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Abstract

Background: Multivariate approaches are important due to their versatility and applications in many fields as it
provides decisive advantages over univariate analysis in many ways. Genome wide association studies are rapidly
emerging, but approaches in hand pay less attention to multivariate relation between genotype and phenotype.
We introduce a methodology based on a BLAST approach for extracting information from genomic sequences and
Soft- Thresholding Partial Least Squares (ST-PLS) for mapping genotype-phenotype relations.

Results: Applying this methodology to an extensive data set for the model yeast Saccharomyces cerevisiae, we
found that the relationship between genotype-phenotype involves surprisingly few genes in the sense that an
overwhelmingly large fraction of the phenotypic variation can be explained by variation in less than 1% of the full
gene reference set containing 5791 genes. These phenotype influencing genes were evolving 20% faster than non-
influential genes and were unevenly distributed over cellular functions, with strong enrichments in functions such
as cellular respiration and transposition. These genes were also enriched with known paralogs, stop codon
variations and copy number variations, suggesting that such molecular adjustments have had a disproportionate

framework.

influence on Saccharomyces yeasts recent adaptation to environmental changes in its ecological niche.

Conclusions: BLAST and PLS based multivariate approach derived results that adhere to the known yeast
phylogeny and gene ontology and thus verify that the methodology extracts a set of fast evolving genes that
capture the phylogeny of the yeast strains. The approach is worth pursuing, and future investigations should be
made to improve the computations of genotype signals as well as variable selection procedure within the PLS

Background

The current growth in genomic data demands new or
improved methods for exploring the genotype-pheno-
type landscape. Due to the complexity of the cellular
interaction networks, polymorphisms in individual genes
often have only a weak association with the variation in
common traits. However, as phenotypes result from the
functional interactions between the products of different
genes, the association between genotype and phenotype
may be captured from co-occurrence of multiple genes
and multiple phenotypes across a wide range of indivi-
duals. Recent development in statistical methods and
phylogenetics are addressing these issues [1,2].
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The yeast Saccharomyces cerevisiae has a long history
as a key model organism in molecular and cellular biol-
ogy and is rapidly emerging as a prime experimental
system also for achieving an organism-wide bridging of
the gap between genotype and phenotype [3-9]. These
studies are based on linkage analysis [3], population
genetic analysis [4], correlation analysis [6,9], gene
knockout sensitivity measure [8], and gene knockout
genetic interaction networks [7], mutual information to
evaluate the biconditional relation [2] as well as a prob-
abilistic model [5] for mapping genotypes on pheno-
types. However, these approaches are intrinsically
limited by the fact that they pay little attention to the
multivariate relation between genotypes and phenotypes,
i.e. they do not simultaneously consider the impact of
more than one gene on more than one phenotype.

The use of multivariate approaches in genome-wide
association analysis may be expected to pro-vide decisive
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advantages over univariate analysis in many ways.
Firstly, a fundamental lesson learned from genome-wide
association studies is that most phenotypes, including
many common diseases, seem to be complex. Not only
are they highly polygenic, but, it is typically found that
only a fraction of the total phenotype variation is
explained by summing up the significant contributions
of individual genes. This is partially believed to reflect
the importance of non-additive genetic interactions
between genes, which cannot be captured by univariate
approaches [10]. Secondly, assuming that the correlation
between phenotypes is partly due to the shared effect of
a suite of genes, multivariate analysis making simulta-
neous use all of the available phenotypes is intrinsically
more powerful than several repeated univariate analysis
that consider each phenotype separately [11]. Thirdly,
the correlation among phenotypes is in itself of key
scientific interest, whether it is due to pleiotropic (i.e.,
multifunctional) genes or shared genes with tightly
linked functions [12]. For example, orphan drugs may
be assigned mechanisms of action on the basis of close
correlation to drugs with known targets using a guilt-
by-association principle [13,14]. And fourthly, by consid-
ering aggregate effects, multivariate analysis can increase
the sensitivity to identifying important genetic effects
and detect contributions of genetic variants that have
too small effect to be detected by univariate analysis
[15]. Hence, multivariate analysis has the potential to
provide superior statistical power, increased interpret-
ability of results and a deeper functional understanding
of the gene-phenotype landscape; consequently, the
development of efficient multivariate approaches in
genetics should be of high priority.

Although multivariate analysis has been introduced in
genome-wide association analysis [16,17] it has not been
fully established. There are several multivariate methods
that are extensively applied in other scientific field that
could potentially be used to explore the genotype-phe-
notype landscape (e.g. [18,19]). In essence, multivariate
methods consider the covariance structure of genotypes
and phenotypes and identify combinations of influential
genotypes that map to combinations of phenotypes. The
initial step of any multivariate based dissection of geno-
type-phenotype relations is the computation of numeri-
cal features from the sequence data. Some approaches
are based on word frequencies or their modifications
[20-22]. SNPs are also considered as gene markers as
their lower polymorphism is offset by their abundance
and ease of genotyping and their low mutation rates
make them especially suitable for linkage mapping, i.e.
the co-inheritance of genotypes and phenotypes in suc-
cessive generations [23]. In this paper, we demonstrate
the feasibility and power of an alternative approach:
computing features from genome sequences by
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considering the degree of similarity to a set of reference
sequences. Each genome is compared to this reference
genome by pair-wise alignment, and for each reference
sequence we get a normalized score, indicating to what
extent it is found in the respective genome. A similar
approach has also been employed in evolutionary studies
based on whole-genome data, more specifically, in the
construction of gene-content trees [24,25].

This feature computation provides us with a data set
having a large number of reference sequences p in com-
parison to the number of genomes #; for example, for
the unusually gene-dense baker’s yeast we have in this
study used 5791 reference sequences (genes) and 36
genomes. This ‘large p small #’ situation makes it diffi-
cult to relate a certain phenotypic response to a reason-
ably sized subset of reference sequences, as there is not
enough information in the data to find unique estimates
for regression coefficients that best fit the data in the
ordinary least squares sense. Feature selection based on
some pre-association analysis may be needed in order to
eliminate unrelated features (noisy features) and include
only a modest number of presumably more relevant
genotypes in the analysis [26]. It is also important to
group the phenotypes by their common characteristics
over genomes; for example, this may allow the assign-
ment of mechanisms of action of orphan drugs on the
basis of clustering with drugs that have known cellular
targets [13,14]. Multivariate tools, like Partial Least
Square (PLS) regression, are widely used in chemo-
metrics to address the problem of making good predic-
tions in the ‘large p small #’ situation [27]. In later years
there has also been an increase in applications using
PLS in bioinformatics research (e.g. [28-30]). In princi-
ple, the PLS algorithm will try to identify a relevant sub-
space in the genotype space which explains the
maximum variance in the phenotype space. Based on
the latent components spanning this subspace a bilinear
regression model is constructed for the prediction of
phenotypes. Unfortunately, PLS in its original form has
no implementation for feature selection, more specifi-
cally, no selection procedure for phylogenetic genes that
best explain the genotype-phenotype relation. One pos-
sible way is to use PLS in combination with jackknife
testing [31], which is a resampling method for perform-
ing statistical inference about the regression coefficients.
However, it is not entirely clear that it will indeed select
a reasonable set of genotypes when the reference
sequence versus number of genomes gets as large as is
the case here. In [18] a soft- thresholding step in the
PLS algorithm is suggested, based on ideas from the
nearest shrunken centroids method [32]. This ST-PLS
algorithm per-forms a simultaneous model fitting and
feature selection. In this paper, we exemplify the applic-
ability of ST-PLS when employed in the unification of
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the high dimensional genotype space and the phenotype
space in order to unravel associations for subsequent in-
depth studies.

Methods

Approach

Data

Genome sequences for 36 Saccharomyces cerevisiae
strains were obtained from the Saccharomyces Genome
Resequencing Project (SGRP) and are publicly available
at Sanger http://www.sanger.ac.uk/Teams/Team118/
sgrp/. Genomic sequences representing 1.3-12-fold cov-
erage correspond to a nuclear genome of 16 chromo-
somes and a mitochondrial DNA. The description of
these genomes is given in Additional file 1, Table S1.
The universal yeast reference strain S288C, the first
eukaryotic genome to be sequenced [33] and the refer-
ence genome for several whole genome approaches [34],
was used as a reference genome also here. In principle,
any sequence feature of S288C, including rRNA, tRNA,
snRNA, transposons and promoter regions could be
considered as reference sequence elements; however to
reduce the search space to be tested in this proof of
principle study we here restricted the analysis to protein
coding genes which are directly related to phenotypes.
In total 6850 protein-coding sequences were down-
loaded from the Saccharomyces Genome Database
(SGD) http://www.yeastgenome.org/ and used as refer-
ence sequences in this study. Dubious genes which were
not conserved across closely related genomes [35] and
all putative ORFs that were not stringently annotated as
genes were excluded, leaving 6067 genes. As explained
below, some of these genes did not give a good spread
in evolutionary distances over the 36 genomes, and were
discarded as un-informative in a final step, resulting in a
set of 5791 genes in this study.

The phenotype data were obtained by micro-cultiva-
tion of yeast populations during exposure to 10 different
treatments, representing a wide diversity of natural and
artificially imposed environment variations [36]. Sigmoid
growth curves were parameterized as described [37] into
the two fundamental reproductive measures the repro-
ductive rate (doubling time, Rate) and the reproductive
efficiency (gain in population density given the available
resources, Efficiency). The Rate was defined by the slope
in the exponential phase converted into population dou-
bling time and the Efficiency (optical density units) was
defined as the total change in density. Detailed descrip-
tions of these growth variables can be found in [38]. We
selected ten environments that correspond to known
variations in yeast ecological niches and evaluated our
approach on the basis of growth rate and growth effi-
ciency data obtained from strains growing in these
environments. Any missing phenotype values were
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imputed using the K-nearest neighbor method, in terms
of overall phenotype pattern. In total, v = 20 distinct
phenotype measures for n = 36 genomes, were retained
for downstream analysis.

Genotype-phenotype relations

Data for each phenotype was assembled into a column
vector y of length n = 36. Each genome sequence ele-
ment, i.e. protein coding gene element, was converted
into a vector of numeric features by sequence alignment
to the corresponding reference sequence element, see
Methods section. This was assembled into an n x p
matrix X with #n = 36 rows and p = 5791 columns, one
column for each reference sequence element. To mine
for relations between phenotypes and genotypes, we
implemented a Partial Least Squares (PLS) approach
[27]. There are many variants of the PLS modeling para-
digm [18,19,39-41]; here we employed the Soft Thresh-
old PLS [18] which is specifically designed for
multivariate feature selection such as phylogenetic genes
that are called for in defining genotype-phenotype asso-
ciations. In essence, the concept means that we are
looking for combinations of columns of X capable of
explaining the variations in each y,(see the Methods sec-
tion for details).

Integrating external genotype features

The S288C genome is exceptionally richly and coher-
ently annotated on a functional level, reflected in that
Gene Ontology (GO) annotations [42] exist for more
than 80% of its protein coding genes. This abundance of
structured functional information allowed unbiased eva-
luation of the derived genotype-phenotype associations.
Gene Ontologies (GO) were obtained from the Yeast
GO Slim Mapper http://www.yeastgenome.org/cgi-bin/
GO/goSlimMapper.pl in the form of three distinct func-
tional annotation sets: the major biological processes in
which genes are involved (45 categories); their molecu-
lar/biochemical activities (25 categories) and the cellular
components in which the corresponding protein has
been found (25 categories). A single gene may be
mapped to multiple GO terms. Interpretation of geno-
type-phenotype associations was also performed taking
gene essentiality/non-essentiality http://www.yeastgen-
ome.org in the S288C background into ac-count as well
as data on whether a gene is present in S288C as a sin-
gleton or as a duplicated gene (a paralog); the latter was
defined as having a blastp hit among other $288C genes
with E <107% over at least 50% of its length. Finally, we
also mined the genotype-phenotype associations taking
the molecular basis of the genotype polymorphisms in S.
cerevisiae into account. Genes with polymorphisms pre-
sumed to be strongly associated to phenotypes, stop
codon mutations, frame shifts and copy number varia-
tions, as identified in the S. cerevisiae lineages [9] were
analyzed as distinct classes.
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Algorithm

Computing genotype scores

First, all reference sequences (translated nucleotide)
were aligned against themselves using score 1 for match.
In this way the maximum alignment score S(r; ; r; ) was
obtained for each reference sequence r; representing
some coding gene of the S288C genome. This score cor-
responds to the length of sequence 7;. Then each S. cere-
visiae genome was BLASTed against this reference set,
using tblastx http://blast.ncbi.nlm.nih.gov/Blast.cgi?
CMD=Web&PAGE_TYPE=BlastHome. Hence for each
genome sequence g; a maximum bit-score, S(g;; r; ), was
obtained indicating to what extent sequence r; was
found in the respective genome. Since this score
depends heavily on the length of the aligned sequences,
we used the normalized score

N;j = max(1/20, S(gi, 17)/S(rj, 17))

where the lower bound 1/20 is used for computational
reasons when using the Jukes-Cantor transformation
below. Reference sequences where all the normalized
scores were below 0.5 were discarded from the down-
stream analysis. The reasoning be-hind this is that
sequences with no clear similarities in any genome are
probably introducing more noise than information. This
filtering produced a final set of 5791 reference
sequences.

Finally we have used Jukes-Cantor evolutionary model
[43] to extract the numerical feature in X, i.e.

Xi; = —(19/20) In[1-(20/19)(1 -Ni;)]

Thus, the genotype variables are approximate evolu-
tionary distances from the reference genome. The mini-
mum distance is X;; = 0, indicating that the reference
sequence 7; is found with 100% identity in genome g;.
These features were assembled into the genotype matrix
X = {X;;} having one row for each of the 36 genomes
and one column for each of the 5791 reference
sequences.

ST-PLS supervised learning

The association between a phenotype vector y and the
genotypes X was assumed to be explained by the linear
model E(y) = XB where B are the p x 1 vector of regres-
sion coefficients. The main purpose of the study was to
find the subset of genotypes best explaining the varia-
tions in each phenotype. From a modeling perspective,
ordinary least square fitting was no option since the
number of samples (n = 36) was much smaller than the
number of features (p = 5791). PLS resolves this by
searching for a set of components, “latent vectors”, that
performs a simultaneous decomposition of X and y with
the constraint that these components explain as much
as possible of the covariance between X and y.
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Prior to all model fitting, all variables in y and X were
centered and standardized by subtracting the column
mean and dividing by the standard deviation.

The PLS estimate of the regression coefficients for the
above given model based on k components can be
achieved by

B=WPW) g (1)
where p is the p x k matrix of X-loadings, q is the k
vector of y-loadings and vy is the p x k matrix of load-
ing weights as defined in [27]. Selection of variables
based on the magnitude of PLS loading weights (the col-
umns of W) is an accepted approach, and [18] suggested
a soft-thresholding step in the PLS algorithm based on
ideas from the nearest shrunken centroids method [32].

At each step of the sequential PLS algorithm the
weights were modified as

i) Scaling:
Wy < wi/max; |wy; |, forj=1, ., p

ii) Soft-thresholding:
Wy < sign(wi)(|wy; | -0),, for j =1, .., p.
Here (...), means max(0, ...)

iii) Orthogonalization:

wy, < (I — Wil a W,y

iv) Normalizing:
Wi < wil || wil|

The shrinkage ¢ € [0, 1) decides the degree of thresh-
olding, i.e. a larger J gives a smaller selected set of
genes in the genotype-phenotype mapping. Cross valida-
tion was used to find the optimal number of compo-
nents and shrinkage level J, and in this study a random
leave 3-out cross-validation scheme was chosen. For
each left-out segment ST-PLS models with 1 to 10 com-
ponents in combination with shrinkage levels (0.70,
0.73, 0.76, 0.79, 0.82, 0.85, 0.88, 0.91, 0.94, 0.97) were
fitted and the left out samples were predicted. After
cycling through all sample segments, the root mean
square error (CVRMSE) of prediction was computed for
each component/threshold combination in search for
the best model. The minimum CVRMSE is itself a sto-
chastic variable, and in the search for the optimal num-
ber of components and shrinkage level, a slack in
CVRMSE corresponding to two standard errors was
allowed. In this way a reduction in model complexity
(number of components) and/or an increased shrinkage
level away from the apparent optimum was allowed as
long as the CVRMSE was below the minimum plus
slack. This allowed us to select a reasonable number of
associated genes for all phenotypes.
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For evaluation of model performance an index of
agreement d-statistics was used [44], which reflects the
degree to which the observed response is accurately esti-
mated by the predicted response. It varies from 0 (com-
plete disagreement between predicted and observed
responses) to 1 (perfect agreement).

Results

Genotype-phenotype modeling

In order to study the relationship between genetic and
phenotypic variation in yeast an ST-PLS model was
fitted for each of the 20 phenotype responses, as
described in the Method section. A genotype predictor
matrix was derived by blasting the genes of each gen-
ome to a S. cerevisiae reference genome and the best hit
scores were used as numerical inputs to this genotype
matrix. This provides resolution in terms of each indivi-
dual polymorphism, which vastly reduces the complexity
and provides sufficient power to statistically link varia-
tion in genes to variation in phenotypes.

In Figure 1 some results for the fitting of all 20 phe-
notypes are displayed. For each fitted ST-PLS model the
performance statistics d-index [44] was computed, and
in the upper left panel we can see how this distributes
over the 20 phenotypes (blue curve). For comparison we
have also included a ‘nulldistribution’ of this statistic
found by randomized reshuffling of the data (red curve).
This demonstrates that we in the vast majority of cases
are able to find stable explanation of the phenotypes by
combining genotype information.

In the upper right panel we observe that the genotype-
phenotype mapping is in most cases found with more
than six components. This indicates that several genes
are associated with a certain phenotype, and that these
genes contribute with different information such that
the phenotype can only be explained by combining six
or more directions in genotype space. Further, in Addi-
tional file 2, Figure S1, the upper panel indicates that
the complexity of the model increases with decreased
shrinkage level.

In the lower left panel we find that the optimal
shrinkage level is in most cases moderate, and never
above 0.8. This is partly due to our constraint that we
require at least 25 genes selected, but it also tells us
that the associated genes ‘stand out’ and can be identi-
fied without using extremely high shrinkage levels.

The lower right panel is a histogram over the number
of associated genes found for each of the 20 phenotypes.
In the Additional file 2, Figure S1 the lower and middle
panels indicate that the number of influential genes
increases with model complexity and decreases with
shrinkage level.
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Distribution of associations

A key assumption of genetics is that traits are controlled
by subsets of genes that are largely distinct but that
overlaps between traits that share functional elements.
Such genes that control multiple traits are referred to as
pleiotropic [45]. The phenotypes included here all repre-
sent different environ-mental stresses and as such,
reflects the highly generalized environmental stress
response [46,47]. Given that the method extracts rele-
vant biological information, we expected substantially
higher pleiotropy than by any random selection of
genes. This was indeed the case. Considering all pheno-
types, the gene influence on trait variation was highly
unevenly distributed. Variation in certain genes tended
to define many phenotypes. 14 to 60 genes explained
50% to 88%of the total phenotypic variation, whereas
some 5699 genes did not noticeably influence the overall
phenotype variation. This highly skewed distribution of
gene influences deviated significantly from the results of
a simulation study using random genotypes, where
approximately 200 times as many genes were found to
‘affect’ phenotypes. The random genotypes were simu-
lated by random permutations of the rows of X.

A central assumption of genetics is that different types
of genetic variations differs in their impact on traits
depending on how they affect the quantity and quality
of the final product produced, in most cases the pro-
teins. For example, genetic variation resulting in prema-
ture termination of translation, e.g. premature stop
codons, is expected to have a disproportionately large
impact on trait variation as these variations directly
affect the quality of the translated protein. Similarly,
recent and older gene duplications, reflected in gene
copy number variations and paralogous gene pairs
respectively, are widely assumed to provide adaptive
trait variation as it both increases protein and allows for
evolution of novel functions while maintaining the origi-
nal function. Hence, we expected an influence of genes
known to harbor such variation on the studied traits.
This was indeed the case, as seen in Table 1. Both genes
with gene copy number variations (p <0.01) and gene
paralogs (p <0.01) were over-represented as affecting the
studied traits, see Figure 2.

Based on computations of the frequency of non-
synonymous versus synonymous variations that have
emerged since the split between S. cerevisiae and its clo-
sest relative Saccharomyces paradoxus [48], we found
the here identified influential genes to have been evol-
ving 20% faster than non-influential genes (ratios 0.100
vs 0.078, t-test, p <0.10). This indicates that these genes,
as a group, have been subjected to either somewhat
stronger positive selection, or somewhat relaxed
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Shrinkage

and the lower right panel similar for the number of associated genes.
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negative selection during the recent yeast history. This
was expected, genes affecting traits, should do so either
through adaptive variation or through genetic variation
that is neutral in the local environment, implying an ele-
vated rate of evolution. However, the difference is lim-
ited and the bias, approximately 10:1, against non-
synonymous mutations in these genes has nevertheless
been strong. The observation that genes associated to
phenotypic variation correspond to genes with an

elevated rate of evolution, suggests that they affect a a
nonrandom set of cellular functions. In essence, we
expect this gene set to be enriched for genes that regu-
late the relation between the organism and its environ-
ment. From Table 2 we can see that the various lists of
influential genes frequently support enrichments
obtained from the Fisher exact test in categories such as
generation of precursor metabolites and energy (p <0.1),
cellular respiration (p <0.1) and transposition (p <0.01).
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Table 1 Enriched variations

Label Phenotype N Ess. genes Paralog Frame shifts Stop codon Copy no.
Mel_R Melibiose 2% Rate 33 0 206" 0.25 123 441"
Mel_E Melibiose 2% Efficiency 40 0 0.78 0.20 1.37 359
Cup_R Cupper chloride 0.375 mM Rate 60 0.16 256" 0.15 163 642"
Cup_E Cupper chloride 0.375 mM Efficiency 14 0 219 0.11 336 11427
NaC1_R NaCl 0.85 M Rate 58 0.16 2917 0.05 116 825"
NaC2_R NaCl 1.25 M Rate 47 031 112 013 146 0
NaC1_E NaCl 0.85 M Efficiency 47 0.01 2.34%%% 0.13 146 12707
NaC2_E NaCl 1.25 M Efficiency 43 0.1 1.25 0.14 092 333
Mal_R Maltose 2% Rate 59 051 205" 0.19 139 1150
Mal_E Maltose 2% Efficiency 45 032 137 021 087 13377
Gal_R Galactose 2% Rate 30 0 167 0 088 22117
Gal_E Galactose 2% Efficiency 49 0.19 2677 027 140 22117
Heal_R Heat 37°C Rate 33 0 206" 0.09 220 965
Hea2_R Heat 40°C Rate 44 0 206" 007 123 1373
Heal_E Heat 37°C Efficiency 44 0.11 121 026 158 1.568
Hea2_E Heat 40°C Efficiency 49 040 178" 0.12 172 999"
Sod1_R Sodium arsenite oxide 3.5 mM Rate 48 0 558" 013 211" 1238
Sod2_R Sodium arsenite oxide 5 mM Rate 33 0.29 3157 0.09 2200 211
Sod1_E Sodium arsenite oxide 3.5 mM Efficiency 44 0.22 183" 0.18 195 1373
Sod2_E Sodium arsenite oxide 5 mM Efficiency 43 0 3627 0.14 240" 333

Certain types of variations that are over-represented among the N influential genes for all phenotypes. The statistics are odds-ratios indicating potential
enrichment of certain gene categories among the influential genes. The categories are: Essential genes, genes with known paralogs, genes with known frame
shift variation, genes with known stop codon variation and genes with known copy number variations in yeast. Significance at 10% is marked with ", 5% is
marked with ™ and 1% is marked with ™. The corresponding significance based on adjusted p-values controlling the false discovery rate (q-values) are marked
with ., .. and ..., respectively.

In contrast, the genes we found associated to pheno-  Dissecting multivariate gene-phenotype associations
types were fairly well scattered across locations along all A fundamental biological question is what types of
16 chromosomes, as indicated in Figure 3, also with  genes and genetic variations that define the main struc-
regards to subtelomeric regions, which frequently show tures of variation in distinct traits, within a species. To
rapid evolution. exemplify the applicability and power of the ST-PLS
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Figure 2 Overall enrichments. Certain types of variations that are over represented (positive bars) and under represented (negative) among the
overall influential genes for all phenotypes. The upper panel includes the variations like essential genes, genes with known paralogs, genes with
known frame shift variation, genes with known stop codon variation and genes with known copy number variations in yeast. The lower panel
includes enriched Gene Ontology process terms. On the y-axis significance at 10% is marked with *, 5% is marked with ** and 1% is marked
with *** Variations are also marked with significance based on adjusted p-values (False Discovery Rate adjusted).
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Table 2 Enriched Gene Ontology
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Label GO terms

Mel_R transposition”

Mel_E generation of precursor metabolites and energy” ; cellular respiration” -

Cup_R cellular respiration”; transposition” ™

Cup_E generation of precursor metabolites and energy” ™ heterocycle metabolic process’; cellular respiration”; transposition”
NaC1_R cellular respiration’; transposition” ™

NaC2_R generation of precursor metabolites and energy; cellular respiration”; transposition” ™

NaC1_E generation of precursor metabolites and energy; transposition”

NaC2_E generation of precursor metabolites and energy“; transpositionm"’

Mal_R generation of precursor metabolites and energy”; cellular respiration”; transposition”

Mal_E generation of precursor metabolites and energy’; transposition” -

Gal_R generation of precursor metabolites and energy’; cellular respiration”

Gal_E generation of precursor metabolites and energy”; cellular respiration”

Heal_R generation of precursor metabolites and energy” ; heterocycle metabolic process’; vesicle organization”
Hea2_R generation of precursor metabolites and energy**; transposition***'

Heal_E generation of precursor metabolites and energy; transposition” ™ vesicle organization” -

Hea2_E generation of precursor metabolites and energy”; heterocycle metabolic process ; cellular respiration”; transposition” ™
Sod1 R transposition” ™

Sod2_R generation of precursor metabolites and energy’; transposition” ™

Sod1_E DNA metabolic process’; generation of precursor metabolites and energy”; cellular respiration”; transposition™
Sod2_E transposition***"'

Enriched Gene Ontology process terms are listed. Significance at 10% is marked with ", 5% is marked with " and 1% is marked with *". The corresponding
significance based on adjusted p-values controlling the false discovery rate (g-values) are marked with ., .. and ..., respectively.

procedure we performed an in depth analysis of two
environmental traits, that are highly variable between
strains [9] and that are believed to have a complex
structure, NaCL1_E (NaCl 0.85 M Efficiency) and
Heal R (Heat 37°C Rate).
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Figure 3 Distribution of genes on chromosomal positions. The
distribution of all genes related to at least one phenotype over the
16 chromosomes of S. cerevisiae strain S288C. Blue tags indicate a
gene on the positive strand and red tags on the negative strand.

The yeast response to high concentrations of sodium,
which imposes both ion and osmotic strain on the cell,
is one of the best understood responses to a variation in
the external milieau [49]. We found that the variation in
cellular growth efficiency during exposure to 0.85 M
NaCl in the S. cerevisiae strains was largely controlled
by 47 associated genes, i.e. 47 genes are frequently asso-
ciated with the phenotype. The optimal number of com-
ponents for the ST-PLS model was 10, indicating a
complex relation between genotype and this phenotype.
Among the 47 influencing genes there was an enrich-
ment of genes that have paralogs, i.e. genes that have
been at least duplicated in ancestral times in the refer-
ence strain S288C, and of genes that vary in copy num-
ber within baker’s yeast, i.e. genes that have undergone
very recent duplications in some strains (Table 1). They
were also enriched for generation of precursor metabo-
lites and energy and transposable elements (Table 2). In
contrast, we found no significant overlap to loss of
genes which is known to lead to defects in the salt
response in S288C [50]. This is partially explained by
the high degree of conservation in many of the genes
most important for salt tolerance in S288C; for example,
the HOG1 gene product which controls, expression of
salt responsive genes in S288C was essentially invariable.
Figure 4 upper panel shows the correlation biplot for
NaCl 0.85 M over the first two PLS-components. The
correlation biplot shows for each gene their contribution
to the two dimensions or underlying phenomena
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(loadings), and for each strain their relative position in
this two-dimensional space (scores). This identifies the
most variant strain, NCYC110 of the West African
population, and genes specifically related with variations
in this strain. These genes were enriched for copy num-
ber variations, among them the known sodium exporters
ENAL, 2 and 5 genes, which are present in three copies
in yeast populations with high salt performance but in
only one, genetically deviating copy, referred to as

ENAS®, in the West African population (Warringer et al,
manuscript in preparation).

The yeast responses to high temperatures is less well
understood than the salt response, but is nevertheless of
high interest, as elevated tolerance to such variations is
considered to be a primary feature of clinically relevant
strains [51]. The growth rate variations in S. cerevisiae
during exposure to heat 37°C, was largely defined by 33
genes, i.e. 33 genes are frequently associated with the
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phenotype in natural yeast stains. A 7 component model
was optimal, indicating these 37 genes contribute with 7
different types of information in order to explain the
phenotype. As for salt, this set of genes was enriched for
genes that have paralogs in the reference strain S288C
and for genes that vary in copy number between strains.
In addition, it was enriched for genes known to harbor
premature stop codons in some of the analyzed strains.
The heat influencing gene set was also heavily enriched
for genes involved in cellular processes such as genera-
tion of precursor metabolites and energy, heterocycle
metabolic process and vesicle organization (Table 2).
These processes are well known to be of importance for
maintaining an optimal heat response, and are typically
enriched in gene knockout screens for a defect heat tol-
erance [52]. Figure 4, lower panel, shows the correlation
biplot for the phenotype Heal_R over the first two PLS-
components. Indicated are the two most variant strains,
NCYC110 and DBVPG6044, the two identified strains of
the West African population. Genes defining the low
heat tolerance of NCYC110 were enriched for frame
shift variations and genes related to heat tolerance varia-
tion in DB-VPG6044 were enriched for paralogs and
copy number variations.

Discussion

In this paper, we introduced a multivariate ST-PLS
approach for mapping genotype-phenotype relations,
using the well known reverse genetics model organism
S. cerevisiae as a proof of principle. This approach
requires the construction of a numerical genotype
matrix which here was constructed by blasting a set of
reference sequences against genomes. The usefulness
of this approach of course depends on how well one
can choose the reference set of sequences. We have in
this case focused solely on protein coding sequences.
One important reason for this is data reduction. Full
genome sequences contain an overwhelming amount
of potential information, and even with 36 strains the
genotype subspace spanned in this data set is very lim-
ited in comparison. Also, by looking at coding genes
one can focus on the part of the genomes believed to
be most directly related to phenotype, anticipating that
differences in the potential proteome between strains
can explain some of their phenotypes. It is, however,
possible to use exactly the same procedure as pre-
sented here for a bigger and more comprehensive set
of reference sequences.

We have fitted one ST-PLS model for each phenotype,
linking each phenotype to all genotypes. In Figure 1 we
show some summary results for all 20 models. The
results in the upper left panel of this figure ensure we
have indeed found some stable relations between geno-
type and phenotype. This is a fundamental requirement
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for any further analysis. Every model will always come
out with some ‘best’ relations, but such results cannot
be trusted unless they are found to produce stable
improvements in prediction performance.

From the upper right panel we see that in all cases,
models with at least five components are needed to pre-
dict the phenotypes. This indicates rather complex rela-
tions between genotypes and phenotypes, in the sense
that the associated genes contribute with different infor-
mation, and several different combinations of genes are
needed. Note that we distinguish between the number
of associated genes and the number of directions/com-
ponents when we talk about complexity. It is possible to
have many associated genes, but still only a simple rela-
tion if all genes contribute with the same information, i.
e. they are highly correlated. We also find that several
associated genes are correlated since the number of
genes is always much bigger than the number of com-
ponents. It should also be noted that in our ST-PLS
approach we are able to select all correlated genes as
associated even if they contribute with the same infor-
mation. Using for instance a stepwise selection proce-
dure would not be capable of this, since the inclusion of
one such gene will block the inclusion of another, corre-
lated, gene.

The shrinkage level was in our analysis allowed to
deviate from the optimum found by cross-validation, as
explained in the Methods section. This allowed us to
always select a reasonable number of associated genes
(lower panels, Figure 1). In this proof-of-principle study
we found it important to retain a comparable number of
genes from each phenotype, in order to look for the
enrichments of certain gene categories. It may of course
be that we have included either too many or too few
genes in some gene lists, but this can be sharpened in a
more detailed study involving any specific phenotype.

In order to investigate whether the ST-PLS approach
has picked up something essential, the overall trait-influ-
encing genes common to at least 25% of the phenotypes
were identified. These influential genes were enriched
by genes with paralogs and genes with stop codons; this
was entirely expected, given the assumed substantial
phenotypic contribution of these genes. We also found a
disproportionate influence of genes involved in mito-
chondrial respiration, which agrees with the influence of
such genes on a wide variety of traits, including human
diseases [53].

In contrast, the over-representation of genes involved
in transposition, i.e. transposons, was some-what sur-
prising. Few links between specific traits and transpo-
sons are known in baker’s yeast, partially due to that the
progenitor of baker’s yeast show a selective loss of many
classes of transposable elements [54] and partially due
to the difficulties of studying such elements with reverse
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genetics. Nevertheless, the single class of transposons
present in baker’s yeast show dramatic variations in
number and location between strains [9], and the phe-
notypic consequences in form of gene disruption are in
some cases described, e.g. for the gene HAP1 which is
rendered non-functional in S288C by transposon disrup-
tion, resulting poor performance in anaerobic and
heme-depleted conditions [55]. In maize, where transpo-
sons have been most extensively studied, transposon
mediated shuffling of genetic material is generally
believed to be the main source of novel transcriptome
[56].

We were also surprised to find that influential genes
tended to be fairly uniformly distributed across all chro-
mosomes, as seen in Figure 3. Adjacent genes in S. cere-
visiae is known to show correlated gene expression,
function annotation and gene knockout phenotypes
[57,58], and the chromosomal ends are experiencing
genetic churning [35], resulting in that essential genes
and genes importance in multiple environments are pre-
ferentially kept away from chromosomal ends [59,60].

Overall, the influential genes were far from a random
distribution but represented features with shared charac-
teristics, supporting the validity, strength and robustness
of the approach.

Figure 4 shows the dominating pattern of covariance
between phenotypes and genotypes in two selected
models. This pattern is dominated by a few S. cerevisiae
strains. For growth efficiency in presence of high con-
centrations of salt (0.85 M NaCl), NCYC110 from the
West African population had the strongest influence on
the overall genotype-phenotype matrix. NCYC110 is
known to have a poor salt tolerance [9]. Interestingly,
NCYC110 genes linked to salt tolerance variation were
enriched for copy number variations and these copy
number variations influenced both PLS component
directions.

For the growth rate at 37°C, not only NCYC110 but
also its West African sister, DBVPG6044 had a strong
overall influence. Both these strains have a severely
reduced heat tolerance [9]. For NCYC110, genes with
frameshifts were over represented among genes with a
strong heat tolerance impact, as discovered earlier [61]
whereas for DBVPG6044 genes with paralogs and copy
number variations had disproportionate influence. The
West African population is not genetically more distinct
than any of the other known yeast populations, but on a
phenotypic level it is highly unique, deviating in almost
30% of all traits (Warringer et al, manuscript submitted).
Our study reinforces the view that these strains de-serve
further attention from a perspective of revealing the
structures underlying genotype-phenotype variations in
natural populations.
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Conclusion

We have suggested a multivariate approach to the analy-
sis of the genotype-phenotype mapping based on
BLAST and PLS. We note that the derived results
strictly adhere to the known yeast phylogeny and thus
verify that the methodology extracts a set of fast evol-
ving genes that capture the phylogeny of the yeast
strains. We conclude that the approach is worth pursu-
ing, and future investigations should be made to
improve the computations of genotype signals as well as
variable selection procedure within the PLS framework.

Additional material

Additional file 1: Table S1 - Saccharomyces strains. Saccharomyces
strains used in this study, along with their respective source location,
source class and population & genomic structure are listed.

Additional file 2: Figure S1 - Mutual relation of shrinkage level,
number of components and number of influential variables. Results
obtained from the 20 ST-PLS model fits presenting the mutual relation of
shrinkage level, number of components and number of influential genes.
Upper panel shows the scatterplot between the shrinkage level and a
number component, indicating complexity of the model increases with
decrease of shrinkage level. Middle panel shows the scatterplot between
number of components and number of influential genes, indicating
influential genes increases with the increase of model complexity. Lower
panel shows the scatterplot between shrinkage level and number of
influential genes, indicating influential genes decreases with the increase
of shrinkage level.
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