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Abstract

Background: Flux coupling analysis (FCA) is a useful method for finding dependencies between fluxes of a
metabolic network at steady-state. FCA classifies reactions into subsets (called coupled reaction sets) in which
activity of one reaction implies activity of another reaction. Several approaches for FCA have been proposed in the
literature.

Results: We introduce a new FCA algorithm, FFCA (Feasibility-based Flux Coupling Analysis), which is based on
checking the feasibility of a system of linear inequalities. We show on a set of benchmarks that for genome-scale
networks FFCA is faster than other existing FCA methods.

Conclusions: We present FFCA as a new method for flux coupling analysis and prove it to be faster than existing
approaches. A corresponding software tool is freely available for non-commercial use at http://www.bioinformatics.
org/ffca/.

Background
Constraint-based analysis of metabolic networks has
become increasingly important for describing and predict-
ing the behavior of living organisms [1,2]. While a growing
number of metabolic network reconstructions have
become available during the last years, the computational
analysis of genome-scale networks with hundreds or thou-
sands of reactions may still be very time-consuming.
Therefore, there is a need for more efficient algorithms
and tools (see e.g. [3-5]).
Flux coupling analysis (FCA) [6] is a useful method

for finding dependencies between fluxes of a metabolic
network at steady-state. If a non-zero flux through a
reaction in steady-state implies a non-zero flux through
another reaction, then the first reaction is said to be
coupled to the second reaction. Several studies have
used FCA for exploring various biological questions
such as network evolution [7-9], gene essentiality [7],
analysis of experimentally measured fluxes [10,11] or

gene regulation [12,13]. Having a time efficient imple-
mentation of FCA is important in such studies.
In the rest of this section, we first recall some basic

definitions. Then we briefly review the previously pro-
posed FCA methods.

Mathematical definitions
Basic preliminaries
For a metabolic network with m (internal) metabolites
and n reactions, the stoichiometric matrix S is an m × n
matrix, where element Sij is the stoichiometric coefficient
of metabolite i in reaction j. We denote by R = {1, ..., n}
the set of reactions and by M = {1, ..., m} the set of
metabolites.
There are two types of reactions in a metabolic net-

work. Irr is the set of irreversible reactions which are
assumed to always have non-negative flux values. Rev is
the set of reversible reactions which are allowed to have
positive, negative or zero flux values. If a reversible reac-
tion has a positive (resp. negative) flux, we say that it is
working in forward (resp. backward) direction. Splitting a
reversible reaction i means making reaction i irreversible
and adding one more irreversible reaction i + n to the
network, which works in the backward direction. With-
out loss of generality, we assume that in the numbering
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of reactions, the first |Rev| reactions are the reversible
ones.
If v is the vector of metabolic fluxes through all the

reactions, the steady-state condition holds for v if S ·
v = 0. The steady-state flux cone is defined as C = {v Î
ℝn | S · v = 0, vi ≥0, for all i Î Irr}. The lineality space
of C is given by lin.space(C) = {v Î ℝn | S · v = 0, vi =
0, for all i Î Irr}.
If for some reaction r Î R, vr = 0 for all v Î C, then r

is called blocked, otherwise r is unblocked. The set of
blocked reactions will be denoted by Blk. The set of
unblocked reactions can be further partitioned based on
the reversibility type of reactions [14]. We define Irev as
the set of all reactions that can work only in one direc-
tion, i.e., those reactions that take only non-negative or
only non-positive flux values at steady-state. If i Î Irev
and vi ≤ 0 for all v Î C, one can multiply by -1 the i-th
column of the stoichiometric matrix, such that in the
modified network, we have vi ≥ 0 for all v Î C. Without
loss of generality, we assume that all reactions in Irev
are operating in the forward direction.
The set of reactions that can work in both directions

at steady-state is further partitioned into two subsets:
(a) Prev, the set of pseudo-irreversible reactions, and (b)
Frev, the set of fully reversible reactions. A reaction i is
in Prev if it can work in both directions, and addition-
ally, for all flux vectors v in the lineality space of the
flux cone, we have vi = 0. Accordingly, we define Frev
as the set of those reactions, which can work in both
directions, and additionally, can have a non-zero flux
value if fluxes through all irreversible reactions are set
to zero.
Flux coupling relations between a pair of reactions [6]
Consider two unblocked reactions i, j Î R. If for all v
Î C, vi ≠ 0 implies vj ≠ 0, then i is directionally
coupled to j. This will be denoted by i ® j, or equiva-
lently, j ¬ i. If for all v Î C, vi ≠ 0 implies vj ≠ 0 and
vice versa, then we say that i and j are partially
coupled, or i ↔ j. If i and j are partially coupled, and
additionally there exists a constant k such that for all v
Î C, vi ≠ 0 implies vj/vi = k, then i and j are fully
coupled, or i ⇔ j. If neither i ® j nor j ® i holds, then

i and j are uncoupled, or i
Un←→ j .

Elementary flux patterns
The set supp(v) = {i Î R | vi ≠ 0} of reactions active in v
is called the support of v. Suppose v Î C is a flux vector
and A ⊆ R is a subnetwork. The flux pattern of v for A
is defined as A ∩ supp(v), which is the set of those reac-
tions in A which have non-zero values in v[15]. A flux
pattern is called an elementary flux pattern (EFP) if it
cannot be written as the union of other flux patterns.
For studying EFPs, Kaleta et al. [15] assume that the
network contains only irreversible reactions. To achieve

this, every reversible reaction should be split into two
irreversible reactions (forward and backward).

Approaches to Flux Coupling Analysis
In this subsection, we briefly recall existing approaches
to flux coupling analysis. For additional information and
the technical details on the implementation of these
algorithms, we refer to Additional file 1.
Flux Coupling Finder Algorithm (FCF)
The most widely used method for FCA is the Flux Cou-
pling Finder (FCF) algorithm [6]. This approach is based
on solving linear programs (LPs), and therefore is an
optimality-based method. After finding blocked reac-
tions and splitting reversible reactions, for every pair of
unblocked reactions i and j, two LPs are solved.
Depending on the optimal values obtained, the coupling
relation between i and j is determined. There is a post-
processing step in FCF. Since the reversible reactions
have been split, flux coupling relations for these reac-
tions have to be obtained from the coupling relations of
the corresponding irreversible forward and backward
reactions.
The FCF algorithm has been successfully used for

finding coupling relations in a number of metabolic net-
works [6-13,16]. However, this approach is rather time-
consuming for genome-scale metabolic networks with
thousands of reactions, although it is still one of the
fastest FCA methods.
FCA based on Minimal Metabolic Behaviors (MMB-FCA)
Larhlimi and Bockmayr [14,17] have proposed a differ-
ent strategy for flux coupling analysis. In this approach,
a minimal set of generating vectors of the flux cone is
computed. Then, the coupling relation for any pair of
reactions is inferred based on the co-appearance of non-
zero fluxes in the generating vectors.
FCA based on elementary flux patterns (EFP-FCA)
Recently, Kaleta et al. [15] introduced the concept of
elementary flux patterns (EFPs) for the analysis of mini-
mal active reactions in a “subnetwork”, which account
for possible steady-state flux distributions in a (much)
larger metabolic network. They also presented a method
based on mixed-integer linear programming (MILP) to
compute EFPs. Kaleta et al. suggested that EFPs can be
used for characterizing flux coupling relations (see Sup-
plemental Material in [15]). Consider a subnetwork
including two unblocked reactions i and j. If each of
these reactions can have a non-zero flux independently

of the other (i.e. i
Un←→ j ), {i} and {j} are the only EFPs

in this subnetwork. On the other hand, if we assume
(without loss of generality) that i is directionally coupled
to j, then the EFPs of this subnetwork are {i, j} and {j}.
Finally, if the reactions are partially coupled, we will
have only one EFP, which is {i, j}. With this method, it
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is not possible to distinguish between partial and full
coupling, since flux patterns only contain the informa-
tion about the activity or inactivity of the fluxes, but not
the flux values.

Further strategies for improving flux coupling analysis
In FCF, and some other FCA approaches, every reversi-
ble reaction is split into a forward and a backward reac-
tion. This splitting procedure results in an increase in
the number of LPs and also in the size of each LP to be
solved. Moreover, a complicated postprocessing step is
required to infer the flux coupling relations of the origi-
nal reversible reactions. For all these reasons, it might
be better to perform flux coupling analysis without split-
ting the reversible reactions. An implementation of FCF
without splitting is presented in Additional file 1.
Additionally, Larhlimi and Bockmayr [14] show that

depending on the reversibility type of the reactions, only
certain flux coupling relations can occur. Two
unblocked reactions i and j can be coupled only if one
of the following 4 cases holds (note that initially 3 × 3 =
9 reversibility types for the pair (i, j) would be possible):

1. i, j Î Irev: In this case, i and j can be directionally,
partially or fully coupled.
2. i Î Irev and j Î Prev: The only possibility is j ® i.
3. i, j Î Prev: In this case, we can only have i ⇔ j.
4. i, j Î Frev: In this case, we can only have i ⇔ j.

Therefore, it is enough to determine the reversibility
types of i and j, and then check if the corresponding
coupling relation holds. This will be referred to as
“Reversibility-Type prunings” (or simply, RT-prunings).
RT-prunings were originally used in MMB-FCA as pre-
sented in [14].
After RT-prunings, a further improvement can be

applied to LP-based FCA methods. Assume that in the
stoichiomtric matrix S, the columns corresponding to
the blocked reactions have been removed. According to
Proposition 6.13 in [18], for two reactions i and j such
that i, j Î Prev or i, j Î Frev, the following two state-
ments are equivalent:

• i ⇔ j
• For all v such that Sv = 0, vi = 0 implies vj = 0.

This means that it is sufficient to solve only one LP:

max vj
s.t. Sv = 0

vi = 0

The two reactions i and j will be fully coupled if and

only if in the above LP vmax
j = 0 . Note that the

irreversibility constraints are not included in the above
LP. Therefore, not only solving one LP is sufficient, but
also the LP becomes smaller. This improvement will be
called Prev/Frev-based improvement (or simply, PF-
improvement).
An improved version of FCF, which takes into account

all of the above-mentioned improvements, has been sug-
gested in [18]. Here we implemented this improved ver-
sion of FCF and compared it with the other FCA
approaches (see the Results and Discussion section).

Goals of the present work
FCA is a promising tool for metabolic network analysis.
However, to perform FCA most authors seem to use
their personal implementation of the FCF algorithm
[9,13]. Only very recently, an implementation of FCF
has been included in the latest versions of the FASIMU
software [19,20]. On the other hand, several approaches
for FCA have been proposed in the literature. It is not
known which of these methods is the fastest in practice.
In this paper, we present a novel “feasibility-based” flux
coupling analysis method (FFCA) and compare it to pre-
viously existing approaches. A corresponding software
tool is freely available for non-commercial use.

Results and Discussion
FFCA: Feasibility-based Flux Coupling Analysis
A linear programming problem maximize(cT x | Ax ≤ b)
can be solved by enumerating a sequence of feasible
solutions, i.e., solutions of the system of linear inequal-
ities Ax ≤ b such that at each solution x the objective
function value cT x improves. Accordingly, finding one
feasible solution could be faster than computing an opti-
mal solution (see [21] for the theoretical background).
In this section, we introduce a new approach for flux

coupling analysis, FFCA, which is based on feasibility
testing. Taking into account the previously mentioned
strategies for improving flux coupling analysis, we pro-
pose the following procedure for FFCA:

1. i, j Î Irev: In this case, we check the feasibility of
two systems of linear inequalities:

vi = 1, vj = 0, Sv = 0, vr ≥ 0, for all r ∈ Irr, (P1)

and

vi = 0, vj = 1, Sv = 0, vr ≥ 0, for all r ∈ Irr. (P2)

If (P1) and (P2) are both feasible, then i and j are

not coupled to each other (i
Un←→ j) . If (P1) (resp.
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(P2)) is infeasible, then i ® j (resp. j ® i). If (P1)
and (P2) are both infeasible, then i and j are partially
(and maybe fully) coupled. To check whether they
are fully coupled, one has to use other methods, e.g.
computing enzyme subsets [22] or solving two LPs
as in the FCF algorithm [6].
2. i Î Irev and j Î Prev: The only possible coupling
relation is j ® i (but not i ® j). Hence, (P1) will
always be feasible, because feasibility of (P1) means
that i ® j does not hold. However, we need to
check the feasibility of (P2). Additionally, since j can
take negative values, one more system should be
checked for feasibility:

vi = 0, vj = −1, Sv = 0, vr ≥ 0, for all r ∈ Irr. (P3)

It can be easily shown that if (P2) and (P3) are both
infeasible, then j ® i. Otherwise, i and j are
uncoupled.
3. i, j Î Prev or i, j Î Frev: In this case, the following
system of linear inequalities should be checked for
feasibility:

vi = 0, vj = 1, Sv = 0. (P4)

If (P4) is infeasible, then i ⇔ j (because feasibility of
(P4) implies j ® i, which in turn implies i ⇔ j based
on Proposition 2 in [14]). If (P4) is feasible, then i
and j are uncoupled.

To perform FFCA, a method is needed to check the
feasibility of a system of linear inequalities. In practice
this can be done by solving an LP constructed by the
system of inequalities together with a constant objective
function. Any feasible solution will be an optimal solu-
tion of the LP, and therefore, the LP solver will finish
after finding the first feasible solution. For example, for
checking the feasibility of (P1), one can solve the follow-
ing LP:

max c a constant value
s.t. Sv = 0

vr ≥ 0 ∀r ∈ Irr
vi = 1
vj = 0

Since vi is constant, the optimal value exists if and
only if this problem is feasible. Similar LPs can be
solved to check the feasibility of (P2) and (P3).
In Table 1, the characteristics of the FFCA approach

are compared to the other FCA methods studied in this
article. Note that in all methods, blocked reactions are
found and the possible irreversibility of initially reversi-
ble reactions is detected within the preprocessing step.

Comparison of the four FCA approaches
To compare the different approaches, namely FCF, MMB-
FCA, EFP-FCA and FFCA, we implemented all of them in
Matlab (see Additional file 1). A benchmark set of six
metabolic network models was used for the evaluation.
The number of unblocked reactions in these models
ranges from 18 to 765. Table 2 summarizes the running
times, while Table 3 reports on the resulting coupling rela-
tions. One can see that in all cases FFCA is 2 to 3 times
faster than FCF and orders of magnitude faster than EFP-
FCA. Table 2 also shows that FFCA is more appropriate
for FCA in genome-scale networks. MMB-FCA is the fast-
est method for the three smallest networks. However, for
the middle-sized H. pylori network and especially for the
large networks of S. cerevisiae and E. coli, FFCA proves to
be faster than MMB-FCA. The computation time required
for MMB-FCA rapidly grows when the number of reac-
tions increases. This is due to the possibly exponential size
of the set of generating vectors which has to be computed
before finding the coupled reactions (see Section 4.4 in
[18]). EFP-FCA, which is based on solving mixed-integer
linear programs, turns out to be much slower than other
methods. Although the concept of elementary flux pat-
terns is very useful in the analysis of subnetworks, its
applicability in full FCA seems to be limited.
Both the FCF algorithm and the current implementa-

tion of FFCA solve LPs for flux coupling analysis. One
might ask why FFCA is faster than the classical FCF
method. There are at least five major differences
between FCF and FFCA:

• When an LP is solved in FFCA, finding the first
feasible solution is sufficient, while the LPs should
be solved to optimality in case of the FCF algorithm.
• In the FCF method, in contrast to FFCA, every
reversible reaction is split into two (forward and
backward) irreversible reactions. This step slows
down the procedure and increases the size of the
LPs to be solved.
• For computing the flux coupling relation between
any pair of reactions, we always need two LPs in
FFCA, while in FCF sometimes more LPs have to be
solved. For example, for computing the coupling
relation between an irreversible and a reversible
reaction (after splitting), four LPs are solved (see
Additional file 1).
• The Reversibility-Type prunings [14] to reduce the
number of possible coupled reaction pairs are only
considered in FFCA.
• The PF-improvements are only considered in
FFCA.

One can think of implementing FCF without splitting
reversible reactions and/or with the RT-prunings and/or
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PF-improvement. In order to assess the importance
of these issues, three improved versions of FCF
were implemented (see the Additional file 1 and also
Table 1): (i) FCF was re-implemented without splitting
reactions (W-FCF); (ii) FCF was re-implemented with-
out splitting reactions and with the RT-prunings (WR-
FCF); and (iii) FCF was re-implemented without split-
ting reactions and with the RT-prunings and the
PF-improvement (WRP-FCF), as suggested in [18].
In Table 2 the computational running times of these

methods are also shown. As expected, the three versions
of the improved FCF algorithm are better than the clas-
sical FCF algorithm, while they are still slower that
FFCA.
Computational Properties of FFCA
Flux coupling analysis of genome-scale networks can be
very time consuming. Only recently (see e.g. [9]) FCA
has been used for some of the new genome-scale meta-
bolic networks that contain more than 2000 reactions.
To further illustrate our approach, we have applied
FFCA to three of these very large networks. The results
are reported in Table 4. We can see that FFCA needs
37-46 hours for each of the networks to perform a com-
plete FCA. The numbers of the resulting flux coupling
relations are also given in the table.
Since FFCA includes the RT-prunings and PF-improve-

ment, it might be interesting to see how the number of
coupling relations (and also the running time of FFCA)
depends on the number of reversible reactions in a net-
work. This problem is studied in Additional file 2. Briefly,
the flux coupling relations have been computed for the
original metabolic network of E. coli [23], for the

modified metabolic network of E. coli [24] (which
includes a smaller number of irreversible reactions), and
for some random networks in between. As expected, the
numbers of uncoupled pairs increase (and the running
times generally decrease) with the increase in the number
of reversible reactions.

Conclusions
We introduced FFCA as a new method for flux coupling
analysis, and proved it to be faster than any other available
approach. Our implementation of FFCA is fast enough to
perform FCA for every pair of reactions in S. cerevisiae
and E. coli genome-scale networks in a few hours. A corre-
sponding software tool is available for non-commercial use
at http://www.bioinformatics.org/ffca/ and we recommend
it for FCA of genome-scale networks.

Methods
Metabolic network models
Nine metabolic networks were used in this study: (i)
ILLUSNET network from [14]; (ii) RBC : metabolic net-
work of red blood cell [25]; (iii) EC core: central meta-
bolic network of E. coli [26]; (iv) H. pylori genome-scale
metabolic network [27]; (v) yeast (S. cerevisiae) genome-
scale metabolic network [28]; (vi) the 2003 genome-scale
metabolic network of E. coli (iJR904) [23]; (vii) the 2007
genome-scale metabolic network of E. coli (iAF1260)
[29]; (viii) the metabolic network of human (Recon 1)
[30]; and (ix) the metabolic network of human hepatocyte
(HepatoNet1) [31].
For FCA, all uptake reactions were assumed to be able

to carry non-zero fluxes.

Table 1 General comparison of different approaches to flux coupling analysis

Method name Preprocessing Type of linear program
and solution

Further distinguishing of partial
and full coupling required?

Postprocessing for
reversible reactions?

MMB-FCA computing MMBs + reaction classification n/a No No

EFP-FCA splitting reversible reactions MILP, optimal Yes Yes

FCF splitting reversible reactions LP, optimal No Yes

W-FCF n/a LP, optimal No No

WR-FCF/WRP-FCF reaction classification LP, optimal No No

FFCA reaction classification LP, feasible Yes No

Table 2 CPU running time (in seconds) required for flux coupling analysis of the benchmark networks when CLP [32]
is used as the LP solver

no. of unblocked reactions MMB-FCA EFP-FCA FCF W-FCF WR-FCF WRP-FCF FFCA

ILLUSNET 18 0.01 26.3 0.25 0.14 0.09 0.06 0.06

RBC 38 0.05 152 1.39 0.80 0.68 0.64 0.62

EC core 63 0.22 585 6.58 3.03 3.13 2.19 2.15

H. pylori 217 69.8 >1 day 196 83.6 67.0 63.3 60.7

S. cerevisiae 639 >1 day >1 day 8.5 × 103 4.0 × 103 3.4 × 103 3.3 × 103 3.1 × 103

E. coli (iJR904) 765 >1 day >1 day 1.2 × 104 7.4 × 103 6.3 × 103 5.9 × 103 5.6 × 103
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Implementation of different FCA methods
Unless indicated otherwise, all tools were implemented
in Matlab v7.4. Details about the implementation of the
different FCA approaches, together with the correspond-
ing pseudo-codes are presented in Additional file 1.

Comparison of different FCA methods
All computations were performed on a 64-bit Debian
Linux system with Intel Xeon 3.0 GHz processor. The
running times include the CPU time for preprocessing,
computation of flux coupling relations, and post-proces-
sing (where necessary).

Additional material

Additional file 1: Different approaches to flux coupling analysis and
implementation details. In this file, pseudocodes and implementation
details of different FCA methods are presented.

Additional file 2: Dependence of flux coupling analysis on the
number of reversible reactions. In this file, we show how flux coupling
relations depend on the number of reversible reactions in the E. coli
metabolic network.
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