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Abstract

Background: Although homology-based methods are among the most widely used methods for predicting the
structure and function of proteins, the question as to whether interface sequence conservation can be effectively
exploited in predicting protein-protein interfaces has been a subject of debate.

Results: We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized
protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria
required for accurate homology-based inference of interface residues in a query protein sequence.

Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting
protein-protein interface residues. We present two variants of HomPPI: (i) NPS-HomPPI (Non partner-specific
HomPPI), which can be used to predict interface residues of a query protein in the absence of knowledge of the
interaction partner; and (ii) PS-HomPPI (Partner-specific HomPPI), which can be used to predict the interface
residues of a query protein with a specific target protein.

Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably
predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC) of 0.76,
sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified.
NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments
suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those
that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of
transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65,
sensitivity of 0.69, and specificity of 0.70, when homologs of both the query and the target can be reliably
identified. The HomPPI web server is available at http://homppi.cs.iastate.edu/.

Conclusions: Sequence homology-based methods offer a class of computationally efficient and reliable
approaches for predicting the protein-protein interface residues that participate in either obligate or transient
interactions. For query proteins involved in transient interactions, the reliability of interface residue prediction can
be improved by exploiting knowledge of putative interaction partners.

Background

Protein-protein interactions are central to protein func-
tion; they constitute the physical basis for formation of
complexes and pathways that carry out virtually all
major cellular processes. These interactions can be rela-
tively permanent or “obligate” (e.g., in subunits of an
RNA polymerase complex) or “transient” (e.g., kinase-
substrate interactions in a signalling network). Both the
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distortion of protein interfaces in obligate complexes
and aberrant recognition in transient complexes can
lead to disease [1].

With the increasing availability of high throughput
experimental data, two related problems have come to
the forefront of research on protein interactions: i) pre-
diction of protein-protein interaction partners; and ii)
prediction of protein binding sites or protein-protein
interfaces (PPIs). Although most effort to date has
focused on one or the other of these problems, it is pos-
sible to use information from predicted protein-protein
interaction networks as input for interface prediction
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methods, and predicted interface residues can be used as
input for interaction partner predictions, a concept
explored in a recent study of Yip et al. [2]. In the cur-
rent study, we focus on the prediction of protein-protein
interfaces, specifically, the use of sequence homology-
based methods to predict which residues of a query pro-
tein participate in its physical interaction with a partner
protein or proteins.

Computational Prediction of Protein-Protein Interfaces
Several different genetic, biochemical, and biophysical
methods have been used to identify and characterize
protein interfaces [1]. These experiments are very valu-
able and have contributed greatly to our knowledge of
protein-protein interfaces. However, the high cost in
time and resources required for these experiments call
for reliable computational approaches to identify inter-
face residues. In addition to providing important clues
to biological function of novel proteins, computational
predictions can reduce the searching space required for
docking two polypeptides [3].

To distinguish interface residues from non-interface
surface residues, a wide range of sequence, physico-
chemical and structural features have been investigated
[3-18], and many in silico approaches to protein-protein
interface prediction have been explored in the literature
(reviewed in [19-21]). Protein-protein interface predic-
tion algorithms can be classified into three categories: (i)
sequence-based methods, which use only the primary
amino acid sequence of the query protein as input
[3,22-28]; (ii) structure-based methods, which make use
of information derived from the structure of the query
protein [5,18,29-31]; and (iii) methods that use both
sequence and structure derived information in making
predictions [32,33].

Several sequence-based protein-protein interface pre-
diction methods have been explored in the literature
[3,22-28]. Most, if not all, of these methods, extract for
each residue in the query protein, a fixed length window
that includes the target residue and a fixed number of
its sequence neighbours. Each residue is classified as an
interface residue or a non-interface residue based on
features of the amino acids in the corresponding win-
dow. Various methods differ both in the specific
machine learning algorithms or statistical methods
employed and in terms of the specific features of the
amino acids used. Commonly used features include the
identity of the amino acids in the window [27], the
amino acid composition of interfaces [34], the physico-
chemical properties of the amino acids [35], and the
degree of conservation of the amino acids (obtained by
aligning the query sequence with homologous
sequences) [3]. Some studies report substantial improve-
ments in interface residue prediction when predicted
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structural properties, e.g., solvent surface accessibility
and secondary structure of the residues are utilized [21].

A number of structure-based methods [5,18,29-31] or
hybrid methods that combine both sequence and struc-
ture-derived information [32,33] have been proposed for
predicting protein interfaces. The performance of the
best-performing sequence-based methods is generally
lower than that of structure-based methods (see [21] for
a comparison). A possible explanation for the difference
in the performance of sequence-based and structure-
based protein interface residue predictors is that the lat-
ter can trivially eliminate non-surface residues from the
set of candidate interface residues and potentially exploit
a rich set of features derived from the 3D structures.

The use of structure-based methods, however, is lim-
ited to proteins for which the structure of the query
protein is available, and the number of solved structures
significantly lags behind the number of protein
sequences [35]. Even when the structure of a query pro-
tein is available, the application of structure-based pre-
diction methods is complicated by conformational
changes that take place when some proteins bind to
their partners. Structure-based methods rely on struc-
tural features extracted from the structure in the
unbound state or from a bound complex that has been
separated into constituent proteins. It is unclear whether
such structural features are indeed reliable predictors of
interfaces for proteins that undergo significant confor-
mational changes upon binding [20,36]. Moreover,
higher organisms have a large number of intrinsically
disordered proteins/regions (IDPs/IDRs) that undergo
induced folding only after binding to their partners [37].
Such disordered regions - for which experimental struc-
ture information is, by definition, lacking - participate in
many important cellular recognition events, and are
believed to contribute to the ability of some hub pro-
teins to interact with multiple partners in protein-pro-
tein interaction networks [38]. Hence, there is an urgent
need for sequence-based methods for reliable prediction
of protein-protein interfaces.

Analysis of Interface Residue Conservation

The relationship between sequence conservation and
various aspects of protein structure, interaction, expres-
sion, and function has been the focus of many studies
over the past decades [39,40], and sequence homology-
based methods have been used for predicting both pro-
tein structure and protein function [41-53]. Thus, it is
natural to ask whether protein-protein interface residues
can be reliably identified using sequence homology-
based methods. Published studies disagree on whether
protein-protein interfaces are more conserved than the
rest of the protein sequences. Grishin and Phillips [54],
after examining five enzyme families, concluded that the
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degree of conservation of interfaces is same as that of
protein sequences as a whole. The studies by Caffrey et
al. [55] as well as Reddy and Kaznessis [56], found that
the interacting surface-patches are not significantly
more conserved than other surface-patches. Caffrey et
al. [55], based on their study of 64 protein-protein inter-
acting chains, found that interface residues are slightly
more conserved than the rest of the protein surface resi-
dues. Reddy and Kaznessis [56], based on their study of
28 hetero transient and non-transient complexes, found
that the fraction of highly conserved interface residues
is greater than that of highly conserved non-interface
surface residues. They suggested that the number of
conserved residue positions is more predictive of pro-
tein-protein binding sites than the average conservation
index of residues in the target patch. Choi et al. [57]
analyzed 2,646 protein interfaces based on a conserva-
tion score that measures the position-specific evolution-
ary rate estimated using a phylogenetic tree [58], and
concluded that protein interface residues are more con-
served than non-interface surface residues.

Despite the disagreement regarding whether interface
residues are conserved or not, several researchers have
used conservation of residues to predict protein-protein
interfaces with varying degrees of success. For example,
the Evolutionary Trace (ET) method [59,60] and its var-
iants [58,61-64] calculate conservation score for each
residue using a phylogenetic tree built from a multiple
sequence alignment. Residues with conservation scores
above a certain threshold are mapped onto the 3D
structure of the protein to identify putative binding
sites. Carl et al. [65] used a dataset of sixteen transient
protein chains to explore the feasibility of predicting
protein-protein binding sites based on their membership
in structurally conserved surface patches (where con-
served patches are identified using structural alignment
of a query protein with one or more of its structural
homologs). Bordner and Abagyan [66] and Wang et al.
[67] calculated evolution rate for each amino acid of
protein sequences using phylogenetic trees, and used
evolution rate as an attribute along with other physico-
chemical and sequential attributes to train a SVM classi-
fier for interface residue prediction. Panchenko et al.
[68] predicted functional sites of proteins using spatial
averages of sequence conservation scores. Shoemaker et
al. [69] have recently developed a web server for predict-
ing protein binding sites by inspecting homologous pro-
teins with similar structures. Based on a statistical
analysis of target-template sequence alignments on a
benchmark dataset of 329 two-chain complexes, Kun-
drotas and Vakser [70] have shown that it is possible to
obtain high quality alignment of interface residues even
when the overall alignment quality is rather poor. Speci-
fically, they concluded that in approximately 50% of the
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complexes considered, the overall accuracy of the mod-
elled interfaces was good enough for guiding docking.

Overview of the Paper

Against this background, we study a class of sequence
homology-based methods for protein-protein interface
prediction. We introduce a novel measure of interface
conservation that captures the degree to which interface
residues in each protein are conserved among its
sequence homologs. First, we describe the results of our
analysis of the interface conservation among homolo-
gous sequences using several large non-redundant data-
sets of protein-protein interfaces extracted from the
Protein Data Bank (PDB) [71], including datasets that
allow us to compare “obligate” versus “transient” inter-
faces. To explore the extent to which interface conserva-
tion can be exploited in the prediction of interface
residues, we systematically examined the relationship
between interface conservation and six sequence-based
variables. In one set of experiments, we examined bind-
ing interfaces in homologous proteins without specifying
a specific interaction partner (i.e., non-partner specific,
NPS-interfaces). The results of this analysis indicated
that interfaces in obligate complexes are, in general,
more highly conserved than those in transient com-
plexes. In a complementary set of experiments, we
examined interfaces in complexes between specific pairs
of proteins (i.e., partner-specific, PS-interfaces). In con-
trast to the results for NPS-interfaces, by focusing on
the interface of each query protein with a specific bind-
ing partner, we discovered a high degree of sequence
conservation in transient PS-interfaces. This analysis
revealed that transient interfaces tend to be highly part-
ner-specific.

Second, based on the results of protein interface con-
servation analysis we propose HomPPI, a class of
sequence homology-based approaches to protein inter-
face prediction. We present two variants of HomPPI: (i)
NPS-HomPPI (non partner-specific HomPPI), which can
be used to predict interface residues of a query protein
in the absence of knowledge of the interaction partner;
and (ii) PS-HomPPI (partner-specific HomPPI), which
can be used to predict the interface residues of a query
protein with a specific target protein. The performance
of both HomPPI methods was evaluated on several
benchmark datasets, including a large non-redundant
set of transient complexes. Due to the increasing impor-
tance of intrinsically disordered proteins in understand-
ing molecular recognition mechanics and in rational
drug design and discovery [72-75], we also tested NPS-
HomPPI on two datasets of intrinsically disordered
proteins.

Finally, we compare the performance of HomPPI with
that of other web-based servers for interface residue
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prediction, using several performance measures that
assess the reliability of correctly predicting, on average,
interface and non-interface residues in a given protein.
We discuss the relative advantages and limitations of
homology-based methods for interface residue
prediction.

Results

To define conditions under which it should be possible
to infer protein-protein interface (PPI) residues using
conservation of interfaces in homologous proteins and/
or complexes, we systematically examined the relation-
ship between interface residue conservation and
sequence similarity (based on BLAST alignments). Our
analyses are based on the following datasets: Nr6505 (a
large non-redundant dataset of protein chains extracted
from PDB [71]), Oblig94 and Trans135 (a non-redun-
dant obligate/transient binding dataset taken from [76]),
and nr_pdbaa_s2c (BLAST database) (see Methods for
additional details).

Conservation of PPIs in Non-Partner Specific (NPS)
Interfaces

First, we examined the conservation of PPI residues in
the absence of knowledge of interaction partners. For
this study, we analyzed interfaces in putative homologs
(hereafter, we refer to putative homologs as “homologs”
for simplicity) of each protein in a large non-redundant
dataset, Nr6505. After removing chains with interfaces
containing fewer than 3 amino acids, we were left with
5853 chains. For each of the 5853 remaining proteins,
we extracted homologs from the nr_pdbaa_s2c database
using BLASTP [77] with expectation value (EVal) < 10
from the resulting set of homologs, we eliminated those
that were nearly identical to the query sequence (to
ensure an accurate estimate of conservation). To ensure
that the interface residues of the homologs could be
reliably determined, we retained only those homologs
that were part of complexes with resolution 3.5 A or
better. For each query-homolog pair in sequence align-
ments generated by BLASTP, we used the interface resi-
dues of the homolog(s) to predict the interface residues
of the query protein. We calculated the correlation coef-
ficient (CC) between the predicted and actual interface
residues of the query protein, and refer to this value as
the interface conservation (/C) score, i.e., the degree of
conservation of interface residues between the query
protein and its homologs (see Methods for details).

We examined the dependence of the interface conser-
vation score on six NCBI BLAST alignment statistics:
Expectation value (EVal), Identity Score, Positive Score,
Local Alignment Length (LAL) and two Alignment Length
Fractions (LAL/Query Length) and (LAL/Homolog
Length). The EVal is a statistic that estimates the number
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of hits expected by chance when searching database of a
particular size; the lower the EVal value, the more signifi-
cant the score. The Identity Score is a measure of the
degree of sequence identity between two amino acid
sequences. The Positive Score returned by BLASTP is the
number of positive-scoring matches in an alignment. It
takes into account observed substitutions that preserve
the physicochemical properties of the original residue.
The LAL is the length of the local alignment; Alignment
Length Fractions are LAL normalized by the length of
the query or the length of the identified homologous
sequence. We represent each query-homolog pair as a six
dimensional vector defined by these six variables.
Principal Components Analysis of NPS-interface
Conservation Space

As a first exploratory step, PCA (Principal Component
Analysis) was applied to visualize the relationships
between the interface conservation (IC) scores and the
six BLAST alignment statistics. PCA, which is a dimen-
sionality reduction technique, is typically used to repre-
sent dimensions that explain maximum variability and
provide a simple and parsimonious description of the
covariance structure [78].

Figure 1 shows a PCA biplot in which each data point,
representing a query-homolog pair, is projected from
the original 6-dimensional space to a 2-dimensional
space defined by the first and second principal compo-
nents (PC1 and PC2). A large fraction (88.58%) of the
variance is explained by the first two principal compo-
nents (48.75% + 39.83%). Based on IC scores, the PCA
biplot can be subdivided into three regions that corre-
spond to: (i) Dark Zone: containing query-homolog
pairs with poorly conserved interface residues (blue and
green data points), corresponding to low values of the
CC between predicted and actual interfaces and thus
low IC scores; (ii) Twilight Zone: containing pairs with
moderately conserved interfaces (yellow and orange data
points); and (iii) Safe Zone: containing pairs with highly
conserved interfaces (red data points).

The PCA analysis allows us to identify highly corre-
lated explanatory variables. In Figure 1, the axes of the
original 6 dimensional space are represented as blue
vectors with red circles at their tips in the 2-dimensional
space defined by PC1 and PC2. Highly correlated vec-
tors (variables) have small angles between them. This
type of analysis reveals, for example, that the two Align-
ment Length Fractions are highly correlated with each
other, as are the Positive Score and Identity Score. Expla-
natory variables that are highly correlated with each
other make similar contributions to the I/C score.

BLAST EVal is a strong indicator of NPS-interface
conservation

We studied the relationship of each individual variable
with interface conservation. A scatter plot in which the
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Figure 1 Principal Component Analysis of Interface Conservation Scores and Sequence Alignment Statistics. Proteins in the Nr6505 and
their homologs were analyzed. The data points in the biplot correspond to the projection of a 6-dimensional vector representing each protein-
homolog onto a 2-dimensional space defined by the first and second principal components (PC1 and PC2). Blue lines with red circles at their
tips represent the axes of the original 6-dimensional space for the 6 variables used in PCA analysis: -log(EVal), Identity Score, Positive Score, log
(LAL), alignment length fractions (LAL/query length) and (LAL/homolog length). Each data point is colored according to its computed interface
conservation (IC) score, with higher IC scores (red/orange) indicating higher interface conservation and lower IC scores (blue/green) indicating
lower interface conservation (see text for details). The large gray arrow indicates the direction of increasing degree of interface conservation,

IC score for each query-homolog pair is plotted against
log(EVal) is shown in Figure 2. One can see that log
(EVal) is a good indicator of protein interface conserva-
tion. When log(EVal) > -50 the median values of IC
scores cluster around O (low conservation). In the region
of log(EVal) <-50 (that is, EVal < 1.9287E-022) the med-
ians of IC scores increase as the log (EVal) decreases.
When log(EVal) < -100 the medians of IC scores tend to
be greater than 0.5 (strong conservation).

NPS-interface conservation in Twilight/Safe Zone is strongly
positively correlated with log(LAL)

Figure 3 is a scatter plot showing the /C score for each
query-homolog pair plotted against the log of its LAL
value. We can clearly see that when log(LAL) is larger
than 4, the medians of IC score show a strong positive
correlation with Jog(LAL). When the LAL is shorter than
55 residues (log(LAL) <4), the probability that interface
is conserved in these homologs is low (the medians of
the IC scores are ~0). We define this region as the Dark
Zone. When the LAL is longer than 700 residues (log
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Figure 2 EVal is a Good Indicator of Interface Conservation.
Each blue dot in the scatter plot corresponds to a query-homolog
pair. Red dots are the median values of IC scores for a specific EVal.

To avoid log(0), we set log(EVal) = -450 when EVal =
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Figure 3 Interface Conservation (/C) Scores are Linearly Related
to the Log of the Local Alignment Score (LAL). Each blue dot in
the scatter plot corresponds to a query-homolog pair. Red dots are
the median values of IC scores for a specific LAL. Note the trend of
increasing median IC score with log(LAL) observed with the
transitions from Dark to Twilight to Safe Zone.

(LAL)>6.55), interface conservation is high (the medians
of IC scores are usually > 0.7). We define this region as
the Safe Zone.

A high BLAST Positive Score reflects NPS-interface
conservation

The relationship between IC scores and the Positive
Scores of query-homolog alignments is shown in
Figure 4. The median values of the IC scores begin to
increase at a BLAST Positive Score of ~ 90%.

We also studied the relationship of IC score with the
Identity Score, and the Local Alignment Length Frac-
tions (LAL/Query Length) and (LAL/Homolog Length).
As expected, the Identity Score results were similar to
those for the Positive Score. The IC score was not as
strongly linearly related to LAL fraction as it was to the
log(LAL) (data not shown). Taken together, these results
provide guidelines for choosing sequence similarity
thresholds that reflect the degree of conservation in
NPS interfaces.

NPS-Interface Conservation in Transient versus Obligate
Binding Proteins

In light of reports that protein interfaces in transient
complexes are not as conserved as those in obligate
(permanent) complexes [57], it is interesting to ask
whether the query-homolog pairs with near-zero IC
scores (Figure 2 and Figure 3) tend to involve proteins
that participate in transient interactions. To address this
question, we further studied the differences in protein
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Figure 4 A High BLAST Positive Score Reflects NPS-Interface
Conservation. Each blue dot in the scatter plot corresponds to a
query-homolog pair. Red dots are the median values of IC scores for
a specific Positive Score. Note that medians of /C scores are near
zero until Positive Scores become larger than 90%.

interface conservation among proteins that participate
in transient versus obligate interactions.

To compare protein interfaces in transient and obli-
gate complexes, we used the Trans135 and Oblig94
dataset obtained from [76], which includes a total of 270
chains from transient and 188 chains from obligate
complexes. We extracted the homologs of each chain
from nr_pdbaa_s2c using BLASTP with EVal < 10
Query and homolog proteins with interfaces containing
fewer than 3 amino acids were removed, as were homo-
logs that were nearly identical to the query proteins. We
extracted 43,115 query-homolog pairs containing chains
that participate in transient interactions and 24,212
pairs containing chains that participate in obligate
interactions.

In agreement with previous studies [57], our analyses
showed that PPIs are conserved in both obligate and
transient binding proteins. As before, we performed
PCA to examine the conservation of interfaces as a
function of log(EVal), Identity Score, Positive Score, log
(LAL), and alignment length fractions (LAL/Query
Length) and (LAL/Homolog Length). The PCA biplots in
Figure 5 show that data points corresponding to differ-
ent IC scores (different colors) are partially segregated,
indicating that the six alignment statistics can distin-
guish query-homolog pairs with highly conserved inter-
face residues (red) from those in which interface
residues are not conserved (blue or green).

The results in Figure 5 also reveal that interface resi-
dues in proteins from obligate complexes (left panel) are
more conserved among their sequence homologs than
those from transient complexes (right panel). Figure 6
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Figure 5 Principal Component Analysis of Interface Conservation Scores and Sequence Alignment Statistics for Obligate versus
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further illustrates differences in interface conservation in
obligate (left) versus transient complexes (right). The
median values of IC scores plotted as a function of log
(LAL) are more frequently above O for pairs that involve
obligate binding proteins (Figure 6a) than for those that
involve transient binding proteins (Figure 6b). Regres-
sion analysis of these data confirms that log(LAL) for the
obligate dataset has a larger coefficient (0.095) than that
for the transient dataset (0.052), which confirms that
protein interfaces are more conserved in the obligate
complexes than in transient complexes analyzed in this
study.

Figure 6c¢ reveals an obvious pattern of interface con-
servation in obligate binding proteins: a strong trend of
increasing median /C score with decreasing log(EVal). In
contrast, Figure 6d shows that for transient binding pro-
teins, more of the median values of IC scores cluster
around 0, indicating that log(EVal) has little relation to
interface conservation in transient complexes.

Also, comparison of Figure 6e and 6f reveals that the
Positive Score is a good indicator of interface conserva-
tion in the case of proteins from obligate complexes;
however, this is not the case for proteins from transient
complexes. For obligate binding proteins, when the Posi-
tive Score exceeds 45%, the medians of IC scores begin
to show an increasing trend (Figure 6e). In contrast, in
the case of transient binding proteins, medians of IC
scores do not begin to increase until the Positive Score
approaches 70% (Figure 6f).

It is important to emphasize that all of the interfaces
analyzed above are what we refer to as “non partner-
specific” (NPS). That is, the interface residues of a query
protein represent the complete set of its interface

residues with all of its partners. However, a given query
protein can interact with different binding partners
through different interfaces. A possible explanation for
the low IC scores for NPS-transient interfaces is that
the union of all interface residues of a transient binding
protein are not highly conserved across its homologs.
This does not preclude the possibility that such inter-
faces are conserved in the context of partner-specific
interactions. We investigate this possibility in the follow-
ing section.

Conservation of PPIs in Partner-Specific (PS) Interfaces

To examine the conservation of partner-specific (PS)
interfaces in transient protein complexes, we again used
the Trans135 dataset of protein pairs that participate in
transient interactions [76]. For each of the proteins in
an interacting pair, we separately extracted the corre-
sponding homologs, using BLASTP with expectation
value EVal<10 against the nr_pdbaa_s2c database. We
removed homologs that are part of complexes with reso-
lution worse than 3.5 A. If query proteins A and B form
a complex A-B, and have homologs A’ and B’ that inter-
act in a complex A’-B’, we consider A’-B’ as a homo-
interolog of A-B. To ensure an accurate estimate of
conservation, from the resulting set of homo-interologs,
we eliminated those that were within the same PDB
complex as the query proteins, and those that were
nearly identical to the query pairs (see Methods for
additional details). For each protein chain in a query
pair, we use the interface residues of its homolog in a
homo-interolog to infer the PS interface residues of the
query protein chain. Thus, we use the interface residues
of A’ in the homo-interolog (A’-B’) of query pair A-B to
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infer the interfaces of A with B, based on the sequence
alignment between A and A’ obtained using BLASTDP.
We measure the similarity between a pair of interacting
proteins A-B and its homo-interolog A’-B’, in terms of
the metrics for the quality of sequence alignment
between A and A’ and between B and B’, using the six
BLAST alignment statistics described above.

We used PCA of 3, 456 candidate homo-interologs to
explore the relationship between interface conservation
(IC score) and the six alignment statistics computed
from the predicted PS interfaces, e.g., of chain A when
it interacts with B, using known interfaces of A’ with B’.
This analysis revealed that much of the observed var-
iance in IC scores is explained by three factors: (i) the
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average log (EVal); (ii) the average Positive Score of the
homo-interolog and (iii) the alignment fractions Fracu,
Fracu, Fracg, and Fracy computed from the alignments
of constituent chains (A with A” and B with B’) (see
Methods for additional details).

The results in Figure 7 show that transient interfaces
are highly conserved in homo-interologs. The trend of
increasing median IC scores, as a function of decreasing
logEval (Figure 7a) or increasing Positive Score (Figure
7b) or the combination of Positive Score and Frac, x
Fracy is clear (Figure 7d). The trend of increasing IC
scores as a function of Fracg x Fracp is similar to that
as a function of Fracy x Frac, (data not shown). In
contrast, the, logLAL, which is the average of alignment
length between A and A’, and between B and B’, is not
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strongly correlated with interface conservation for PS-
interfaces (Figure 7c).

A comparison of the results for PS-interface conserva-
tion in transient complexes here (Figure 7a and 7b) with
those obtained for NPS-interface conservation in transi-
ent complexes above (Figure 6d and 6f), reveals that the
conservation of transient interfaces can be detected
easily when the binding partner sequence information is
utilized. The seemingly weak conservation of interfaces
in transient complexes shown in Figure 6 is thus a con-
sequence of the specificity of transient interfaces for dif-
ferent partners. Therefore, we conclude that interfaces
in transient complexes are both highly partner-specific
and highly conserved, when their partner-specificity is
taken into account.
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HomPPI - Homologous Sequence-Based Protein-Protein
Interface Prediction

Based on the results of our analysis of protein interface
conservation described above, we developed HomPPI, a
family of sequence homology-based algorithms for pro-
tein interface prediction. We implemented two variants
of HomPPI:

1. NPS-HomPPI - Given a query protein sequence,
NPS-HomPPI searches the nr_pdbaa_s2c database to
identify homologous proteins that are components of
experimentally determined complexes with one or more
other proteins. NPS-HomPPI labels a residue of the
query sequence as an “interface” residue if a majority of
residues in a selected subset of homologs in alignment
of the query sequence with its homologs are interface
residues, and as “non-interface” residue otherwise. Spe-
cifically, given a query protein, we first use NPS-
HomPPI to search for sequence homologs within the
Safe Zone. If at least one homolog in the Safe Zone is
found, NPS-HomPPI uses the Safe homolog(s) to infer
the interfaces of the query protein. Otherwise, the pro-
cess is repeated to search for homologs in the Twilight
Zone or the Dark Zone. If no homologs of the query
protein can be identified in any of the three zones, NPS-
HomPPI does not provide any predictions. The Safe,
Twilight, and Dark Zone homologs of the query protein
sequence to be used for interface prediction are identi-
fied by searching the nr_pdb_s2c database using
BLASTP with thresholds based on the interface conser-
vation analysis (see Methods Section for details) (after
removing the query sequence and any highly similar
sequences from the same species as the query sequence,
in order to allow unbiased evaluation of the perfor-
mance of NPS-HomPPI).

2. PS-HomPPI - Given the sequences of a query pro-
tein A and its putative binding partner B, PS-HomPPI
searches the nr_pdbaa_s2c database to identify homolo-
gous complexes i.e., the homo-interologs of A-B. PS-
HomPPI labels a residue of the query sequence as an
“interface” residue (with respect to its putative binding
partner) if a majority of the residues in the correspond-
ing position in homologous complexes are interface resi-
dues, and as “non-interface” residues otherwise. PS-
HomPPI uses homo-interologs in Safe and Twilight
Zones to make predictions. The PS-HomPPI prediction
process is thus analogous to that for NPS-HomPPI,
using thresholds for “close homo-interologs” based on
the results of interface conservation analysis of PS-inter-
face conservation (see Methods Section for additional
details).

Performance Evaluation of HomPPI Methods
We report several performance measures that provide
estimates of the reliability of interface (and non-
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interface) residue predictions obtained using the
HomPPI family of predictors. We compare the perfor-
mance of HomPPI predictors with several state-of-the-
art interface prediction methods on a benchmark data-
set. We evaluate the effectiveness of HomPPI in predict-
ing the interface residues of disordered proteins. Finally,
we compare the partner-specific and non-partner-speci-
fic versions of HomPPI.

We focus our discussion on results using several per-
formance measures that assess the effectiveness of the
methods in reliably predicting, on average, the interface
and non-interface residues of any given protein (See
Methods for details). However, because several of the
published studies report performance measures that
assess the effectiveness of the methods in reliably assign-
ing interface versus non-interface labels, on average, to
any given protein residue, we also include results using
“residue-based” performance measures in Supplementary
Materials (See http://homppi.cs.iastate.edu/supplemen-
taryData.html).

(i) NPS-HomPPI Performance on the Benchmark180 Dataset
Among the 180 protein sequences in the Benchmark180
dataset (taken from [79]), 125 sequences had at least
one homolog that met the thresholds for the Safe or
Twilight Zones, based on zone boundaries determined
using Trans135 (Table 1). We examined the perfor-
mance of NPS-HomPPI in predicting interface residues
on each of the four different protein complex types in
Benchmark180. As shown in Table 2, NPS-HomPPI per-
formed best on obligate homodimers, in terms of CC
(0.76), sensitivity (0.83), specificity (0.78) and accuracy
(0.94). Performance on obligate heterodimers was com-
parable, although slightly lower. NPS-HomPPI perfor-
mance on transient interfaces was substantially lower
than on obligate interfaces. For transient enzyme

Table 1 Boundaries of Safe, Twilight and Dark Zones
used by NPS-HomPPI?

log(EVal) < -100
Safe Zone Positive Score >80%
log(LAL) >52
log(EVal) < -50
Twilight Zone 1° Positive Score >65%
log(LAL) >4
log(EVal) <1
Twilight Zone 2° Positive Score >60%
log(LAL) >4
log(EVal) <1
Dark Zone Positive Score >0
log(LAL) >0

? Thresholds were chosen based on interface conservation analysis of proteins
in Trans135.

® Twilight Zone is divided into two sub-zones: Twilight Zone 1 with stricter
thresholds, and Twilight Zone 2 with looser thresholds.


http://homppi.cs.iastate.edu/supplementaryData.html
http://homppi.cs.iastate.edu/supplementaryData.html
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Table 2 Interface Residue Prediction Performance of NPS-HomPPI on Benchmark180

Binding Type Homology Zone  Prediction Coverage ~ CC®  Sensitivity”  Specificity”  Accuracy®
Enzyme-inhibitor,- Transient Safe/Twilight 67% (24/36) 053 067 0.58 0.86
Non-enzyme-inhibitor-Transient (NEIT) Safe/Twilight 60% (18/30) 045 0.54 0.58 0.83
Hetero-dimer - Obligate Safe/Twilight 85% (23/27) 0.63 0.72 0.69 0.88
Homo-dimer - Obligate Safe/Twiight 69% (60/87) 0.76 0383 0.78 094

Prediction coverage reflects that predictions are made only on proteins for which HomPPI can identify Safe/Twilight Zone homologs.

inhibitor complexes, the accuracy was 0.86, with a CC of
0.53; for transient non enzyme-inhibitor complexes, the
accuracy was 0.83, with a CC of 0.45. These results are
consistent with the finding from our statistical analyses
that NPS-obligate interfaces are more conserved than
NPS-transient interfaces in their homologs.

We also evaluated the prediction performance of NPS-
HomPPI using homologs with different degrees of
sequence homology. In Table 3, the prediction perfor-
mance is shown separately for sets of test proteins for
which HomPPI can identify at least one homolog in
Safe, Twilight, or Dark Zones. As expected, Safe Zone
homologs consistently gave the most reliable prediction
performance for all four types of complexes (CC values
ranged from 0.55 to 0.84). Both obligate and transient
interfaces were predicted with moderate to high reliabil-
ity (CC values ranged from 0.12 to 0.67) even using only
distant homologs from the Twilight or Dark Zones.

(ij) Comparison of NPS-HomPPI with other PPI Prediction
Servers

Direct comparison of NPS-HomPPI with other methods
described in the literature is complicated by the limited
availability of implementations of the underlying methods
(many of which are available only in the form of servers),
and differences in the choice of training and evaluation

datasets, evaluation procedures and evaluation measures
[80]. Hence, we limit our comparisons of HomPPI with
five state-of-the-art methods available as web-based ser-
vers: Promate [18], Cons-PPISP [33,81], meta-PPISP [82],
PIER [83] and PSIVER([22]. All of these methods except
PSIVER take advantage of both sequence and experimen-
tally determined protein structure of the query proteins.
They have been reported to be among the best performing
methods currently available for predicting PPIs (see
[20,21] for reviews). PSIVER is one of the most recently
published methods for interface residue prediction that
only uses protein sequence-derived information. Although
direct comparisons of the data representation and the
algorithms used by PSIVER with those used by other
sequence-based interface residue predictors are currently
not available, PSIVER has been reported to outperform
two other sequence-based servers: ISIS [3] and the
sequence-based variant (made available as an experimental
version in 2008) of SPPIDER [84].

Promate samples the protein surface using circular
patches around a set of anchoring dots and estimates
the probability that each surface dot belongs to an inter-
face, based on the distribution of various physicochem-
ical properties within interface and non-interface
patches. Cons-PPISP is a consensus method that

Table 3 Prediction Performance of NPS-HomPPI using Homologs from the Safe, Twilight, Dark Zones

Binding Type Homology Zone  Prediction Coverage ~ CC”  Sensitivity”  Specificity’  Accuracy”
Safe 14% (5/36) 0.55 0.62 0.57 094
Enzyme-inhibitor, - Transient Twilight 50% (18/36) 0.52 0.69 0.58 0383
Dark 19% (7/36) 012 0.23 0.20 0.83
Total 83% (30/36) 0.44 0.58 0.50 0.85
Safe 23% (7/30) 0.56 0.64 0.60 091
Non-enzyme-inhibitor, - Transient (NEIT) Twilight 37% (11/30) 0.37 048 0.57 0.78
Dark 33% (10/30) 0.36 037 0.50 0.86
Total 93% (28/30) 0.42 0.48 0.55 0.84
Safe 52% (14/27) 0.70 0.81 0.72 091
Hetero-dimer, - Obligate Twilight 33% (9/27) 052 0.58 0.64 0.82
Dark 15% (4/27) 044 0.66 047 0.80
Total 96% (26/27) 0.60 0.71 0.66 0.86
Safe 38% (33/87) 0.84 0.90 0.84 0.96
Homo-dimer, - Obligate Twilight 31% (27/87) 067 0.74 0.71 091
Dark 28% (24/87) 0.36 047 044 0.84
Total 97% (84/87) 0.65 0.73 0.68 0.91
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combines six neural networks trained on six datasets.
Meta-PPISP is a consensus method that combines the
output from cons-PPISP, Promate, and PINUP [85].
PIER relies on partial least squares (PLS) regression of
surface patch properties of the query protein. PSIVER
uses PSSM profiles and predicted solvent accessibility as
input features, and uses a Naive Bayes classifier with
parameters obtained using kernel density estimation.
Because NPS-HomPPI does not take structural informa-
tion into account, to compare its performance with the
structure-based servers, we mapped the interfaces pre-
dicted by each server onto the full sequence of each
query protein in order to evaluate prediction perfor-
mance on the entire protein sequence.

We compared the performance of NPS-HomPPI with
all five PPI servers on a subset of the Benchmark180
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dataset [79], specifically, 125 out of 180 proteins for
which NPS-HomPPI was able to identify homologs in
the Safe or Twilight zones. The sensitivity-specificity
plots (also called precision-recall plots) are shown in
Figure 8. Each data point corresponds to a different
classification threshold value. The prediction score of
NPS-HomPPI is simply the normalized vote (for each
residue total votes for interfaces from homologs are nor-
malized by the number of homologs) from 10 (or fewer
available) homologs. Thus, NPS-HomPPI produces a
limited number of distinct prediction scores.

For the two transient complex types, enzyme-inhibitors
(Figure 8a) and transient non-enzyme-inhibitors, transient
(Figure 8b), NPS-HomPPI consistently outperforms Pro-
mate, PIER, meta-PPISP, cons-PPISP, and PSIVER except
for sensitivity values lower than 0.2 (which is very low to

Enzyme-inhibitor

© NPS-HomPPI
meta-PPISP
“ cons-PPISP

- £ e oo + Promate
07 Hoah ®o . PER
- - Ak PSIVER
- £
>06- +F i
= * i iy Ogp © a
05 ﬁ;,, i
@ **W* %wx . L]
Q 0.4 o 3 fare o
o3 ‘“W
0.2 S
0.1
% 0.2 0.4 0.6 0.8 1

Sc—:nsitivity|=

Hetero-dimer © NPS-HomPPI
7e - metaPPISP
D_g?i " cons-PPISP
fﬂ; o - Promate
0.8 Taw ] = PIER

¥ - PSIVER

0 02 0.4 0.6 0.8 1
SensitivityP
()

Non-enzyme-inhibitor

- | © NPS-HomPPI|
0.9, 7F meta-PPISP
# . -PPISP
\_A cons
0.8 4% I + Promate
A )
07 o8 PIER

PSIVER

0.1
00 0.2 04 0.6 0.8 1
Sensitivityp
Homo-dimer
1
i, © NPS-HomPPI
0.9¢% L meta-PPISP %0
. cons-PPISP Qu)oo
0.8 - Promate %
i} = PIER
0.7 Ly %
o
..:‘ 0.6-
Q
=05
2
Q 0.4
w
0.3-
0.2
0.1
0 L L J
[} 0.2 0.4 0.6 0.8 1

Sensitivityp

(d)

Figure 8 Performance of NPS-HomPPl Compared with Web-based PPI Servers. Performance was evaluated on four different protein
complex types from Benchmark180: (a) Enzyme-inhibitors, transient. (b) Non-enzyme-inhibitors (NEIT), transient. (c) Hetero-dimers, obligate. (d)
Homo-dimers, obligate. Servers compared were: NPS-HomPPI: red circles; Meta-PPISP: green squares; Cons-PPISP: blue triangles; Promate: brown
stars; PIER: purple stars; PSIVER: yellow stars.




Xue et al. BMC Bioinformatics 2011, 12:244
http://www.biomedcentral.com/1471-2105/12/244

be useful in practice). On both obligate heterodimers (Fig-
ure 8c) and homodimers (Figure 8d), NPS-HomPPI out-
performs all five servers across the full range of sensitivity
and specificity values for which it can generate homology-
based predictions. It should be noted that structure-based
methods predict which surface residues are interface resi-
dues. In contrast, sequence-based methods have the more
challenging task of identifying interface residues from the
set of all residues. In other words, structure-based meth-
ods can trivially eliminate all non-surface residues from
the set of candidate interface residues. Viewed in this light,
the observed predictive performance of NPS-HomPP]I, a
purely sequence-based method, suggests that it is possible
to make reliable non-partner-specific interface residue pre-
dictions using only the sequences of a protein by taking
advantage of the conservation of interfaces in the context
of non-partner-specific interactions.

(iii) Performance of NPS-HomPPI on Intrinsically Disordered

Proteins

Intrinsically disordered proteins (IDPs) and proteins con-
taining intrinsically disordered regions (IDRs) are attrac-
tive targets for drug discovery [73]. The lack of defined
tertiary structure in IDPs/IDRs poses a major challenge
to structure-based interface prediction methods. Hence,
we compared the performance of NPS-HomPPI with
ANCHOR [86], a recently published method for the pre-
diction of binding regions in disordered proteins. For this
comparison, we used two non-redundant disordered pro-
tein datasets, S1 and S2, recently collected by Meszaros
et al. [87]. Some of the test proteins are based on data
from NMR structures. In order to compare NPS-HomPPI
with ANCHOR on the largest possible number of cases
available to us, we extracted interface residues from these
NMR cases; however, we used only sequence homologs
with interface residues determined from X-ray structures
to make predictions.
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Figure 9 shows the performance comparison of NPS-
HomPPI with ANCHOR on the prediction of interface
residues in disordered proteins. NPS-HomPPI signifi-
cantly outperforms ANCHOR over a broad range of
sensitivity and specificity for both short as well as long
disordered proteins for which sequence homologs are
available in Safe, Twilight or Dark Zones (Figure 9a and
9b respectively). For example, as shown in Figure 9b, on
the S2 dataset, at a prediction sensitivity value of 0.70,
ANCHOR achieves a specificity of ~0.40, whereas NPS-
HomPPI achieves a specificity of ~0.64.

At present, NPS-HomPPI has relatively high predic-
tion coverage for long disordered proteins (78%; 31 out
of 40 interfaces of disordered proteins), but lower cover-
age for short disordered proteins (50%; 28 out of 56
interfaces of disordered proteins). This is in part due to
that fact that many disordered proteins available in the
PDB have only NMR structures, which were excluded
from the current study. Incorporation of data from
NMR structures in the future can be expected to
increase the coverage of NPS-HomPPI for disordered
proteins.

(iv) Performance of NPS-HomPPI versus PS-HomPPI

Our analysis of the conservation of PS-transient inter-
faces described earlier suggests that many interfaces in
transient protein complexes are highly partner-specific.
Thus, we implemented a variant of HomPPI, designated
PS-HomPPI, to evaluate the possibility that prediction
of interface residues, especially in transient complexes,
can be improved by using sequence information about
specific binding partners, when available.

We first evaluated the performance of PS-HomPPI on a
transient complex dataset, Trans135 (dimers from the
dataset in [76]). PS-HomPPI found at least one homo-
interolog that meets the Safe or Twilight similarity
thresholds for 60% (162/270) proteins in the Trans135
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dataset. Overall, PS-HomPPI had an average CC of 0.65,
sensitivity of 0.69, specificity of 0.70 and accuracy of 0.92.

To investigate whether the partner information is, in
fact, helpful in predicting interfaces we directly com-
pared the performance of PS-HomPPI with NPS-
HomPPI on the Trans135 dataset. In Trans135, there
were 139 out of 270 chains that for which predictions
could be generated by both NPS-HomPPI (using homo-
logs) and PS-HomPPI (using homo-interologs) from the
Safe or Twilight zones (see Methods for details).

The results shown in Figure 10 indicate that, at least
for transient interfaces in the Trans135 dataset, PS-
HomPPI outperforms NPS-HomPPI. Although the aver-
age values over proteins (green dots) for CC, sensitivity
and specificity are similar, the median values (the red
bar in the box) for PS predictions (left panel) are much
higher than that for NPS predictions (right panel). Also,
the observed variance (length of the box) of PS predic-
tions (left panel) is much smaller than that of NPS pre-
dictions (right panel). These results suggest that the
reliability of interface residue predictions can be
improved by exploiting the knowledge of the binding
partner of a query protein.

Discussion

Protein Interface Conservation across Structure Space
The study of protein interface conservation among pro-
teins with similar structures has received considerable
attention in recent years. By analyzing the structural
similarity of representative protein-protein interfaces in
dimeric proteins, Gao and Skolnick [88] showed that the
vast majority of native interfaces have a close structural
neighbor with similar backbone Co geometry and inter-
face contact pattern.

In a related study, Zhang et al. [89] explored the conser-
vation of interface residues among structural neighbors of
a query protein (i.e., proteins that share the same SCOP
family, superfamily or fold, or a high degree of structural
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Figure 10 Performance comparison of PS-HomPPIl and NPS-
HomPPI. Only proteins for which predictions could be generated
by both PS-HomPPI and NPS-HomPPI (139 out of 270 chains from
Trans135) were used in this evaluation. The lower (Q1), middle (Q2)
and upper (Q3) quartiles of each box are 25th, 50th and 75th
percentile. Interquartile range IQR is Q3-Q1. Any data value that lies
more than 1.5 X IQR lower than the first quartile or 1.5 x IQR higher
than the third quartile is considered an outlier, which is labelled
with a red cross. The whiskers extend to the largest and smallest
value that is not an outlier. Averages are marked by green dots.
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similarity regardless of their SCOP classification). They
showed that: (i) interfaces are indeed conserved among
structural neighbors; (ii) the degree of interface conserva-
tion is most significant among proteins that have a clear
evolutionary relationship. They further showed that con-
servation of interface residues among structural neighbors
can be successfully exploited to predict protein-protein
interfaces based on protein structure information.

To investigate the extent to which conservation of
interface residues can be used to improve the prediction
of protein-protein interfaces based on protein sequence
information, we systematically studied interface conser-
vation across sequence space. Our results demonstrate
that protein interfaces from different binding types are
conserved among proteins with homologous sequences.
We further showed that the degree of conservation of
interfaces is even greater when putative interaction part-
ners are taken into account. The IC score, our measure
of interface conservation, unlike those used in previous
studies [57] (e.g., residue conservation in sequence align-
ments), makes direct use of experimentally determined
interface residues to measure the degree of interface
conservation. Specifically, the /C score directly measures
the extent to which the interface residues of sequence
homologs of a query protein are predictive of the inter-
face residues of a query protein. Hence, the IC score
provides the basis for setting the parameters of our
sequence homology-based interface prediction methods.

Distance Functions for Identifying Putative Homologs
with Conserved Interfaces

Because we do not know the IC score for a query
sequence with unknown interface residues, we identified
several statistics associated with the BLASTP alignment of
a query sequence with its homologs that are correlated
with the IC score. We found that interface residues of a
query protein can be reliably predicted from the known
interfaces of its homologs (and in the case of partner-spe-
cific predictions, the homologs of its interaction partner as
well) when the homologs are selected taking into account
measures of quality of sequence alignment, specifically
NCBI BLAST sequence alignment statistics. The HomPPI
methods presented here use simple linear combinations of
BLAST sequence alignment statistics, determined using
PCA analysis of the relationship between the statistics and
the IC score. It would be interesting to explore optimal,
perhaps non-linear, combinations of parameters to maxi-
mize the desired performance criteria (e.g., sensitivity, spe-
cificity, or some combination thereof).

Conservation of Interfaces in Obligate and Transient
Complexes

Our results are consistent with previous studies [57], in
that we found interface residues to be more highly
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conserved than non-interface residues, in both obligate
and transient complexes. We also found that when
information regarding the specific binding partner of a
query protein is not taken into account in estimating
the conservation score, interfaces in transient complexes
appear to be less highly conserved than those in obligate
complexes. Our results further show that transient inter-
faces are highly partner-specific, and that the partner-
specific interfaces in transient complexes are, in fact,
highly conserved. Interfaces of intrinsically disordered
proteins that nevertheless form ordered complexes with
globular proteins are also highly conserved (see below).

Interfaces of Disordered Proteins Are Highly Conserved
and Non Partner-Specific

Compared with its performance on transient binding
proteins in the Benchmark180 dataset, NPS-HomPPI
performs much better on interfaces of disordered pro-
teins in the S1 and S2 datasets. This is consistent with
the conclusion of Meszaros et al. [90] that interfaces of
intrinsically disordered proteins are evolutionarily con-
served. The high degree of conservation of interface
(binding) regions in IDPs also reflects the important
biological functions in which many disordered proteins
participate. It is believed that the flexibility of disordered
binding regions may facilitate the binding of IDPs using
the same set of binding residues to different binding
partners (at different times) [91]. Our results suggest
that this specialized disorder-to-order transition as a
result of binding may be associated with a high degree
of interface conservation.

The conservation of interfaces in IDPs may contribute
to the generally successful application of interface resi-
due predictors to interfaces in IDPs. Several groups have
developed methods for predicting disordered binding
regions, including PONDR VL-XT [92,93], ANCHOR
[86], and other examples reviewed in [94], that have
produced encouraging results. The success of these pre-
dictors suggests that at least some sequence features are
likely to be conserved within binding regions of different
IDPs.

The fact that disordered interfaces can be reliably
inferred by NPS-HomPPI indicates that disordered
interfaces are non-partner-specific, which is consistent
with findings that these proteins are able to bind a
broad range of ligands through common binding regions
[95,96].

Performance of HomPPI Compared with Published
Methods

Our results show that whenever the interfaces of the
close sequence homologs of a query protein are avail-
able, NPS-HomPPI outperforms several state-of-the-art
protein interface prediction servers (many of which take
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advantage of the structure of the query protein), over a
broad range of sensitivity and specificity values. In the
case of transient complexes (Figure 8a and 8b), NPS-
HomPPI consistently outperforms Promate, PIER, meta-
PPISP, cons-PPISP, and PSIVER except for sensitivity
values lower than 0.2. On obligate dimers (Figure 8c
and 8d), NPS-HomPPI significantly outperforms all five
servers across the full range of sensitivity and specificity
values for which it can generate homology-based predic-
tions. These results strongly suggest that it is possible to
reliably predict protein interface residues using only
sequence information whenever the interface residues of
sequence homologs of the query protein are known.
Each of the webbased PPI servers with which we com-
pared our NPS-HomPPI server, except PSIVER, take
advantage of the structure of the query proteins to
determine surface residues, and restrict the predicted
interface residues to a subset of the surface residues.
This trivially reduces the number of false positive inter-
face residue predictions (relative to the total number of
residues in the query protein) which, in turn, yields a
substantial increase in the specificity of interface predic-
tions produced by structure-based servers. Conse-
quently, purely sequence-based protein interface
prediction servers have a handicap relative to structure-
based prediction servers. When viewed in this light, per-
formance of NPS-HomPPI relative to the state-of-the-
art protein interface prediction methods is especially
impressive.

The HomPPI methods for interface residue prediction
do have an important limitation, however, in that they rely
on the availability putative homologs for which experi-
mentally-determined structures of bound complexes are
available in the PDB. One may ask whether the coverage
of the HomPPI family of protein-protein interface predic-
tion methods is broad enough to be sufficiently useful in
practice. We address this question below.

Prediction Coverage of HomPPl Methods

The current coverage of HomPPI protein interface pre-

diction methods can be assessed from our results as

follows:

NPS-HomPPI
¢ Benchmark180 dataset: NPS-HomPPI found at
least one homolog that meets the similarity thresh-
olds for Safe or Twilight Zones for 73% (83/114) of
the obligate binding chains (homo and hetero-
dimers). Among these, 82% (68/83) were predicted
with both sensitivity and specificity 20.50, simulta-
neously. Similarly, at least one homolog was found
for 62% (42/66) of transient binding chains (enzyme-
inhibitors and non-enzyme inhibitors) in this dataset.
Among these 55% (23/42) were predicted with both
sensitivity and specificity >0.5.
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« Trans135 dataset: In the case of transient query
proteins in the Trans135 dataset, NPS-HomPPI
found at least one homolog that meets the similarity
thresholds for Safe or Twilight Zones for 75% (202/
270) of chains. Among these, 37% (74/202) were
predicted with both sensitivity and specificity >0.5.

o Disordered protein datasets S1 and S2: In the
case of disordered proteins, NPS-HomPPI found at
least one homolog that meets the similarity thresh-
olds for Safe or Twilight or Dark Zones for 50% (26/
52) of interfaces of disordered proteins in S1, the
short disordered protein set, and 75% (30/40) of
interfaces of disordered proteins in S2.

PS-HomPPI
o Trans135 dataset: PS-HomPPI found at least one
homo-interolog that meets the Safe or Twilight simi-
larity thresholds for 60% (162/270) proteins in the
Trans135 dataset. Among these, 80% (130/162)
where predicted with sensitivity and specificity =0.5,
simultaneously.

Based on these results, we estimate that, at present,
the coverage of the HomPPI protein interface prediction
methods is in the range of 60-70% of all query proteins.
As the structural genomics projects currently underway
generate increasing numbers of structures of protein-
protein complexes [97], we can expect corresponding
increases in the coverage of HomPPI family of protein
interface prediction methods. In the meantime, one can
envision hybrid methods that combine HomPPI with
one or more machine learning based methods that do
not require the availability of putative homologs for
which experimentally determined structures of bound
complexes are available in the PDB.

Parameters for HomPPI Can Be Relaxed for Obligate
Interactions

The current default parameters for HomPPI are inten-
tionally rather stringently set based on the results of our
statistical analysis of interface conservation using
Trans135, which is a dataset of transient binding pro-
teins. Our analyses suggest that NPS-HomPPI has wider
Safe and Twilight Zones for obligate binding proteins
than for transient binding proteins. Furthermore, even
Dark Zone homologs yield interface predictions that are
accurate enough to be useful in practice, with average
specificity of 0.47 and sensitivity of 0.66 for hetero-obli-
gate dimers, average specificity of 0.44 and sensitivity of
0.47 for homo-obligate dimers (see Table 3). Therefore,
for obligate interactions, if a query protein has little
sequence similarity with proteins in the PDB, the
thresholds of NPS-HomPPI can be relaxed to allow
identification of more distant homologs with potentially
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conserved interfaces that still provide reliable interface
predictions.

Prediction of Binding Partners vs. Prediction of Interface
Residues

Protein interface (binding site) predictions and protein
interaction (partner) predictions answer closely related,
but different questions. Non partner-specific protein
interface predictors are designed to identify the resi-
dues in a query protein that are likely to make contact
with the residues of one or more unspecified interaction
partner proteins. Partner-specific protein interface pre-
dictors are designed to identify the residues in a query
protein that are likely to make contact with residues of
a putative interaction partner protein. In contrast, pro-
tein interaction predictors are designed to predict
whether or not a given pair of proteins is likely to inter-
act [98-101]. Although our study does not directly
address the latter question, it is possible to use PS-
HomPPI predictions to determine whether or not two
query proteins interact: Given a pair of protein
sequences, say A and B, we can first use PS-HomPPI to
predict the interface residues of A with its putative part-
ner B; and the interface residues of B with its putative
partner A. If, in both cases, some number of interface
residues are predicted, we can infer that proteins A and
B are likely to interact with each other. Conversely, it is
possible to use information from predicted protein-pro-
tein interactions to refine interface predictions. Yip et al.
[2] have proposed an approach to utilize residue level
information to improve the accuracy of protein level
predictions, and vice versa. They have shown that a
two-level machine learning framework that allows infor-
mation flow between the two levels through shared fea-
tures yields predictions that are more accurate than
those obtained independently at each of the levels.

Using Interface Predictions to Steer Docking and to Rank
Docked Conformations

Reliable partner-specific interface predictions can be
used to restrict the search space for protein-protein
docking by specifying the contacts that need to be pre-
served in the docked conformation. It is also possible to
rank the conformations produced by docking, based on
the degree of overlap between the interface of a query
protein and its binding partner in the docked conforma-
tion with the interface generated by a partner-specific
interface prediction method, e.g. PS-HomPPI. In related
work[102], we have shown that PS-HomPPI provides
reliable interface predictions on a large subset of a
Docking Benchmark Dataset, and is both fast and robust
in the face of conformational changes induced by com-
plex formation. The quality of the ranking of docked
conformations by PS-HomPPI interface prediction is
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consistently superior to that produced using ClusPro
cluster-size-based and energy-based criteria for 61 out
of 64 docking complexes for which PS-HomPPI pro-
duces interface predictions[102].

Conclusions

We studied a large number of sequence alignments
between protein pairs with known interfaces to explore
the conditions under which conservation of protein
interface residues, as determined by the alignment of a
query sequence against its homologs/homo-interologs,
can be used to reliably predict protein-protein interfaces.
Based on the results of these analyses, we developed
HomPPI, a simple sequence-based method for predict-
ing interface residues based on the known interface resi-
dues in homologous sequences. HomPPI has two
variants: NPS-HomPPI (for predicting interface residues
of a query protein with unspecified interaction partners)
and PS-HomPPI (for predicting interface residues of
query proteins with a specified putative interaction
partner).

Our systematic evaluation of NPS-HomPPI showed
that, when close homologs can be identified, NPS-
HomPPI can reliably predict interface residues in both
obligate and transient complexes, with a performance
that rivals several state-of-the-art structure-based inter-
face prediction servers. NPS-HomPPI can also be used
as a reliable tool for identifying disordered binding
regions. In this regard, NPS-HomPPI has an advantage
over structure-based interface predictors, which cannot
be used to predict binding sites in disordered regions of
proteins because they do not form stable structures in
their unbound state. In addition, the HomPPI family of
interface prediction methods are fast enough for pro-
teome-wide analyses.

Many studies on in silico identification of protein
interfaces have been published in the past decade. How-
ever, despite the fact that many proteins are very speci-
fic in their choice of binding partners, the majority of
studies focus on only one side of the bound complex. In
this study, we implemented a novel partner-specific pro-
tein interface prediction method, PS-HomPPI, which
infers interface residues based on known interfaces in
the homo-interologs, i.e., complexes formed by homo-
logs of the query protein and its putative interaction
partner. When homo-interologs can be identified, PS-
HomPPI can reliably predict highly partner-specific
transient interfaces.

Although our focus in this study was on prediction
of protein-protein interfaces, these methods could be
useful in other settings, such as sequence-based pre-
diction of protein-DNA, protein-RNA, and protein-
ligand interfaces, and the prediction of B and T cell
epitopes.
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Both NPS-HomPPI and PS-HomPPI have been imple-
mented in a server available at: http://homppi.cs.iastate.
edu/.

Methods
Datasets
Five datasets were used in this paper:

+ Nr6505 - For analyzing the protein interface
conservation.
+ Oblig94 and Trans135 - For comparing the degree
of conservation of protein interfaces in transient/
obligate binding proteins.
« Benchmark180 - For evaluating the prediction per-
formance of HomPPL
+ S1 and S2 - For evaluating the performance of
NPS-HomPPI on interfaces of disordered proteins.
« nr_pdbaa_s2c - For BLASTP searching for close
sequence homologs
Nr6505
We extracted a maximal non-redundant set of known
protein-protein interacting chains from the Protein Data
Bank (PDB) [71] available on 2/4/2010. We used the fol-
lowing steps to build Nr6505 to eliminate the influence
of over-represented protein families in PDB:

1. Extract all the X-ray derived protein structures
with resolution 3.5 A or better in PDB. Remove pro-
teins with less than 40 residues. We obtained
102,853 protein chains.

2. Remove redundancy of the resulting dataset in
step 1 using PISCES[103]. All the remaining
sequences have less than or equal to 30% sequence
similarity. We obtained 6505 chains.

Oblig94 and Trans135

This dataset of 94 obligate protein-protein dimer com-
plexes and the dataset of 135 transient dimer complexes
was obtained from a large non-redundant dataset of 115
obligate complexes and 212 transient complexes (3.25 A
or better resolution, determined using X-ray crystallo-
graphy) previously generated by Mintseris and Weng
[76] to study the conservation of protein-protein inter-
faces. In ordered to exclude the influence of other types
of interfaces, we extracted 94 obligate dimers and 135
transient dimers from the original dataset and get
Oblig94 and Trans135. In Oblig94, 1QLA has been
superseded by 2BS2. In Trans135, 1DN1 and 1IIS have
been superseded by 3C98 and 1T83, respectively, and
1F83, 1DF9, 4CPA and 1JCH have since been deemed
as obsolete and hence discarded from PDB.
Benchmark180

We tested NPS-HomPPI on a benchmark dataset manu-
ally collected and used as evaluation dataset by Bradford
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and Westhead [79]. This dataset consists of 180 protein
chains taken from 149 complexes; 36 of these are
involved in enzyme-inhibitor interactions, 27 in hetero-
obligate interactions, 87 in homo-obligate interactions,
and 30 in non-enzyme-inhibitor transient (NEIT)
interactions.

Disordered protein datasets S1 and S2

We evaluated the performance of NPS-HomPPI on a
non-redundant disordered dataset that has been
recently collected by Meszaros et al [87]. S1 consists
of 46 complexes of short disordered and long globular
proteins. S2 consists of 28 complexes of long disor-
dered and long globular proteins. Note that a protein
complex e.g., 1fvl C:AB formed by a disordered pro-
tein C with two ordered proteins A and B, yields two
sets of interface residues for C (corresponding to
interfaces between C with A and C with B). As a
result, 46 complexes in S1 and 28 complexes in S2
(respectively) correspond to 56 and 40 interfaces of
disordered proteins. We focused on cases in which
NPS-HomPPI is able to identify Safe/Twilight/Dark
zone homologs for the query proteins resulting in
NPS-HomPPI interface predictions for 28 out of 56
and 31 out of 40 interfaces of disordered proteins in
S1 and S2 respectively.

BLAST nr_pdbaa_s2c

This dataset is used for BLASTP searches. We used
the fasta files from S2C database [104] to generate our
BLAST database nr_pdbaa_s2c. We removed proteins
with resolution worse than 3.5 A from S2C fasta for-
matted database. We built a non-redundant database
for BLAST queries from the S2C fasta formatted data-
base. To generate the non-redundant BLAST database,
we grouped proteins with identical sequences into one
entry. We used the resulting database to search for
homologs of a query sequence using BLASTP 2.2.22+
[77]. There are 36,352 sequences and 9,549,671 total
residues in nb_pdbaa_s2c.
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Interface Definition

This paper adopts a stringent definition of protein-pro-
tein interfaces. Surface residues are defined as residues
that have the relative solvent accessible area (RASA) at
least 5% [84]. Interface residues are defined as surface
residues with at least one atom that is within a distance
of 4 A from any of the atoms of residues in the chain.
The ratios of interface residues versus the total number
of residues for the datasets used in this work are sum-
marized in Table 4. Interface information was extracted
from the ProtInDB server http://protInDB.cs.iastate.edu.

Mapping Interfaces in Structures to Sequences

We label the protein sequences as interface or non-
interface residues (according to the definition of inter-
face residues given above) as follows: We first calculate
the relevant distances between atoms using the atom
coordinates in ATOM section in PDB files. Then, by
associating the ATOM section to residues in the
SEQRES section, we can map the corresponding resi-
dues to protein sequences. However, various errors in
PDB files make this a non-trivial task. Hence, we used
the mapping files from S2C database, which offers cor-
rected mapping information from ATOM section to
residues in the SEQRES section of PDB files, to map
interfaces determined in structures to full sequences.

NCBI BLAST Parameters

The amino acid substitution matrix and gap cost are
essential parameters that need to be specified in BLAST
searches. In this study, we used the substitution matrices
and gap costs recommended for the different query
lengths [105] (See Table 5).

Performance Evaluation
To evaluate the extent to which protein interfaces are
conserved in query-homolog pairs and to estimate the

Table 4 The Proportion of Interface Residues in Datasets used in this Study

Dataset Number of Interface Residues® Total Number of Residues® % Interface Residues
Nr6505 145,498 1,377,630 10.6%
Benchmark180 6,401 43,013 14.9%
Trans135 6,460 55217 11.7%
Oblig94 10,273 55,400 18.5%
Disordered S1°¢ 585 1,171 50.0%
Disordered S2° 1,797 11,400 15.8%

# When a chain interacts with more than one other chain, the interfaces are counted separately. For example, for protein complex 2phe C:AB, the interface of C

with A and the interface of C with B are regarded as two disordered interfaces.

® Residues that missing from PDB structures are not counted.

€ For disordered interface datasets S1 and S2, only disordered interfaces are counted.
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Table 5 BLAST Substitution Matrices and Gap Costs used
for BLASTP searches in this paper

Query Length Substitution Matrix Gap Costs
<35 PAM-30 [CA))

35-50 PAM-70 (10,1)
50-85 BLOSUM-80 (10,1)

85 BLOSUM-62 (10,1)

performance of HomPPI and other predictors that we
compare with in predicting the interface residues of a
novel protein (i.e., one not used to train the predictor),
we consider several standard performance measures
including sensitivity (recall), specificity (precision), accu-
racy and Matthews correlation coefficient (CC) [106].
Specifically, for each test protein i, we calculate the cor-
responding performance measures for each protein i as
follows:

o TP;
sensitivity; = TP + EN
i i
. TP;
specificity; = TP: lel
1 1
TPi + TNi
accuracy; =
Vi TP; + FP; + FN; + TN;
C TP,' X TNi - FP,' X FN,'
i

- V(TP; + EN;)(TP; + FP;)(TN; + FP;)(TN; + FNj)

where TP;, FP;, TN; and FN; are respectively the
number of interface residues of protein i that are cor-
rectly predicted to be interface residues, the number
of residues of protein i that are incorrectly predicted
to be interface residues, the number of residues of
protein i that are correctly predicted to be non-inter-
face residues, and the number of residues of protein i
that are incorrectly predicted to be non-interface
residues.

We calculate the protein-based overall performance
measures as follows:

. =N sensitivity,

sensitivity” = =1 i
N

>N specificity,

specificity” = 7! PNﬁ Wi

N
accuracy” = L aguracyi
=N CC;
N

ccP

where N is the total number of test proteins.

These measures describe different aspects of predictor
performance. The overall sensitivity is the probability,
on average, of correctly predicting the interface residues
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of a given protein. The overall specificity is the probabil-
ity, on average, that a predicted interface residue in any
given protein is in fact an interface residue. The overall
accuracy corresponds to the fraction of residues in any
given protein, on average, that are correctly predicted.
The overall Matthews correlation coefficient measures
of how predictions correlate, on average, with true inter-
faces and non-interfaces.

Often it is possible to trade off one performance mea-
sure (e.g., specificity) against another (e.g., sensitivity) by
varying the threshold that is applied to the prediction
score to generate the binary (interface versus non-inter-
face) predictions. Hence, we include of the overall sensi-
tivity against overall specificity for different choices of
the threshold. The resulting specificity-sensitivity plots
or precision-recall plots show the trade-off between sen-
sitivity and specificity and hence provide a much more
complete picture of predictive performance.

The performance measures described above provide
an estimate of the reliability of the predictor in predict-
ing interface residues of a novel protein. It is worth not-
ing that most of the papers in the literature on interface
residue prediction report performance measures by aver-
aging over residues (as opposed to proteins). The resi-
due-based overall performance measures are calculated
as follows:

=N TP;
=N (TP; + FN;)

>N TP
SN (TP; + FP)
= o st )

- SN TP x YN TN, = XN P x YN FN;
\/z,’il(m +FN;) x SN (TP + FP) x SN (TN; + FP;) x YN (TN; + FN;)

sensitivity® =

specificity® =

folo

Residue-based specificity-sensitivity plots in this case
show how the trade-off between specificity® and specifi-
city® is obtained by varying the threshold applied to the
prediction score. The residue-based performance mea-
sures provide an estimate of the reliability of the predic-
tor in correctly labelling a given residue. However, in
practice, it is useful to know how well a predictor can
be expected to perform on a given protein sequence as
opposed to a residue. sensitivity”, specificity’, accuracy®,
and CC" are more informative than their residue-based
counterparts. Hence, in this paper, we report results
based on the protein-based measures although, for the
purpose of comparison with other published methods,
we include the results based on the residue-based mea-
sures in Supplementary Materials in HomPPI website.

Interface Conservation (/C) Scores

In protein interface conservation analysis, we used the
CC (defined above) as a measure of the extent to which
the interface residues in query protein are similar to



Xue et al. BMC Bioinformatics 2011, 12:244
http://www.biomedcentral.com/1471-2105/12/244

those in a putative homolog. For clarity, we refer this
measure as the Interface Conservation (IC) score.

NPS-HomPPI

NPS-HomPPI is a Non-Partner-Specific Homologous
Sequence-Based Protein-Protein Interface Prediction
algorithm. NPS-HomPPI is based on the conclusion
from statistical analysis of protein interface conservation
on Nr6505, Trans135 and Oblig94, i.e., that protein
interfaces are conserved across close sequence
homologs.

As illustrated in Figure 11, NPS-HomPPI predicts
interface residues in a query protein based on the
known interface residues of a selected subset of homo-
logs in a sequence alignment. Homologs of the query
protein sequence are identified by searching the
nr_pdb_s2c database using BLASTP. Note that, in our
experiments, in order to allow unbiased evaluation of
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the performance of NPS-HomPPI, the query sequence
itself and sequences that share a high degree (>95%) of
amino acid sequence identity with, and are from the
same species as the query sequence are deleted from the
set of putative homologs.

If at least one homolog in the Safe Zone is found by
the BLASTP search, NPS-HomPPI uses the Safe Zone
homolog(s) to infer the interfaces of the query protein.
Otherwise, the search is repeated for homologs in the
Twilight and Dark Zones. If NPS-HomPPI cannot find
homologs in any of the three zones, it does not provide
any predictions. The default zone boundaries used by
NPS-HomPPI (and hence the parameters used in NPS-
HomPPI search for homologs of a query sequence) is
based on our interface conservation analysis on the
dataset of transient dimers Trans135 (Table 1). The
choice of these default parameter thresholds for NPS-
HomPPI is intentionally rather conservative; the
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Figure 11 An example of Interface Residue Prediction using NPS-HomPPI. The sequence of the query protein 1 byf chain A is BLASTed
against nr_pdb_s2c database. In this case, 3 sequences meet the thresholds set by NPS-HomPPI for “close homolog” in Safe Zone or Twilight
Zone defined in Table 1. If there are more than K = 10 homologs met the zone thresholds in Table 1, regression equation 1 is used to
determine the nearest K homologs for final prediction. For each position in the alignment, an amino acid residue in the query sequence is
predicted to be an interface residue if the majority of the amino acid residues in the alignment are interface residues. Otherwise, it is predicted
to be a non-interface residue. Interface residues are denoted by red 1's; Non-interface residues are denoted by black 0's. Question marks denote
residues for which coordinates are missing from PDB files.
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thresholds can be relaxed if additional information is
available (e.g., if we know that the query protein is an
obligate binding protein). The IC score of each of the
homologs of a query sequence in the alignment
returned by BLASTP is predicted using the regression
model for the IC score (see eq. 1) from the BLASTP
statistics for the alignment of each homolog with the
query sequence. For a given query sequence, at most K
closest (Safe, Twilight, or Dark Zone homologs, as the
case may be, in that order) are selected from the align-
ment of the query sequence with its homologs to be
used to infer the interface residues of the query
sequence. In our experiments, K, the maximum num-
ber of homologs used in the prediction was set equal
to 10. At most K homologs of the query sequence are
determined by ranking the homologs in the alignment
in decreasing order of their predicted IC scores and
choosing (at most) K Safe zone homologs (or Twilight
zone homologs if no Safe zone homologs exist or Dark
zone homologs if neither Safe nor Twilight zone
homologs exist). Once the (at most) K closest homo-
logs to be used for predicting the interface residues of
the query sequence are chosen, each residue in the
query sequence is labelled as an interface or non-inter-
face residue based on the majority (over the set of at
most K closest homologs of the query sequence) of the
labels associated with the corresponding position in
the alignment. More specifically, each of the at most K
homologs provides a positive vote for a given position
in the query sequence if the corresponding residue of
the homolog is an interface residue; and a negative
vote if it is a non-interface residue. The prediction
score of NPS-HomPPI for that position in the query
sequence is simply the number of positive votes
divided by the total number of votes. A query
sequence residue with a HomPPI score >0.5 is pre-
dicted to be an interface residue (See Figure 11 for an
example); otherwise, it is predicted to be a non-inter-
face residue. This procedure can be seen as an applica-
tion of the (at most) K nearest neighbor classifier at
each residue of the query sequence.
NPS-Interface Conservation As a Function of Sequence
Alignment
We built a linear model for NPS-interface conservation
based on the most important sequence alignment statis-
tics identified in the PCA analysis: logEVal, Positive
Score, logLAL.

The model is

IC Score = By + B1 log(EVal) + By PositiveS + B3 1og(LAL) (1)

Variables, parameter estimates and coefficients are
shown in Table 6. All the coefficients are significant.
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Table 6 Variables, Parameter Estimates and Significance
Values for the Linear Model for NPS-Interface
Conservation

Variable Parameter Estimate Standard Error t Value Pr > |t]
Bo -0.5655 0.0080 -7066 <0001
B -0.0004 0.0000 -2330 <0001
B 0.0037 0.0000 5444 <.0001
Bs 0.1057 0.0011 9462 <0001
PS-HomPPI

PS-HomPPI predicts the interface residues in a protein
chain based on the known interface residues of its clo-
sest homo-interologs. Given a query protein A and its
interaction partner B, PS-HomPPI first identifies the set
homo-interologs of A-B using BLASTP to identify the
homologs of A and homologs of B. From the BLASTP
results, we identify a set of homo-interologs that meet
sequence similarity thresholds (determined based on the
results of our partner-specific interface conservation
analysis, as described in the Results Section). We dis-
card the whole PDB complex that contains A-B, to
ensure an objective assessment of the reliability of our
prediction procedure. For query A-B and its homolo-
gous interacting pair A’-B’, we also discard the interact-
ing protein pair A’-B’ if A and A’ or B and B’ share
>95% sequence identity and belong to the same species.

PS-HomPPI uses homo-interologs in the Safe and
Twilight Zones to make predictions. The zone bound-
aries were determined using Trans135 and are shown in
Table 7. The PS-HomPPI prediction process is similar
to that of NPS-HomPPI in that it progressively searches
for homointerologs from higher, then lower, homology
zones: i.e., if PS-HomPPI cannot find at least one homo-
interolog in the Safe Zone, it next looks for homo-inter-
ologs in the Twilight Zone.

PS-HomPPI predicts whether an amino acid in query
sequence A is an interface residue or not based on the
corresponding position in its alignment with (at most) K
of the closest homo-interologs of A-B (based on their
predicted IC scores). In our experiments, K was set
equal to 10. Given a query-partner pair A-B, we label
each position in the amino acid sequence of protein A
as an interface or non-interface based on whether or
not a majority of the corresponding positions of the
homologs of A within the homo-interologs of A-B are
interface residues. More specifically, each of the at most
K homo-interologs provides a positive vote for a given
position in the query protein sequence A if the corre-
sponding residue of its homolog A’ in its homo-intero-
log is an interface residue; and a negative vote if it is a
non-interface residue. The prediction score of PS-
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Table 7 Boundaries of Safe, Twilight and Dark Zones
used by PS-HomPPI

LogEVal <-100
Safe Zone PositiveS >70%
Fracea, >80%
Fracegg >80%
LogEVal <-50
Twilight Zone 1 PositiveS >60%
Fraces >60%
Fracegg >60%
LogEVal <1
Twilight Zone 2 PositiveS >55%
Frace, >40%
Fracegg >40%
LogEVal <1
Dark Zone PositiveS >0
Fraces >0
Fracegg >0

HomPPI for that position in the query sequence is sim-
ply the number of positive votes divided by the total
number of votes. A residue in the query protein A with
a prediction score >0.5, is predicted as interface, other-
wise, it is predicted as non-interface.

PS-Interface Conservation As a Function of Sequence
Alignment

We built a linear model for PS-interface conservation
based on the important sequence alignment statistics
identified in the PCA analysis: logEVal, Positive Score,
Frac,, and Fracgg, where

log(EValaa') + log(EValgg')

2
PositiveSaa + PositiveS,

2
Fracaa = Fracy x Fracy

logEVal =

PositiveS =

Fracgp = Fracg x Fracy

LAL,
Fracy = Ad cp = , kracg, =
lengthg lengthg

', Fracy =
length, A

LALsa
leng;i/' Fra

A-B is query protein pair and A’-B’ is the homo-inter-
olog of A-B. EVal,, and EValgp are the EVal between
A and A’, and between B and B’. positiveS,4 and positi-
veSpp are the BLAST Positive Score between A and A’,
between B and B’. The model is

Table 8 Variables, Parameter Estimates and Significance
Values for the Linear Model for PS-Interface
Conservation.

Coefficient Parameter Estimate Standard Error t Value Pr > |t|
Bo -0.505 0.040 -1262 <0001
B 0.001 0.000 6.16 <.0001
B 0.009 0.001 14.6 <.0001
Bs 0.341 0.027 1254 <0001
Ba 0.205 0.028 74 <.0001
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IC Score = By + B1logEVal + B PosiTiveS + BsFracaa + PaFracgy  (2)

Variables, parameter estimates and coefficients are
shown in Table 8. All the coefficients are significant.

Availability and Requirements

* Project name: HomPPI
* Project home page: http://homppi.cs.iastate.edu/
* Programming language: Perl
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