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Abstract

Background: Genome-wide transcriptional profiling of patient blood samples offers a powerful tool to investigate
underlying disease mechanisms and personalized treatment decisions. Most studies are based on analysis of total
peripheral blood mononuclear cells (PBMCs), a mixed population. In this case, accuracy is inherently limited since
cell subset-specific differential expression of gene signatures will be diluted by RNA from other cells. While using

specific PBMC subsets for transcriptional profiling would improve our ability to extract knowledge from these data,
it is rarely obvious which cell subset(s) will be the most informative.

Results: We have developed a computational method (Subset Prediction from Enrichment Correlation, SPEC) to
predict the cellular source for a pre-defined list of genes (i.e. a gene signature) using only data from total PBMCs.
SPEC does not rely on the occurrence of cell subset-specific genes in the signature, but rather takes advantage of
correlations with subset-specific genes across a set of samples. Validation using multiple experimental datasets
demonstrates that SPEC can accurately identify the source of a gene signature as myeloid or lymphoid, as well as
differentiate between B cells, T cells, NK cells and monocytes. Using SPEC, we predict that myeloid cells are the
source of the interferon-therapy response gene signature associated with HCV patients who are non-responsive to
standard therapy.

Conclusions: SPEC is a powerful technique for blood genomic studies. It can help identify specific cell subsets that

are important for understanding disease and therapy response. SPEC is widely applicable since only gene
expression profiles from total PBMCs are required, and thus it can easily be used to mine the massive amount of

existing microarray or RNA-seq data.

1 Background

Gene expression data from blood genomic studies are
widely used for investigation of human disease [1].
Predictive gene signatures have been developed to carry
out differential diagnosis of infectious diseases [2], iden-
tify specific disease states [3] and characterize the
immune response to vaccination [4]. However, is some
cases gene expression signatures from blood can be
weakly expressed and highly variable [5]. The identifica-
tion of these signatures is complicated by the fact that
blood is a mixed tissue, composed of multiple cell sub-
sets, so that differential expression profiles can reflect
changes in cell subset proportions, changes in subset-
specific gene expression or both. In cases where the
relevant disease genes are expressed in a subset-specific
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manner, as has been shown for SLE [6], analyses based
on mixed cell expression data are inherently limited
since differential expression of genes in one cell subset
(e.g., monocytes) will be diluted by RNA from other
cells. Experimental studies that isolate specific cell sub-
sets before expression profiling can provide important
biological insight by demonstrating subset-specific gene
expression as well as increased predictive signal [7].
Given the large number of potential cell subsets that
can be defined, the ability to identify the most informa-
tive subset(s) to isolate would be a great aid to these
studies.

Most genome-wide expression studies are based on
analysis of total peripheral blood mononuclear cells
(PBMCs). PBMCs are composed of over a dozen cell
subsets that are derived from a common progenitor in
the bone marrow (Figure 1). These cells are commonly
divided into myeloid and lymphoid cells. Myeloid cells
include monocytes and their descendants, as well as
granulocytes like neutrophils and basophils. Lymphoid
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Figure 1 Hematopoietic lineage tree. Cell subset-specific gene
expression signatures were obtained from Abbas et al. [12] (marked
with *) and Palmer et al. [13] (marked with ). Only one signature
for each subset was chosen for use in SPEC (black symbols). The
remaining signatures (red symbols) were utilized as part of the
independent subset validation (Table 3).

cells are primarily composed of B cells, T cells and NK
cells. Proportions of these cells can vary widely between
individuals, but T cells and B cells together usually
make up ~75% of PBMCs, while NK cells and Mono-
cytes make up around 10-15% each. The remaining cell
types, such as dendritic cells, are much more rare, and
account for <1% of total PBMCs [8]. Neutrophils, which
normally compose the majority of cells in a blood sam-
ple (40-80%), are normally excluded by the methods
used to isolate PBMCs, but may account for up to 20%
of a PBMC sample due to contamination [9].
Genome-wide expression measurements based on
total PBMCs reflect both condition-specific gene expres-
sion as well as the proportion of different cell subsets in
the sample. Microarray deconvolution methods have
been developed to take advantage of this latter depen-
dence in order to quantify the relative proportion of dif-
ferent cell subsets [10]. In this approach, the expression
level of each gene is modeled as a linear function of the
expression from each cell subset comprising the sample.
Deconvolution thus depends on prior knowledge of
quantitative expression levels for each subset. In cases
where the subset proportions have been measured
experimentally, methods have been developed to com-
pute subset-specific differential-expression for individual
genes [11]. However, in addition to requiring measure-
ments that are not available for many existing datasets,
these methods do not directly address the problem of
predicting the cell subset source of a pre-defined gene
signature (e.g., one that is externally-derived or biologi-
cally-motivated). In some cases, clues to the cellular
source of a gene expression signature may be found in
the signature itself. This would be true when the
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signature is enriched for genes known to be expressed
in a particular cell type [1], and may occur when the
proportion of cells in the blood changes in the condition
of interest. For example, Berry et al. found that changes
in T-cell related genes included in a transcriptional sig-
nature of active tuberculosis resulted from changes in T
cell number in the blood [3]. In cases where the predic-
tive signature does not include a significant number of
cell subset-specific genes, the problem may be addressed
experimentally through the isolation of specific cell sub-
sets followed by transcriptional profiling [7].

However, it is often not obvious which cell subset(s)
will be the most informative. The time and expense of
isolating and analyzing all possibly relevant cell subsets
provides the motivation for the method developed here:
a computational approach to predict the most likely cell
subset source of a gene expression signature. The devel-
opment of this method was also motivated by the clini-
cal problem of predicting the outcome of antiviral
therapy in patients chronically infected with hepatitis C
virus (HCV). In this case, gene expression changes that
are predictive when measured in hepatocytes are signifi-
cantly blunted in PBMCs, making it difficult to develop
highly predictive models from this cell population [5].
The isolation of specific cell subsets prior to expression
profiling may allow for the identification of predictive
signatures based on a blood sample, with significant
advantages for the patient.

We have developed a computational method to pre-
dict the most likely cellular source for a pre-defined
gene expression signature using transcriptional profiling
data from total PBMCs. The general approach we pro-
pose is to: (1) estimate the relative proportion of each
PBMC subset from individual patients using genome-
wide transcriptional profiling data, and (2) correlate
these proportions with the gene expression signature
that predicts therapy. We theorize that the PBMC sub-
set proportion that correlates most closely with the pre-
dicted gene expression signature over a large set of
patients is the most likely source of the signal. As a spe-
cific example, let’s consider a study where we find that
Interferon Stimulated Genes (ISGs) are up-regulated in
a subset of patients that fail to respond to a particular
therapy. Now, we focus on the non-responding patients.
If ISG expression tends to be higher in patients where
the proportion of dendritic cells (DCs) is predicted to
be high, then we would predict that DCs are the most
likely source of the observed gene expression signature.
Note that there can be two interpretations of this result
with respect to the original study. First, the DCs may
always express ISGs, but the proportion of DCs in the
blood is higher for non-responders. Second, the DCs
undergo specific gene expression changes in non-
responders which cause the level of ISG expression to
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increase in the blood sample. In either case, DCs are the
relevant population to follow-up experimentally. Here,
we develop this general idea into a computational
method called SPEC (Subset Prediction from Enrich-
ment Correlation), which we then validate using both
healthy and disease data. While the development of
SPEC was motivated by the problem of predicting the
response to therapy in HCV patients, the method is gen-
erally applicable to link gene expression signatures with
specific PBMC subsets. Since only gene expression pro-
files from total PBMCs are required, the technique can
easily be used to mine the massive amount of existing
microarray data.

2 Results

Subset Prediction from Enrichment Correlation (SPEC)
is a method that takes advantage of the fluctuations of
cell proportions in a mixed cell sample to find the most
likely source for a gene expression signal. The general
approach can be broken down into four steps:

1. Estimate the relative proportion of each PBMC
subset (e.g., B cells, T cells, etc.) across a population.
We propose to accomplish this by calculating the
enrichment score (E[s, i] for PBMC subset s and
individual i) associated with a set of genes expressed
specifically in each subset s, called a subset signature
(subsetSignature[s]). This is summarized by the fol-
lowing pseudo-code:
Code:
N_P = Number of individuals
N_S = Number of PBMC subsets
exprDatali] = gene expression profile for indivi-
dual i
subsetSignature[s] = list of genes representing
PBMC subset s
querySignature = a list of genes input by the
user
for each (iin 1 to N_P)
for each (s in 1 to N_S)
E[s, i] = enrichment of subsetSignature[s] in
exprDatali]
2. Calculate the enrichment score of the query signa-
ture for each individual i in the population:
for each (iin 1 to N_P)
Q[i] = enrichment of querySignature in
exprDatali]
3. Determine the Pearson correlation (across the
population) between the enrichment scores of the
query signature and each PBMC subset s:
for each (s in 1 to N_S)
C[s] = correlation between Q[i] and E[s,i] across i
4. Predict the subset with the highest correlation to
the query signature:
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Predicted subset = s that gives rise to the max(C

[s])

The calculation of enrichment scores is explained in
Methods and Figure 2.

2.1 Estimating relative PBMC subset proportions using
enrichment scores

The first step in our proposed method is to estimate the
relative proportion of each PBMC subset. While a num-
ber of methods exist that can estimate these values, we
chose to use enrichment scores calculated from cell sub-
set-specific gene signatures for our initial implementa-
tion of SPEC due to its relative simplicity. As described
in the methods, the enrichment score calculates the
extent to which a gene signature is concentrated among
the most highly expressed genes in a single genome-
wide expression experiment. The cell subset-specific sig-
natures are defined as groups of genes which have been
found to be up-regulated in only a specific subset of
cells in a mixed cell population. The resulting lists of
up-regulated genes represent cell markers for that blood
cell type, and include well known cell surface markers
such as CD3 for T cells and CD19 for B cells. Lists of
genes describing specific PBMC subsets have previously
been defined in [12] and in [13]. Here, we choose to use
signatures representing the B cell, T cell, NK cell, and
monocyte subsets, We also included a signature for neu-
trophils despite the fact that they are not considered
PBMCs, since neutrophil contamination can account for
up to 20% of a PBMC sample [9]. In addition, we also
use a more general set of signatures for the lymphoid
and myeloid subsets (Figure 1). The lymphoid and mye-
loid signatures are composed of genes which are

-~

Rank genes by expression

Interferon Stimulated Genes (ISGs)

Figure 2 The enrichment score calculation. Genes are ranked
based on their normalized expression levels and a running sum
statistic is calculated from an a priori defined gene signature (the
query or cell subset-specific signature in our framework). The
enrichment score is defined as the maximum deviation from zero of
the running sum. Additional details can be found in methods.
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expressed in more than one cell type from those
lineages, thus these subsets should vary according to the
sum of all the cells in that lineage. We run SPEC sepa-
rately on the detailed (B cell, T cell, NK cell, neutrophil
and monocyte) and general (lymphoid and myeloid) sig-
natures, as described below.

We hypothesize that the enrichment scores of the
subset-specific gene signatures will be related to the
relative cell subset proportions across patients. Although
microarray deconvolution can be used to accomplish
this task [10], these methods require quantitative gene
expression levels for each subset to be estimated, which
is not always available. In addition, it is important to be
clear that we do not require the enrichment scores of
different cell subsets to predict their proportions in a
single individual (as attempted by microarray deconvolu-
tion). Rather, we propose that the enrichment score for
a single cell subset will vary along with the relative size
of the cell subset across patients. For example, if subject
B has a higher fraction of NK cells than subject A then
the NK signature enrichment score should also be
higher, but both of these enrichment scores may be
higher than the T cell signature enrichment scores even
if NK cells constitute a lower fraction of cells in both
subjects. In order to validate this enrichment score
approach, we compared it with predictions from microar-
ray deconvolution [10] using data from healthy subjects
where we expect deconvolution should perform relatively
well. We predicted the relative proportions of cell subsets
for 161 healthy gene expression profiles using both
microarray deconvolution and the cell signature enrich-
ment scores. Figure 3 is an example showing the correla-
tion between the NK cell signature enrichment score and
the predicted NK cell fraction estimated using deconvo-
lution. The correlation of 0.71 implies that the enrich-
ment score is positively varying with the relative
proportion of NK cells in these healthy PBMC samples.
We found similarly high correlations for B cells, neutro-
phils and monocytes (0.65, 0.70 and 0.87 respectively). In
contrast, T cells (r = 0.21) had a much weaker correla-
tion, perhaps reflecting the quality of this particular gene
signature. Overall, these results suggest that enrichment
scores can be used to track the fluctuations in the levels
of each cell type in a mixed cell expression profile (i.e.,
from observations on total PMBCs).

2.2 Validation of SPEC using split subset signatures

As an initial validation of SPEC, we sought to predict
the source of a gene expression signature where the cor-
rect cell subset is known. This can be done by using our
pre-defined cell subset expression signatures. For exam-
ple, consider the B cell signature defined in [12]. The
genes that are part of this signature can be split into
two disjoint sets. One of these sets can be labeled as the
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Figure 3 Subset-specific enrichment scores correlate with
predicted cell fraction by microarray deconvolution. The
fraction of NK cells was estimated from the set of healthy PBMC
gene expression profiles using microarray deconvolution (y axis),
and enrichment scores based on the NK cell subset signature (x
axis). Each point is an individual patient (r = 0.71).

cell subset signature and used to estimate the changes
in the B cell population, while the other can be retained
as the query gene signature being tested. A successful
method would be able to identify this query signature as
coming from B cells or from lymphoid cells. When
running SPEC, we separately analyze the set of detailed
signatures (B cell, T cell, NK cell, neutrophil and mono-
cyte) and general signatures (lymphoid and myeloid),
which represent cell types that are a superset of those
covered by detailed signatures (Figure 1).

For each test, one of the subset signatures was ran-
domly divided into two halves, with one half used as the
query signature and the other half retained as the subset
signature. This was repeated 200 times for each of the
PBMC subset signatures. In order to determine the sig-
nificance of the correlation value for each run we used a
Monte Carlo permutation test (see Methods). The fol-
lowing two subsections describe the performance of
SPEC on healthy and disease data.

2.2.1 Performance using healthy data

A set of 161 PBMC gene expression profiles from
healthy subjects was collected from six published studies
[14-18] (see Methods for details). Figure 4 summarizes
the results of running SPEC on these data using the
split subset signature validation test described above.
Results were binned into significant vs. non-significant
groups using a p-value cutoff of 0.05. Overall, SPEC
very accurately predicts the source of the query signal
for all split signatures. Nearly all significant predictions
correctly linked the query to its proper subset and, even
including the non-significant results, there were
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Figure 4 Performance of SPEC using split subset-specific signatures on gene expression profiles from healthy subjects. Each of the cell
subset-specific signatures used in SPEC (individual pie charts) was randomly split 200 times, with half of the genes used as the query signature
and the other half retained as the cell subset signature. SPEC was considered to be correct if it linked the query to the subset from which it was
derived (shades of blue) and incorrect otherwise (shades of red). Significance cutoffs were calculated for each run to determine whether the link
between query and subset was statistically significant (p < 0.05, dark blue/red) or not (p > = 0.05, light blue/pink). Predictions that were
incorrect and statistically significant are separated and labeled with the predicted subset. Predictions that did not reach the level of statistical

significance are labeled NS+ and NS- to indicate correct and incorrect predictions, respectively. SPEC was applied separately to predict the
source of query signatures coming from (A) B cells, T cells, NK cells, neutrophils or monocytes, and (B) lymphoid or myeloid cells.

relatively few false positives. For most of the subset sig-
natures, approximately 75% of the runs were significant
and correct. As an important negative control, we found
that most results from the neutrophil subset did not
reach statistical significance reflecting that fact that
granulocytes (including neutrophils) are mostly absent
in PBMCs [9,13]. Interestingly, a large portion of the
non-significant results were still correct, most likely
because contamination from neutrophils still provides a
small amount of signal in the PBMC samples.

2.2.2 Performance in patients with disease

The previous validation experiments show that SPEC
works for PBMC expression profiles from healthy
subjects, but it is possible that the altered expression pat-
terns in disease patients could interfere with the accuracy
of SPEC. To verify that SPEC works in a disease setting,
we repeated the validation steps described in section
2.2.1 using PBMC expression data from 94 patients with
HCV [5,19,20] (Table 1), as well as 54 patients with Sys-
temic Lupus Erythematosus (SLE) [1] (Table 2). For the
HCV data, nearly all significant results correctly pre-
dicted the source of the query signature, although overall
there were fewer results that were considered significant
than in the healthy data. The SLE data, on the other
hand, actually performed better on the B and T signa-
tures with 100% of the runs being correct and significant
but, as expected, SPEC was often unable to predict the
correct source of a neutrophil signature. The monocyte

signature also was incorrectly associated with neutrophils
about half the time, suggesting that performance could
be improved by removing cell subset signatures that
should be absent from a sample. We conclude that,
despite some quantitative differences in the performance
measures compared with data from healthy subjects,
SPEC is not overly affected by potential differential gene
expression induced in SLE or HCV, and can be effectively
applied to data from individuals in a disease setting.

2.3 Validation of SPEC using independently-derived
signatures

2.3.1 Performance using independent subset signatures

An alternative method for validating SPEC is to use sig-
natures for the same cell subset that were generated

Table 1 Performance of SPEC for linking split subset
signatures using data from HCV patients

B T NK Neutrophil Monocyte
3769 0(30) 0(1) 00 0(0)
T 0(® 14 (91) 0(1) 0(0) 0 (0
NK 0(9) 0(13) 20 (56) 0O (1) 0 (23)
Neutrophil 0 (2) 0 (1 0(1) 22 (41) 3 (56)
Monocyte 0 (0) 00 0(0) 1(35) 37 (66)

Values are the percentage of time the query signature (rows) had the highest
correlation with each subset signature (columns). Values are of the form: %
significant (total %). Cells marked in bold indicate the highest value for each
query signature. Rows may not add up to 100% due to rounding.
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Table 2 Performance of SPEC for linking split subset
signatures using data from SLE patients

B T NK Neutrophil Monocyte
100 (100) 0 (0) 0(0) 0(0) 0 (0)
T 0 (0) 100 (100) 0 (0) 0(0) 0(0)
NK 0(0) 137 67 (88) 0(2) 0(0)
Neutrophil 0 (0) 0(0) 0 (0) 31 (33) 66 (68)
Monocyte 0 (0) 0(0) 0(0) 42 (47) 47 (53)

Values are the percentage of time the query signature (rows) had the highest
correlation with each subset signature (columns). Values are of the form: %
significant (total %). Cells marked in bold indicate the highest value for each
query signature. Rows may not add up to 100% due to rounding.

from independent sources. To carry this out, we rely on
studies by Abbas et al. [12] and Palmer et al. [13], which
both defined signatures for B cells and T cells, as well as
a signature for either granulocytes or neutrophils
(neutrophils are a type of granulocyte). While these sig-
natures have surprisingly little overlap with each other,
we nevertheless removed the small number of common
genes from the query signatures before running SPEC to
avoid biasing the performance measurements. As shown
in Table 3, SPEC correctly predicts the source of the B
cell signature, and the granulocyte signature was appro-
priately identified with the neutrophil signature. The
granulocyte signature is also correctly predicted as com-
ing from the myeloid cell subset (see Figure 1). The T
cell signature on the other hand does not show a signifi-
cant correlation with any subset signature. This is likely
caused by problems with one of the T cell signatures, as
we already found that this signature had the poorest
performance in the validation of enrichment scores
using deconvolution values (see section 2.1).

2.3.2 Performance using experimentally-derived
subset-specific disease signatures

Our final validation approach involved testing the ability
of SPEC to accurately predict the source of experimen-
tally-determined query signatures derived from purified

Table 3 Linking independently-derived cell-subset
signatures

B Cells T Cells Granulocyte
B Cells 0.82 -0.29 0.16
T Cells -0.08 -0.07 0.13
NK Cells 0.15 -0.29 0.27
Neutrophils 041 -0.56 0.80
Monocyte -0.22 0.09 040
Lymphocyte 0.00 0.22 -0.39
Myeloid Cells 0.15 -0.39 0.86

Values indicate the correlation between the enrichment scores calculated by
the Primary signatures (rows) and the independently derived signatures
(columns). Highlighted cells are correlations with p < 0.05
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cell subsets from SLE patients. In this case transcrip-
tional profiling data was measured specifically from pur-
ified B cells, T cells and myeloid cells [6]. We defined
cell subset-signatures as the set of genes that were
up-regulated in SLE patients (compared with healthy
controls) and that did not overlap with differentially-
expressed genes from other cell subsets (see Methods).
SLE signatures for the three cell subsets were used as
query signatures and the subset source was predicted
with SPEC. As expected, query signatures created using
a particular cell subset were linked by SPEC to the cor-
rect subset using only the gene expression data from
total PBMCs. The B cell specific disease signature has
the highest correlation with the B cell subset signature
(r = 0.73, p < 0.001, Figure 5). Similarly, the T-cell
specific disease signature has the highest correlation
with the T cell subset signature (r = 0.72, p < 0.001).
The myeloid signature had high correlation with
myeloid cells in the myeloid vs. lymphoid comparison
(r = 0.75, p < 0.0001), and also had the highest correla-
tions with all of the myeloid-derived subset signatures
in the more detailed comparisons. Thus, SPEC is
capable of predicting the source of a disease-associated
subset-specific gene expression pattern using only gene
expression from total PBMCs.

B cell disease-specific enrichment score (query)
018 020 022 024 026 028 0.30

0.30 035 040 045 050

B cell Subset-specific enrichment score (subset)

Figure 5 The experimentally-derived B cell-specific disease
signature is significantly correlated with the B cell subset-
specific signature across a population of SLE patients.
Enrichment scores were calculated for each patient (points) using
either the B cell subset-specific signature from SPEC (x axis) or the B
cell-specific disease signature produced using data from
experimentally purified B cells (see methods). The sample correlation
between these enrichment scores is r = 0.73, which is significantly
higher than the correlation of the subset signature with randomly
generated signatures (p < 0.05).
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2.3.3 Effect of query signature size on accuracy

The size of the SLE subset-specific signatures used in
the previous section was fixed as the top-100 up-regu-
lated genes. We used a fixed cutoff so that we could
easily compare between results on the different subsets.
In practice, drawing a cutoff or choosing the number of
genes to include in a gene expression signature can be
difficult, and the number of genes that reach statistical
significance for differential expression may be small.
Thus, we sought to investigate the effect of query gene
signature size on the accuracy of SPEC predictions
using the SLE disease signatures from section 2.3.2. The
size of the query signature was successively decreased,
and SPEC was applied to each of the query signatures
(Figure 6). As expected, p-values generally increased
with smaller signatures and, in this case, the results
were no longer significant when gene signatures con-
tained less than 15 genes. Interestingly, this is also the
minimum number of genes recommended for calculat-
ing robust enrichment scores in GSEA [21]. All signifi-
cant results were correct and, even with the smaller
subset sizes that failed to reach statistical significance,
SPEC often predicted the correct subset source. These
results demonstrate the importance of robust subset sig-
natures in the application of SPEC, but also highlight
the fact that SPEC can be effective even when using
relatively small query gene sets.

1e+00

1e-01

1e-02

p value

1e-03
|
e

1e-04
L ]
*s
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]

signature size

Figure 6 Effect of query signature size on SPEC accuracy. The B
cell-specific disease signature was trimmed to the size indicated on
the x-axis by removing the least differentially-expressed genes. SPEC
was then applied to the SLE dataset in order to identify the source
of this query signature using the detailed cell subsets. Predictions
were considered correct (filled circles) when the most likely subset
was determined as B cells, and incorrect otherwise (empty circles).
The dashed line indicates a p-value cutoff of 0.05.
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2.4 Case study: identifying the ISG signature source for
predicting therapy response in chronic HCV patients

The current standard therapy for chronic HCV consists
of pegylated (PEG) Interferon (IFN)-o and ribavirin.
However, this treatment is costly, poorly tolerated due
to adverse side effects, and ineffective in many patients
[22]. The majority of HCV infections in the United
States are with genotype 1, which responds poorly to
therapy (40% response rate) [23]. Methods to identify
patients who are likely to be responsive to therapy
would be a great help in clinical decision making. In
addition, the ability to predict non-responsiveness could
allow alternate treatments to be explored. Previous stu-
dies have found that patients who fail to achieve a sus-
tained virologic response (SVR) after treatment display
high baseline levels of IFN-stimulated gene (ISG)
expression in hepatocytes prior to the initiation of ther-
apy [24,25], and the expression of these ISGs is not
increased by IFN treatment. However, gene expression
changes in total PBMCs in HCV patients appear blunted
compared with looking directly at hepatocytes, making it
difficult to develop highly predictive models from this
cell population [5,25]. Because there are significant
advantages to using PBMCs for interrogating disease
processes and performing clinical tests, it is important
to investigate ways to improve the predictive power of
PBMC gene expression profiling. We hypothesize that
the accuracy of existing models based on PBMCs is lim-
ited because differential expression of ISGs is likely to
be cell type-specific, and thus their signal will be diluted
in total PBMC by RNA from other cells. This logic
applies to non-ISG signatures as well. Therefore, using
specific PBMC subsets for transcriptional profiling
should improve our ability to extract knowledge from
these data. Unfortunately, it is not obvious which cell
subset(s) are the most informative, so we have applied
SPEC to predict the most likely cellular source for pre-
dictive signatures in HCV.

We first generated a list of genes that were
significantly up-regulated in patients classified as non-
responders (compared with responders) based on gene
expression profiling data from total PBMCs in 16
chronic HCV patients generated by Sarasin-Filipowicz et
al. [5]. Using this gene list as the query signature, SPEC
was then applied to the PBMC expression profiles from
only the 6 non-responders in this study (see Methods)
in order to predict the cellular source of the up-
regulated genes. SPEC identified the myeloid subset (r =
0.74, p < 0.05), as the most likely source for this query
signature. None of the associations with the detailed sig-
natures reached statistical significance. This could be
due in part to the relatively small number of samples
used in the analysis. It is also possible that the therapy-
response signature arises from multiple cell types in the
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myeloid family, or possibly from Dendritic cells (DCs),
which were not included in our subsets for reasons pre-
viously described. Overall, these results suggest that
gene expression analysis on the myeloid subset should
improve our ability to predict therapy response in HCV
patients.

3 Discussion

Blood is a mixture of many different cell types. The abil-
ity to associate a predictive gene expression signature
with a specific cell subset would allow better classifiers
to be developed through the experimental isolation of
the most relevant cells. In addition, knowledge of which
cells are being affected would provide important biologi-
cal insights. No other computational methods exist to
directly address this problem. In this study we developed
a computational method, Subset Prediction from Enrich-
ment Correlation (SPEC), to predict the most likely cel-
lular source of a predictive gene expression signature.
Our method requires only gene expression data from
total PBMCs, and does not depend on knowing the sub-
set proportions in the blood sample. SPEC uses enrich-
ment scores to estimate the strength of gene expression
signatures across individuals in a population. The
PBMC subset signature showing the highest correlation
with the query gene signature is predicted to be the
source. We show that SPEC has good performance on
both healthy and disease data, and correctly predicts the
source of experimentally-derived subset-specific genes in
SLE patients.

As a case study, we applied SPEC to transcriptional
profiling data from chronic HCV patients in order to
predict the potential source of a gene expression signa-
ture associated with non-responsiveness to standard
therapy. Using SPEC, we predict that a stronger signal
for non-responsiveness will be apparent when focusing
on the myeloid subset. We hope that looking at the cell
subpopulations separately will allow us to develop a
blood test that can predict the clinical outcome of anti-
viral therapy prior to treatment.

The quality of cell subset gene expression signatures is
critical to the performance of SPEC. It is clear from our
results (e.g., sections 2.2.2 and 2.3.2) that some signatures
are simply better than others. In this work, we use gene
expression signatures for B cells, T cells, NK cells, neu-
trophils and monocytes available from [12] and [13]. We
decided to exclude the DC subset signatures from [12]
since we found that it did not work well within the SPEC
framework. We speculate that this is due to the fact that
DCs are such a small component of the total PBMCs
(less than 1% on average [8]). More work is needed to
define the qualities of a “good” signature for the SPEC
framework. Other groups have proposed additional sig-
natures that we plan to evaluate [26], with the long-term
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goal of defining a set of non-overlapping signatures for a
detailed set of PBMC subsets. As an alternative to apply-
ing SPEC simultaneously to all available subsets, it is
possible SPEC may be applied in a hierarchical manner:
first predicting whether the query comes from the
lymphoid vs. myeloid subsets then, if lymphoid, predict B
cell vs. T cell vs. NK cell then, if B cell, predict naive B
cell vs. memory B cell vs... and so on.

An additional area for future investigation concerns
alternatives to the enrichment score, which is currently
used for estimating both the relative cell subset propor-
tions and expression of the query signature. One possi-
bility that we have already investigated is using
microarray deconvolution, described in [10] and in
section 2.1, to measure cell subset fractions. However,
we found this method actually reduced the accuracy of
SPEC (data not shown). Future work could explore
other methods for estimating cell proportions from gene
expression data [27,28]. One thing to keep in mind is
that SPEC does not require estimating the absolute
proportion of all cell types within a single individual as
provided by deconvolution methods, but rather assumes
that we can estimate the relative proportion for each
individual cell subset across a population. By trying to
solve a harder problem, deconvolution methods may
actually introduce more error compared with enrich-
ment scores. Another advantage of enrichment scores is
that they are likely to be less dependent on sample
source (e.g., PBMCs vs. whole blood).

4 Conclusion

This work describes the implementation and validation of
a computational methodology to support blood genomics
studies with general applicability to basic and transla-
tional research. SPEC predicts the cellular source of pre-
dictive gene expression signatures. When applied to data
from chronic HCV patients, SPEC predicts that focusing
on myeloid cells may enrich for an interferon signature
that has been observed in hepatocytes from patients that
do not respond to standard therapy. The approach
requires only transcriptional profiling data from total
PBMC s, allowing wide applicability, and should improve
the predictive power of blood gene expression profiling
studies by allowing experiments to focus on the most
informative cell subsets. It is also easy to envision how
this framework could be combined with classification
methods to define predictive signatures that are more
likely to be cell subset-specific, and therefore amenable
to experimental signal enrichment through sorting.

5 Methods

Microarray data and normalization

Raw Affymetrix microarray data were downloaded from
GEO. Transcriptional profiles from PBMS were obtained
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for healthy controls (GSE11057, GSE11761, GSE14642,
GSE15645, GSE7753, GSE8507), SLE patients (GSE11908),
and chronic HCV patients (GSE7123, GSE11342,
GSE11190). Cell specific transcriptional profiles for B cells,
T cells and myeloid cells from SLE patients were obtained
from GSE10325. These data were normalized with
GCRMA [29] using the BioConductor software package
in R [30].

Generation of SLE cell specific disease signatures
Differentially-expressed genes were determined for each
cell subset (B, T and myeloid cells) by comparing SLE
and healthy individuals using the LIMMA package in
BioConductor [31]. Genes were separated into groups of
upregulated and downregulated genes, ranked by FDR,
and the top 100 genes were pulled out. Cell specific dis-
ease signatures were created by using only the genes
unique to each signature.

Generation of HCV response signature

Gene expression data was obtained from the study by
Sarasin-Filipowicz et al. [5]. Differentially-expressed
genes were determined by comparing non-responders
vs. responders using the LIMMA package in BioCon-
ductor [31]. Significance was defined using a false dis-
covery rate cutoff of 0.1 using the method of Benjamini
and Hochberg.

Enrichment score calculation

The enrichment score is calculated as described in [21]
with p = 1 and weighted by the gene rank. Genes are
ranked based on their expression values from a single
transcriptional profile (highest to lowest expression).
The enrichment score is the maximum deviation from
zero of a running sum statistic which is calculated by
walking down the ranked list of genes. The sum is
incremented whenever a gene in the signature is
encountered and decremented if the gene is not in the
signature. Increments and decrements are weighted so
the statistic sums to 0 over all the genes.

Microarray deconvolution

Deconvolution was performed to estimate the fraction of
each cell subset from a single PBMC transcriptional
profile using the methods described in [10]. The cell
subset expression data used for deconvolution was
downloaded from the supplementary material. The pre-
dicted cell proportions of related subsets were added
together to generate the final cell fraction (e.g., CD4" +
CD8" + T cell = Proportion of T cells).

Monte Carlo permutation test for P value estimation
To calculate a P value for the maximum correlation
coefficient found by SPEC, we estimated the
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distribution of these values under the null hypothesis
by randomly permuting the assignment of genes on
the microarray to the query signature, while maintain-
ing the size of the query signature. We then ran SPEC
to determine the maximum correlation between the
enrichment scores for these new queries and each
subset signature. This process was repeated 1000 times
to generate a distribution of maximum correlations.
P-values were then estimated by fitting a normal distri-
bution to these data and calculating the cumulative
density for each SPEC result.

Implementation and Availability

SPEC was implemented in the R statistical programming
language, and is available at http://clip.med.yale.edu/
SPEC. Additional requests can be made by contacting
CRB or SHK.
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