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Abstract

Background: When a large number of candidate variables are present, a dimension reduction procedure is usually
conducted to reduce the variable space before the subsequent analysis is carried out. The goal of dimension
reduction is to find a list of candidate genes with a more operable length ideally including all the relevant genes.
Leaving many uninformative genes in the analysis can lead to biased estimates and reduced power. Therefore,
dimension reduction is often considered a necessary predecessor of the analysis because it can not only reduce
the cost of handling numerous variables, but also has the potential to improve the performance of the
downstream analysis algorithms.

Results: We propose a TMLE-VIM dimension reduction procedure based on the variable importance measurement
(VIM) in the frame work of targeted maximum likelihood estimation (TMLE). TMLE is an extension of maximum
likelihood estimation targeting the parameter of interest. TMLE-VIM is a two-stage procedure. The first stage resorts
to a machine learning algorithm, and the second step improves the first stage estimation with respect to the
parameter of interest.

Conclusions: We demonstrate with simulations and data analyses that our approach not only enjoys the
prediction power of machine learning algorithms, but also accounts for the correlation structures among variables
and therefore produces better variable rankings. When utilized in dimension reduction, TMLE-VIM can help to
obtain the shortest possible list with the most truly associated variables.

Background
Gene expression microarray data are typically character-
ized by large quantities of variables with unknown cor-
relation structures [1,2]. This high dimensionality has
presented us challenges in analyzing the data, especially
when correlations among variables are complex. Includ-
ing many variables in standard statistical analyses can
easily cause problems such as singularity and overfitting,
and sometimes is not even doable. To manage this pro-
blem, the dimensionality of the data will often be
reduced in the first step. There are multiple ways to
achieve this goal. One is to select a subset of genes
based on certain criteria such that this subset of genes
is believed to best predict the outcome. This gene selec-
tion strategy is typically based on some univariate mea-
surement related to the outcome, such as t-test and

rank test [3,4]. Another strategy is to use a weighted
combination of genes of lower dimension to represent
the total variation of the data. Representative approaches
are principle component analysis (PCA) [5] and partial
least squares (SLR) [6-9]. Machine learning algorithms
such as LASSO [10,11] and Random Forest [12] have
embedded capacity to select variables while simulta-
neously making predictions, and can be used to accom-
modate high dimensional microarray data.
As always, there is no one-size-fits-all solution to this

problem, and one often needs to resort to a mix-and-
match strategy. The univariate-measurement based gene
selection is a very popular approach in the field. It is
fast and scales easily to the dimension of the data. The
output is usually stable and easy to understand, and ful-
fills the objectives of the biologists to directly pursue
interesting findings. However, it often relies on over-
simplified models. For instance, the univariate analysis
evaluates every gene in isolation of others, with the
unrealistic assumption of independence among genes.
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As a result, it carries a lot of noise and the selected
genes are often highly correlated, which themselves cre-
ate problems in subsequent analysis. Also, due to the
practical limit of the size of the gene subset, real infor-
mative genes with weaker signals will be left out. In
contrast, PCA/PLS constructs a few gene components as
linear combinations of all genes in a dataset. This
“Super Gene” approach assumes that the majority of the
variation in the dataset can be explained by a small
number of underlying variables. One then uses these
gene components to predict the outcome. These
approaches can better handle the dependent structure of
genes and their performances are quite acceptable [13].
But it is harder to interpret gene components biologi-
cally, and to assess the effect of individual genes one
needs to look at the weight coefficients of the linear
combination. Machine learning algorithms are very
attractive variable selection tools to deal with large quan-
tities of genes. They are prediction algorithms with
embedded abilities to select gene subsets. However,
whether or not a gene is chosen by a learning algorithm
may not be the best measurement of its importance.
Machine learning algorithms are constructed to achieve
an optimal prediction accuracy, which often overlooks
the importance of each variable. Consequently, small
changes in data or tuning parameters may result in big
changes in variable rankings and the the selected gene
subsets are instable. For example, Random Forest, a tree-
based non-parametric method, has a variable importance
measurement that greatly contributes to its popularity.
This measurement is sensitive to the parameter choices
of trees in the presence of high correlations among vari-
ables, because different sets of variables can produce
nearly unchanged prediction accuracy [14,15]. Another
example is LASSO – one of the most popular regulariza-
tion algorithms. Assuming a sparse signal, LASSO han-
dles the high dimensionality problem by shrinking the
coefficients of most variables towards zero [16]. A recent
implementation of LASSO is in the GLMNET R package
[17]. The package uses a coordinate descent algorithm
and can finish an analysis of 20,000 variables within a few
seconds. To us, its result is somewhat sensitive to the
choice of the penalizing parameter l. Different ls may
result in gene subsets with little overlapping. In the mean
time, variable importance measurements are not readily
available in LASSO. One can simply rank genes by their
coefficients, but this can be quite subtle. Although per-
mutation tests may be used to derive p-values, how to
perform the permutation is a tricky matter due to selec-
tion of tuning parameters. For small p-values, it is still
computationally infeasible. In this paper, inspired by con-
cepts of counterfactual effects from the causal inference
literature, we propose a targeted variable importance
measurement [18,19] to rank genes and reduce the

dimensionality of the dataset. Counterfactuals are usually
defined in the context of treatment to disease. It is the
outcome a patient would have had a treatment been
assigned differently, with everything else held the same.
Hence counterfactuals are “counter"-fact and apparently
impossible to be observed. But it can be estimated statis-
tically. Suppose that we have an outcome Y, a binary
treatment A, and the confounding variables W of A, and
we have worked out correctly an estimate Ê of the condi-
tional expectation of Y given A and W. A common way
to estimate the counterfactual effect of A is to compute
the difference between the Ê(Yi|Ai = 1,Wi) and the

Ê(Yi|Ai = 0,Wi) for every observation and then average
over all observations, referred to as the G-computation
method [20]. Although counterfactuals may not be com-
pletely relevant to gene microarray data, thinking about
the data in this way is very helpful for us to assess the
importance of a gene. Our VIM definition uses the con-
cepts of counterfactuals and the estimation framework is
built on the methodology of targeted maximum likeli-
hood estimation (TMLE) [21]. By tailoring this recently
developed technique specifically to gene expression data,
we hope to introduce to the community an alternative
strategy to carry out gene selection in addition to current
methods. Our approach takes the advantage of prediction
power of learning algorithms while targeting at the indi-
vidual importance of each variable. Its mathematical
property has been studied in [22], and we will focus on
its application. In brief, our approach consists of two-
stages. In the first stage, we predict the outcome given all
genes. In the second stage, we improve the first stage by
modeling the mechanism between an individual gene and
its confounding variables. Both stages can be very flexible
ranging from using univariate analysis to refined learning
algorithms. When machine learning algorithms are used,
we have the flexibility to determine how to make predic-
tions without restricting ourselves to explicit models and
distributions. In the meanwhile, as in the case of the uni-
variate analysis, we return to a simple and well interpre-
table measure of the importance of each gene. This
importance measurement is derived in the presence of
the confounding variables of a gene, and hence can help
to exploit the redundant information among correlated
genes. It is generally also more stable than the variable
importance produced by machine learning algorithms. In
addition, our approach provides a simple way for statisti-
cal inference based on asymptotic theories, and is well
suited for the exploratory analysis of microarray data.

Methods
Suppose the observed data are i.i.d. Oi = (Yi, Ai, Wi),
where Y is a continuous outcome, A is the gene of inter-
est, W is a set of confounding variables of A, and i = 1,
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..., n indexes the observation. Let Ψ(a) represents the
variable importance measurement (VIM) of A. One can
define the VIM of A as the marginal effect of A on the
outcome Y at value A = a relative to A = 0 adjusted for
W, and then averaged over the distribution of W [18]:

�(a) = EW[E(Y|A = a,W) − E(Y|A = 0,W)].

Consider the semiparametric regression model:

E(Y|A,W) = βA + f (W),

where f(W) is a function of W. With this parameteri-
zation, we have Ψ(a) = ba. We can then view b as an
index of the VIM of A. In the above model, the only
assumption we make is the linearity of A. The definition
of the VIM of A is closely related to the definition of
the counterfactual effect in causal inference [23].
Although b can not be directly interpreted as an causal
effect without proper assumptions [19], it serves well as
a surrogate of the magnitude of the causal relationship
between the outcome and a gene. The motivation of
this parameterization is that by selecting more causally
related genes, the resulting prediction function will be
better generalized to new experiments with the same
causal relation between the outcome Y and A, but a dif-
ferent joint distribution of W. If in a next experiment,
the technology or the sampling population is somewhat
different, but the causal mechanism is still the same,
then a prediction function that uses the correlates of the
true causal variables will perform poorly while a predic-
tion function using the true causal variables will still
perform nicely. This idea will be illustrated in our
simulations.
Our goal is to estimate b. In [22], this estimation pro-

blem was addressed in the framework of targeted maxi-
mum likelihood estimation (TMLE). TMLE is an
estimating equation and efficient estimation theory
based methodology [24], and is particularly useful when
it comes to semiparametric models. Estimators from the
traditional method such as MLE perform well for para-
metric models, however, they are generally biased rela-
tive to their variances especially when the model space
is large. This is because the MLE focuses on doing a
good job on the estimation of the whole density rather
than on the parameter itself. TMLE is designed to
achieve an optimal trade-off between the bias and the
variance of the estimator. It uses an MLE framework,
but instead of estimating the overall density, TMLE tar-
gets on the parameter of interest and produces estima-
tors minimally affected by changes of the nuisance
parameters in a model. In Additional File 1 we provide
a brief overview of this methodology with a demo simu-
lation example. The formal mathematical formulation of
TMLE can be found in the original paper by van der

Laan and Rubin [21]. The implementation of TMLE to
estimate b is fairly simple and consists of two stages.
First, we estimate E(Y |A, W) without any parametric
restriction. We then regress the residual of Y and E(Y |
A = 0, W) onto bA to conform with our semiparametric
regression model. This will yield an initial estimator of
b and fitted values of E(Y |A, W), denoted by β

(0)
n and

the Q(0)
n . In the second stage, we update these initial

estimates in a direction targeted at b. This involves
regressing the residuals of Y and the fitted Q(0)

n on the
clever covariate A - E(A|W). The E(A|W) evaluates the
confounding of A with W, and we name it the “gene
confounding mechanism”. It needs to be estimated if
unknown. Let us denote the coefficient before the clever
covariate as ε. The updated TMLE estimate of b is

β
(0)
n + εn, where εn is the estimated value of ε. The var-

iance estimate of b can be computed from its efficient
influence curve. Below is a step-by-step implementation
of our algorithm, and we refer to it as the TMLE-VIM
procedure.

1. Obtain the initial estimator Q(0)
n and β

(0)
n . Use

your favorite algorithm here, for example, linear
regression, LASSO, Random Forest, etc.
2. Obtain the gn(W) estimate for the gene confound-
ing mechanism E(A|W ). As in the case of Qn(0), a
broad spectrum of algorithms can be used. In this
paper, we use LASSO (in the GLMNET R package)
for its optimal speed.
3. Compute the “clever covariate":

r(A,W) = A − gn(W).

4. Fit regression Y ′ = Y − Q(0)
n ∼ εr(A,W).

5. Update the initial estimate β
(0)
n with

β
(1)
n = β

(0)
n + εn,

and update the initial fitted values Q(0)
n with

Q(1)
n = Q(0)

n + εnr(A,W).

6. Compute the variance estimate σ 2
n for β

(1)
n accord-

ing to its efficient influence curve:

σ 2
n =

∑
i r(Ai,Wi)

2(Yi − Q(1)
n )

2

(
∑

i r(Ai,Wi)Ai)
2 .
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where i indexes the i-th observation.

7. Construct the test statistic:

T(A) =
β
(1)
n

σn
.

T(A) follows the standard Gaussian distribution under
the null hypothesis b = 0 when the sample size n goes
to infinity.
The TMLE estimator β

(1)
n is a consistent estimator of

b when either the Q(0)
n or the gn(W ) is consistent.

When the Q(0)
n is consistent, it is also asymptotically effi-

cient. The derivations of the clever covariate, the effi-
cient influence curve, the TMLE estimate and its
mathematical properties can be found in [22] and [18].
Upon the construction of the test statistic, a p-value can
be calculated for the adjusted marginal effect of A and
used as an index of the variable importance.
In the application to dimension reduction, for each

variable in the dataset, we compute a TMLE-VIM p-
value. We then reduce our variable space based on
these p-values. There are two notions. First, in principle,
a separate initial estimator Q(0)

n should be fitted for
every gene A by forcing A as a term in the algorithm
used. This can become quite time consuming. To solve
the problem, instead of estimating E(Y |A, W) for each
A, we obtain a grand estimate Gn(V) for E(Y |V ). Here
V represents all variables in the dataset. Then for every
A in V, we carry out the regression Y ~ bA with the off-
set Gn(A = 0) to get bn(0) and Q(0)

n . Second, when
obtaining the gn(W), we want to be attentive to how clo-
sely W is correlated with A. The independence between
W and A results in zero adjustment to the initial estima-
tor, while a complete association causes b to be uniden-
tifiable. A simple option is to use all variables less than
a pre-defined correlation with A as W. In [22], they
authors suggest 0.7 as a conservative threshold. Instead
of applying a universal cutoff, we can also set individua-
lized correlation threshold for each A. Below we provide
a data adaptive procedure to do it. One first defines a
sequence of correlation cutoffs δ. For each choice of δ,
one computes the corresponding TMLE p-value for A.
One then sets a p-value threshold l, and chooses the
maximum δ that has produced a p-value less than l.
The degree of the protection is determined with the
value of l. In general, the smaller the l is, the more the
protection. The value of l can be either fixed a priori or
chosen by cross validation. We refer to it as the TMLE-
VIM(l) procedure. It allows us to adjust for the con-
founding in the dataset adaptively and flexibly, and pro-
tect the algorithm against the harm from high
correlations among variables. It works best when many

variables are closely correlated in a complex way. How-
ever, it does require more time to run, especially when
l needs to be chosen by cross validation. In many cases,
a universal cutoff of 0.7 will work fine. In Additional
File 1 we provide the mathematical formulation of the
TMLE-VIM(l) procedure. Once we have all the vari-
ables ranked by their p-values. the candidate list can be
truncated by either applying a p-value threshold or tak-
ing the top k ranked variables. Both of them are sound
practices. In our simulations and data analysis, we
usually truncate the list at a p-value threshold 0.05.

Results and Discussion
Simulation studies
We performed two sets of simulations. The first set of
simulations investigates how TMLE-VIM responds to
changes in the number of confounding variables, the
correlation level among variables, and the noise levels.
The second set studies the TMLE-VIM with more com-
plex correlation structures and model misspecification.
The performance of the dimension reduction procedure
was primarily evaluated by the achieved prediction accu-
racy using a prediction algorithm on the reduced sets of
variables, illustrated in the following analysis flow:

Compute VIM → Reduced variables → Prediction Algorithm.

Two prediction algorithms, LASSO and D/S/A (Dele-
tion/Substitution/Addition) [25], were used. D/S/A
searches through the variable space and selects the best
subset of covariates by minimizing the cross validated
residual sum of squares. In our simulations, LASSO and
D/S/A predictions are often similar. We used D/S/A in
simulation I as it provides convenience to count what
variables are included in the prediction model. LASSO
was used in simulation II for its faster speed. We also
used multivariate linear regression (MVR) as a compari-
son to machine learning algorithms when applicable.
Part I
In simulation I, we varied the number of non-causal
variables (W), the correlation coefficient r among vari-
ables, and the noise level σ 2

e to see how TMLE-VIM
responds to them. For each simulated observation Oi =
(Yi, Ai, Wi), where i indexes the i-th sample, the out-
come Yi was generated from a main effect model of 25
As:

Yi = 2
25∑

j=1

Aji + ei,

where j indexes the j-th A, and ei is a normal error
with mean 0 and variance σ 2

e . Each Aj was correlated
with m Ws, and hence the total number of Ws is mw =
25 m. Aj and its associated W s were jointly sampled
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from a multivariate Gaussian distribution with mean 0
and variance-covariance matrix S, where S is a correla-
tion matrix with an exchangeable correlation coefficient
r. This simulation scheme resulted in 25 independent
clusters of covariates. Within each cluster, the covariates
are correlated at level r.
Simulations were run for combinations of:

• m = (10, 20) corresponding to mw = (250, 500);
• se = (1, 5, 10);
• and r = (0.1, 0.3, 0.5, 0.7, 0.9).

For each combination, we simulated a training set of
500 data points and a testing set of 5000 data points.
The training set was used to obtain the prediction
model while the testing set was used to calculate the L2
risk. We also calculated a cross-examined L2 risk using
a testing set with a r other than that of the training set.
This is to demonstrate that by identifying more causally
related variables, TMLE-VIM is robust to the change of
the joint distribution among the covariates As and Ws.
In specific, for each prediction model obtained from a
training set, we calculated the L2 risk on the testing set
generated with r = 0.1 regardless of what r was used to
generate the training set. As a benchmark, we also used
univariate regression in parallel with TMLE-VIM to
reduce the dimensionality of the dataset, denoted with
UR-VIM. Once the variable importance was calculated,
we cut short the variable list using a p-value threshold
0.05. Each combination was replicated 10 times and
results took the average.
TMLE-VIM used LASSO to obtain both the initial

estimator Q(0)
n and the gene confounding mechanism

estimator gn(W ). In the gn(W ), W was all the variables
excluding A. TMLE-VIM has demonstrated a consis-
tent advantage over UR-VIM with respect to the final
prediction error over a range of simulation settings.
This is particularly the case when the joint distribution
of the covariates changes and when predictions were
made by MVR that lacks internal capacity of model
selection. Smaller se, larger mw, and larger r tend to
magnify this advantage. Also, TMLE-VIM risks have
smaller standard errors than the UR-VIM risks. In
Table 1, we present our simulation results for five dif-
ferent r values and two different mw values, with σ 2

e
fixed at 5. The following summary quantities are
reported:

• Rr = (UR-VIM risk - TMLE-VIM risk)/UR risk: the
proportion of the risk reduction of TMLE-VIM rela-
tive to the UR-VIM risk. It measures by how much
TMLE-VIM outperforms UR-VIM. The bigger the
number, the more the advantage.

•RA = TMLE-VIM NA/UR-VIM NA: the ratio of the
number of As (NA) in the TMLE-VIM list to the
number of As in the UR-VIM list.
•RW = TMLE-VIM NW/UR-VIM NW : the ratio of
the number of Ws (NW) in the TMLE-VIM list to
the number of Ws in the UR-VIM list.
•RRDSA = TMLE-VIM PA/UR-VIM PA: the ratio of
the proportion of As (PA) in the final D/S/A predic-
tion model resulted from the TMLE-VIM procedure
to that from the UR-VIM. It measures the relative
chance of arriving at a truly associated variable in
the final model through the path of TMLE-VIM,
referenced to the UR-VIM.

The Rr was calculated on two different testing sets.
One is the testing set generated with the same r as the
corresponding training set, and we refer it to “testing set
(a)"; the other is the testing set generated with r = 0.1,
and we refer it to “testing set (b)”. Testing set (a) shares
the same correlation structure as the training set, while
in testing set (b) all the variables are essentially indepen-
dent of each other. Testing set (b) is a simple represen-
tation of the scenario that when a new experiment is

Table 1 The simulation I results

r mw = 250 mw = 500

MVR DSA MVR DSA

Rr 0.2341 ;
0.2251

0.2436 ;
0.2351

0.4035 ;
0.3784

0.4230 ;
0.3943

0.1 RA 1.0870 - 1.2136 -

RW 0.6522 - 0.8846 -

RRDSA na 1.0130 na 1.0680

Rr 0.2202 ;
0.2297

0.2231 ;
0.2247

0.2341 ;
0.2307

0.2027 ;
0.1975

0.3 RA 1.0776 - 1.0684 -

RW 0.1528 - 0.0958 -

RRDSA na 1.0345 na 1.0299

Rr 0.2425 ;
0.3115

0.1169 ;
0.1285

0.4883 ;
0.5959

0.1268 ;
0.1217

0.5 RA 1.0373 - 1.0331 -

RW 0.0355 - 0.0149 -

RRDSA na 1.0251 na 1.0335

Rr 0.3599 ;
0.5872

0.1307 ;
0.2545

0.8001 ;
0.9093

0.1740 ;
0.2976

0.7 RA 1.0081 - 1.0000 -

RW 0.0275 - 0.0162 -

RRDSA na 1.0693 na 1.1055

Rr 0.2262 ;
0.7248

-0.1364 ;
0.2805

0.9390 ;
0.9885

-0.5498 ;
0.2657

0.9 RA 0.8415 - 0.5502 -

RW 0.0364 - 0.0204 -

RRDSA na 1.2630 na 1.6103

Bold fonts: testing set (a). Italic fonts: testing set (b).

na: not available. -: the same value as the previous entry.
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conducted the overall joint distribution of the covariates
changes while the causal mechanism remains the same.
In Table 1, the bold Rr was calculated on testing set (a),
and the Italic Rr was on testing set (b). We make a few
points here about Table 1:

• The proportion of the risk reduction (Rr) of the
TMLE-VIM relative to the UR-VIM is typically
more than 20% for the MVR prediction and 10% for
the D/S/A prediction. In some cases, the risk reduc-
tion of the MVR can be very significant. For exam-
ple, when mw = 500 and r = 0.7, the TMLE-VIM
risk is close to only half of the UR-VIM risk. TMLE-
VIM tends to deliver more advantages when mw =
500 than when mw = 250. When the correlation
coefficient r increases, the TMLE-VIM performs
increasingly better than the UR-VIM for the MVR
prediction. For the D/S/A prediction, small or large
rs seem to benefit most from the TMLE-VIM. For
intermediate r, the benefit is still there but reduced.
We believe that how much the risk can be reduced
by the TMLE-VIM is a combination of factors such
as the number of As and Ws in the reduced candi-
date list, the correlation structures among covariates
and the internal optimization procedures of D/S/A.
The advantage of the TMLE-VIM over the UR-VIM
does seem to be more significant on the testing set
(b) than the testing set (a), in support of our hypoth-
esis that by identifying more causally related vari-
ables the TMLE-VIM results generalize better to
new experiments.
• Most RA values are slightly higher than 1 while the
RW values are much smaller. This indicates that on
average, in the TMLE-VIM list, the number of cor-
rectly identified As is slightly higher than that in the
UR-VIM list, while the number of falsely associated
Ws is much less. It is especially the case when the
correlations are high among variables. The low
counts of false positives is a major contributing fac-
tor that the prediction made on the TMLE-VIM
candidate list is better than that on the UR-VIM.
• As to the number of As that are finally made into
the D/S/A prediction model, the TMLE-VIM in
most cases displays a slight advantage over the UR-
VIM. A closer look reveals that the variables
included in the D/S/A model only differs by one or
two between the TMLE-VIM and the UR-VIM. But
the prediction risk has a measurable difference. This
probably implies that every single variable counts in
making good predictions in these simulations.
• When r = 0.9, the situation seems to be losing its
track. The TMLE-VIM did worse than the UR-VIM
in terms of correctly identified variables as well as
the prediction risk of the testing set (a). Considering

the high correlations among variables, this could
possibly be attributed to the overfitting in the gn(W).
Indeed, in [22], the authors showed that TMLE dete-
riorates when adjusting for variables with correlation
coefficients beyond 0.7. However, the RRDSA indi-
cates that the chance of including a correct variable
in the final D/S/A model based on the TMLE-VIM
list is higher than that on the UR-VIM. Further
looking into the data, we found out that the number
of As that made into the D/S/A model from the
TMLE-VIM list is actually greater than that from
the UR-VIM, while the number of Ws is much less.
Henceforth, the D/S/A model built on the TMLE-
VIM list is closer to truth, but somehow its predic-
tion is worse than the model built on the UR-VIM
list. This seems to suggest that when provided with
the UR-VIM list, the D/S/A has offset its model for
the missed As from highly correlated Ws, while for
the TMLE-VIM, this can not be done since there
are not many Ws in the list. It is the same reason
that the UR-VIM underperforms the TMLE-VIM on
the testing set (b) when those surrogates of As were
lost. For the MVR, although the TMLE-VIM shows
a dominant advantage over the UR-VIM with respect
to the prediction accuracy, the TMLE-VIM only
identified 77% (when mw = 250) and 57% (when mw

= 500) of the As identified by the UR-VIM. The bet-
ter prediction is merely due to the fact that the
MVR breaks down when too many variables entered
the model. This is particularly the case when mw =
500.

Figure 1 presents a graphical representation of a typi-
cal example in simulation I with (se = 5, mw = 250, r =
0.7). Besides the advantage displayed by the TMLE-VIM
relative to the UR-VIM, we also see much smaller differ-
ences between the TMLE-VIM risks of the testing set
(a) and (b) compared to the UR-VIM because TMLE-
VIM was able to detect more As. In summary, when
confounder are properly adjusted in gn(W ), TMLE-VIM
improves not only the performance of relatively simple
algorithms such as the MVR, but also the more complex
learning algorithms with built-in capacities of variable
selection. Interested readers can find all the original pre-
diction risks and counts of As and Ws and their stan-
dard errors in Additional File 2 for this simulation.
Part II
Simulation II examines the TMLE-VIM on larger-scale
datasets with much more complex correlation struc-
tures. The simulation consists of 500 samples and 1000
variables. We used a correlation matrix derived from the
top 800 genes in a real dataset published in [26]. For
these genes, the median absolute correlation coefficient
was centered at 0.26, the 1st/3rd quartile being 0.16/

Wang and van der Laan BMC Bioinformatics 2011, 12:312
http://www.biomedcentral.com/1471-2105/12/312

Page 6 of 12



0.37, and the maximum as high as 0.9977. Hence, simu-
lation II tried to mimic the correlation structure in this
real data set. The outcome Y was generated from two
different models using 20 As. One is a linear model, and
the other is polynomial.
Details of this simulation is provided in the Additional

File 1. A test dataset of 5000 points were simulated to
assess the L2 prediction risk. We repeated the simulation
for 10 times and results took the average. In TMLE-VIM,
we tried two different initial estimators. One is the univari-
ate regression as simple as Y ~ A, and the other is the
LASSO estimator. LASSO was also used to get the gn(W )
and to make the final predictions. we adjusted universally
in the gn(W ) for the variables that are correlated with A
with an arbitrary correlation coefficient less than 0.7. All
the Q(0)

n and gn(W ) models were main-term linear. Hence,
with the polynomial outcome, we could examine how
TMLE-VIM performs when mis-specified models were
provided. To summarize the result, we computed a R2

quantity, representing the proportion of explained variance
relative to an intercept model. It is defined as 1 - mean

risk/MST, where MST =
1
n

∑
i (Yi − Ȳ)

2 and Ȳ is the

mean of Y. Table 2 lists the R2 and the number of true
positives (T.P.) and false positives (F.P.) in the reduced list
of candidate variables, for the UR-VIM, the

TMLE - VIM(Q(0)
n = UR), and the

TMLE - VIM(Q(0)
n = LASSO). Compared to UR-VIM,

TMLE-VIM improved the prediction risk by providing
LASSO a candidate list with more truly and less falsely
associated variables for both the linear and polynomial
simulations. It is worth noting that even with an initial
estimator as simple as the univariate regression

(Q(0)
n = UR), TMLE-VIM still achieves a significant

increase in R2 by modeling the gn(W ).
The numbers in Table 2 were based on candidate lists

that were cut short with a p-value threshold of 0.05. In
Table 3, we provide the results based on the top 100
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Figure 1 A typical example in simulation I. This graph presents the average L2 risk of the final prediction model on the candidate list from
the UR-VIM and the TMLE-VIM, for simulation I data with setup (se = 5, mw = 10, r = 0.7). In the left panel, the MVR risk is plotted against a
series of p-value thresholds used to truncate the candidate list; the right panel plots the D/S/A risk. The testing set (a) predictions are grouped in
solid blue lines, and the testing set (b) predictions are grouped in broken orange lines. Dots represent the UR-VIM, and triangles represent the
TMLE-VIM.
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ranked genes. The numbers of UR-VIM and the

TMLE - VIM(Q(0)
n = UR) are less satisfying than those in

Table 2, while the TMLE - VIM(Q(0)
n = LASSO) achieved

comparable results. This suggests that the

TMLE - VIM(Q(0)
n = LASSO) p-values of As are among

the smallest ones, and shortening the length of the list
does not affect the final result. Regardless of the wea-
kened results, The TMLE - VIM(Q(0)

n = UR) still displays
a non-ignorable advantage over the UR-VIM with
respect to the prediction accuracy, while the number of
correctly identified As is slightly smaller than that of the
UR-VIM. We then looked at the correlation matrix
among the top 100 selected genes, and it occurs that
the correlation among them is the least for the
TMLE - VIM(Q0

n = LASSO), the most for the UR-VIM,

and the TMLE - VIM(Q(0)
n = UR) lies in between. This

could explain why the TMLE - VIM(Q0
n = UR) does a

better job in prediction regardless of less As.
We also carried out the TMLE-VIM(l) procedure

with LASSO as the initial estimator, allowing the
data select the correlation cutoff for variables to be
adjusted in the gn(W ). Results are also reported in
Table 2 and Table 3. TMLE-VIM(l) identified more
As but also more Ws, and the prediction accuracy is
only slightly improved. On the other hand, the corre-
lations among the selected top 100 variables are
quite small. It seems by data adaptively adjusting for
the correlation levels in the gn(W), TMLE-VIM(l)
returns a more independent set of genes. The actual
risks and standard errors are contained in Additional
File 2.

Data Analysis
Breast cancer patients are often put on chemotherapy
after the surgical removal of the tumor. However not all
patients will respond to chemotherapy, and proper gui-
dance for selecting the optimal regimen is needed. Gene
expression data have the potential for such predictions,
as studied in [26]. The dataset from [26] contains the
gene expression profiling on 22283 genes for 133 breast
cancer patients. The outcome is the pathological com-
plete response (pCR). This is a binary response asso-
ciated with long-term cancer free survival. There are
also 13 clinical variables collected in the dataset includ-
ing the ER (estrogen receptor) status, which is a very
significant clinical indicator for chemotherapy response.
The goal of the study is to select a set of genes that

best predict the clinical response pCR. The first step is
to reduce the number of genes worth of consideration,
and we applied both UR-VIM and TMLE-VIM (with Q
(0) = UR and Q(0) = LASSO) for this purpose. For the
TMLE-VIM(Q(0) = LASSO), the Q(0)

n was estimated by
LASSO using the top 5000 ranked genes. We then took
all the genes with the FDR-adjusted p-values less than
0.005 [27], as suggested in the original paper, and upon
them we built a predictor using the Random Forest
(tuning parameters mtry = number of variables/3, ntree
= 3000 and nodesize = 1). The clinical covariates were
treated in the same way as genes. To prevent the algo-
rithm from breaking down, we only adjusted for the
confounder with correlation coefficients less than 0.7
with A in the gn(W ). We carried out a 10-fold honest
cross validation. We divided the dataset into 10 subsets.
Each subset was regarded as a validation set and the

Table 3 The simulation II results (top 100)

Simulation

Linear Polynomial

R2 T.P cor. R2 T.P. cor.

UR-VIM 0.1444 9.0 0.2956 0.0862 8.2 0.3642

TMLE - VIM(Q0
n = UR) 0.1907 8.8 0.2534 0.1605 7.2 0.2590

TMLE - VIM(Q0
n = LASSO) 0.6059 19.9 0.2289 0.4132 19.2 0.2234

TMLE-VIM(l) 0.5916 20 0.1242 0.3859 17.7 0.0867

The candidate variable list contains the top 100 variables ranked by their p-values.

Table 2 The simulation II results (p-value)

Simulation

Linear Polynomial

R2 T.P F.P. R2 T.P. F.P.

UR-VIM 0.2887 13.8 605.3 0.1851 13.4 555.9

TMLE - VIM(Q0
n = UR) 0.4849 16.6 280.5 0.3245 14.7 255.5

TMLE - VIM(Q0
n = LASSO) 0.6289 19.7 29.1 0.4203 17.9 24

TMLE-VIM(l) 0.6479 20 41.6 0.4498 19.2 105.9

The candidate variable list contains all variables with p-values less than 0.05.
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rest as the training set. We reperformed the entire ana-
lysis, i.e. VIM calculation ® dimension reduction ®
Random Forest classifier, on all 10 training sets and pre-
dicted the outcome of the validation set using the classi-
fier built on the training samples. We can then use

these cross validated predictions to assess the true clas-
sification accuracy of our algorithm.
Analysis results are tabulated in Table 4. The UR-VIM

produced a candidate list of 326 genes and one clinical
variable the “ER status”, while the list of the TMLE-VIM

Table 4 The analysis result of the breast cancer dataset

Num. of genes in the candidate list C.V. classification accuracy Corr. level among the top 100 genes

UR-VIM 327 0.7669 0.43

TMLE - VIM(Q0
n = UR) 660 0.7744 0.18

TMLE - VIM(Q0
n = LASSO) 818 0.7744 0.21

Figure 2 The venn diagram of the breast cancer data. This venn diagram shows the overlaps of identified candidate genes from the breast
cancer dataset using the UR-VIM, the TMLE - VIM(Q(0)

n = UR), and the TMLE - VIM(Q(0)
n = LASSO).

Wang and van der Laan BMC Bioinformatics 2011, 12:312
http://www.biomedcentral.com/1471-2105/12/312

Page 9 of 12



(Q(0) = UR) consists of 660 genes and TMLE-VIM(Q(0) =
LASSO) 818 genes. The TMLE-VIM identified many
more genes than the UR-VIM. Among all the identified
genes, 429 overlap between the TMLE - VIM(Q(0)

n = LASSO)

and TMLE - VIM(Q(0)
n = UR), 15 overlap between the UR-

VIM and TMLE-VIM(Q(0) = UR), 10 overlap between the
UR-VIM and TMLE-VIM(Q(0) = LASSO), and only 4
genes are shared among all three (please see Figure 2).
The TMLE-VIM appeared to have selected almost a differ-
ent set of genes than the UR-VIM.
The TMLE-VIM(Q(0) = UR) and the TMLE-VIM(Q(0)

= LASSO) results are quite similar to each other regard-
less of the adequate difference between the initial esti-
mators. It seems the modeling of the gn(W ) had played
a significant role and steered away the initial univariate
estimates. Further investigation found out that genes in
the UR-VIM list are highly correlated with the clinical
indicator ER status, while the TMLE-VIM genes are not.
Consequently, the TMLE-VIM genes are less correlated
to each other than the UR-VIM genes. Looking at the
first 100 ranked genes, the absolute median of the corre-
lation coefficients for the UR-VIM is 0.43, while for the
TMLE-VIM, it is about half of that number. Although
the input variables to the Random Forest are different,
The cross validated (CV) classification accuracy are
quite similar among these three methods. We also
passed all 22,000 genes to Random Forest and looked at
its variable importance measurement. The Random For-
est VIM (RF-VIM) is more similar to the UR-VIM:
about 50% of them overlap but only a few overlap with
the TMLE-VIM. The RF-VIM genes are also highly cor-
related with the ER status, albeit the less severity than
the UR-VIM. Its OOB classification accuracy (0.7669) is
comparable with all three other methods.
In summary, the UR-VIM and RF-VIM seemed to

have identified genes that are strong predictors of the
clinical variable ER status. The ER status is a strong
indicator of the outcome pCR. Hence, the final predic-
tion accuracy still seems quite good. The TMLE-VIM
has identified a list of genes of which a small proportion
is strong predictors of ER status and others are not
associated with the ER status. Its prediction accuracy is
slightly better than that of the UR-VIM and RF-VIM.

Conclusions
We have shown in this paper with extensive simulations
that the TMLE based variable importance measurement
can be incorporated into a dimension reduction proce-
dure to improve the quality of the list of the candidate
variables. It requires an initial estimator Q(0)

n and a gene
confounding mechanism estimate gn(W). A consistent

Q(0)
n ensures the consistency and the efficiency of the

TMLE estimate. When Q(0)
n is not consistent, a correct

specification of gn(W) can still produce consistent esti-
mates while that estimate will not be efficient any more.
We generally recommend to do as good a job as we can
on obtaining the Q(0)

n , as a better Q(0)
n means both a

smaller bias and a smaller variance. Nevertheless, algo-
rithms as simple as univariate regression are also valid
choices, and in this case, we will rely solely on the good-
ness of gn(W ). The computation of gn(W ) directly
affects the speed of the TMLE-VIM, as it has to be
redone for every variable. Hence, one may want to
choose an approach that is reasonably fast. In our study,
we chose the GLMNET R Package as our primary tool
to get gn(W ), and it worked very well. In practice, one
needs to balance the resources used for the initial esti-
mator and the gene confounding mechanism. With a
proper design of the two estimating stages, TMLE-VIM
is a fairly fast procedure. It is also worth mentioning
that the TMLE-VIM can sometimes be sensitive to the
overfitting in the Q(0)

n , and hence, caution needs to be
exercised when choosing an aggressive algorithm.
A popular dimension reduction approach is the princi-

ple component analysis (PCA). The PCA computation
does not involve the outcome, and so it could be less
powerful when prediction is the primary goal. Its output
is a linear combination of all the genes. Though not a
gene selection approach, we still carried it out on our
simulation I data as an interesting comparison to our
approach. PCA demonstrates an intermediate perfor-
mance with respect to the UR-VIM and the TMLE-VIM
on small p-value cutoffs. This means a few top compo-
nents carry all the prediction power. When the p-value
cutoff is increased, and more components enter the can-
didate list, its results became quite unsatisfying. When
the correlation structure changes among the genes, PCA
has done a poor predicting job. The PCA results are
contained in Additional File 3.
Usually, the reduced set of variables will serve as the

input of a prediction algorithm to build a model. Such
algorithms used in this article include MVR, LASSO,
and D/S/A. We have noticed that in most of our simula-
tions, the MVR prediction often achieves a similar risk
as LASSO and D/S/A on the TMLE-VIM reduced set of
variables. It suggests that further variable selection may
not be necessary for the TMLE-VIM candidate list, and
we can use simpler algorithms to get a good prediction.
In fact, the TMLE-VIM can go beyond the scope of
dimension reduction. It can be iteratively applied to the
data until it converges to a list of several variables that
are most likely to be causal to the outcome. In this case,
one may want to use the Super Learner [28] as the pre-
diction algorithm, which works more effectively with the
TMLE-VIM. The Super Learner is an ensemble learner
that combines predictions from multiple candidate
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learners with optimal weights. It has been shown in [29]
that the Super Learner performs asymptotically equal to
or better than any of its candidate learners. The Super
Learner allows the data to objectively blend results from
different algorithms rather than relying on a single algo-
rithm chosen subjectively by an analyst. Hence it enjoys
a greater flexibility to explore the model space and
usually produces reasonable predictions consistently
across a wide variety of datasets, and serves as a very
good prediction algorithm for the TMLE-VIM. On the
other hand, it is also more computationally demanding.
TMLE-VIM is a quite general approach. Besides gene

expression data, TMLE-VIM can also be applied to
genetic mapping problems. The genome-wide association
studies (GWAS) can involve more than a million of
genetic markers. In this case, only the univariate analysis
seems to be feasible of ranking every marker. With the
TMLE-VIM procedure, we can run more complex algo-
rithms on a subset of top ranked markers, taking it as the
initial estimator, and then evaluate every single marker.
The variable importance of each marker is thus obtained
through a multi-marker approach and being adjusted for
its confounder. However, the GWAS in human beings is
usually case-control data, and the current TMLE-VIM
needs to be extended to accommodate such outcomes.

Additional material

Additional file 1: More detailed descriptions of the TMLE
methodology and the conducted simulations.

Additional file 2: The additional materials of the conducted
simulations.

Additional file 3: The PCA results.
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