering the cor-
rect information, the magnitude of excluding wrongful
results is significant. If wrongful results were not
excluded, research could result in wrongful conclusions.
With the removal of wrongful results no conclusions are
possible for these doubtful peptide spots. Since in most
cases, only subsets of peptide measurements are affected
and designs usually contain several replicates, repeats of
experiments are often not required to come to reliable
conclusions.

Strong sensitivity for low intensities
A particular strength of rapmad is the fact that it is
especially suitable for low intensity measurements such
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as those occurring for low antibody concentrations.
While the problem of separating signal from noise is
substantially more difficult when the signal intensity is
reduced, we only see a comparatively minor reduction
in accuracy when reducing spike-in antibody concentra-
tion. Sensitivity is affected more significantly than speci-
ficity, but still at or above 0.8.
This robustness of our approach can be explained by

the adaptivity of the signal calling procedure, which is
based on correctly estimating the noise distribution
and generating a noise-threshold based on this distri-
bution. Thereby, it is less affected by changes in the
signal intensity. As a consequence, the noise-threshold
is adaptive and even low intensity signals can be
detected to be above the threshold, resulting in a
strong sensitivity.

Favorable comparison to existing approaches
The strength of rapmad to maintain a high sensitivity
even for low intensity settings is also what sets it apart
from existing algorithms. Thus, the sensitivity and accu-
racy of our approach in low antibody concentration
experiment is competitive to the ones of the two other
approaches for high antibody concentrations. This is a
result of the adaptive procedures which are better suited
to distinguish signal from noise in low intensity situa-
tion than preset thresholds and demonstrates that our
computational approach is capable of compensating for
experimental limitations. For high intensities as seen
with high antibody concentration, it is generally easier
to achieve high sensitivity due to a better separation of
signal and noise in the raw data. That is also why we
see less of a benefit of rapmad in comparison to existing
algorithms.

Increasing the effectiveness of screening procedures
Peptide microarrays have been primarily used within
screening settings with follow-up experiments focusing
on a small number of promising candidates to ensure
specificity [4]. Unidentified reactive peptides from a pep-
tide microarray experiment cannot be distinguished
from the large number of rightfully excluded unreactive
peptides and are thus not further regarded. By substan-
tially increasing the sensitivity for low intensity reac-
tions, our approach avoids the wrongful exclusion of
peptides and thereby increases the effectiveness of
screening procedures. While standard settings were used
in all experiments, rapmad additionally allows the user
to adapt the quantiles used in the mixture models to
trade additional sensitivity for specificity.

Conclusion
Within this contribution, we introduce rapmad, a tool
for the robust and rapid analysis of peptide microarray

data. rapmad is an automated, multi-step approach that
combines several computational statistics procedures to
augment the data quality of peptide microarray and to
allow a reliable analysis. Its steps include the preproces-
sing of the data by removing systematic effects, the
exclusion of unreliable measurements and secondary
antibody binding peptides, and a probabilistic signal call
for reactive peptides.
In comparison with existing algorithms, it shows com-

petitive performance for high antibody concentration.
For low antibody concentration, it shows a significant
increase in accuracy over existing approaches. This is
mainly due to its substantially improved sensitivity at
competitive specificity.
With its increased sensitivity and its automated data

analysis, rapmad can thereby contribute to establish and
broaden the usage of peptide microarrays as a standard
tool for a wide-range of peptidomics applications.

Additional material

Additional file 1: Supplementary Figures. PDF document containing
supplementary figures.
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