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Abstract

Background: Protein domain classification is an important step in metagenomic annotation. The state-of-the-art
method for protein domain classification is profile HMM-based alignment. However, the relatively high rates of
insertions and deletions in homopolymer regions of pyrosequencing reads create frameshifts, causing conventional
profile HMM alignment tools to generate alignments with marginal scores. This makes error-containing gene
fragments unclassifiable with conventional tools. Thus, there is a need for an accurate domain classification tool
that can detect and correct sequencing errors.

Results: We introduce HMM-FRAME, a protein domain classification tool based on an augmented Viterbi algorithm
that can incorporate error models from different sequencing platforms. HMM-FRAME corrects sequencing errors
and classifies putative gene fragments into domain families. It achieved high error detection sensitivity and
specificity in a data set with annotated errors. We applied HMM-FRAME in Targeted Metagenomics and a
published metagenomic data set. The results showed that our tool can correct frameshifts in error-containing
sequences, generate much longer alignments with significantly smaller E-values, and classify more sequences into
their native families.

Conclusions: HMM-FRAME provides a complementary protein domain classification tool to conventional profile
HMM-based methods for data sets containing frameshifts. Its current implementation is best used for small-scale
metagenomic data sets. The source code of HMM-FRAME can be downloaded at http://www.cse.msu.edu/
~zhangy72/hmmframe/ and at https://sourceforge.net/projects/hmm-frame/.

Background
Culture-independent methods and high-throughput
sequencing technologies now enable us to obtain com-
munity random genomes (metagenomes) from different
habitats such as arctic soils and mammalian gut. Cur-
rently, metagenomic annotation focuses on phylogenetic
complexity and protein composition analysis. An impor-
tant component in protein composition analysis is pro-
tein domain classification, which classifies a putative
protein sequence into annotated domain families and
thus aids in functional analysis. Profile HMM-based
alignment is the state-of-the-art method for protein
domain classification because of its high sensitivity in
classifying remote homologs [1]. In conjunction with the

Pfam database [2], which contains over 10,000 annotated
protein domain families, HMMER [3] can accurately clas-
sify query protein sequences into existing domain
families. In addition, the latest version of HMMER can
achieve comparable speed to BLAST, making it applic-
able to large-scale metagenomic data sets.
However, HMMER cannot optimally classify sequences

containing frameshift errors. In HMMER’s domain analy-
sis, six-frame translations of a sequence read or a pre-
dicted gene fragment are aligned with annotated protein
domain families using HMMER. One problem of this
method is that sequencing errors, including insertions or
deletions of nucleotides, create frameshifts during transla-
tion. As a result, the derived peptide sequences are likely
to generate alignments with marginal scores. As HMMER
uses alignment scores, E-values, or lengths to determine
family membership, these reads become unclassifiable or
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can be falsely recognized as “novel” proteins during down-
stream analysis. Figure 1 illustrates how insertion or dele-
tion errors cause marginal alignment scores.
This problem is more serious in domain analysis for

metagenomic data sets. Given the high complexity of
many metagenomic data sets, high-quality genome
assembly is not always available. Thus, protein annota-
tion can only be conducted on short sequence reads.
The average read length varies from 25-35 to around
400 bases for the next-generation sequencing methods
currently in use. On average there is about one open
reading frame per 1000 base pairs in bacteria genomes.
Depending on gene size, many gene fragments in meta-
genomic sequence reads may share only a small overlap
with existing domain families, generating even shorter
profile HMM alignments with significantly lower scores.
Although a number of tools [4-9] exist for frameshift

detection, they are not designed for protein domain
classification using profile HMMs. In addition, these
tools have not incorporated sequencing error patterns
associated with next generation sequencing technologies.
A clear disadvantage is that they do not distinguish
between error rates in and out of homopolymer regions
in pyrosequencing reads. The goal of this work is to
design an accurate profile HMM alignment method that
can incorporate any given error pattern. Our experi-
ments show that our tool has high sensitivity (>95%) in
detecting sequencing errors and has a low false positive
rate (~ 0.15%). By correcting insertion and deletion
errors, it can generate longer alignments with signifi-
cantly higher alignment scores, and thus provide more
accurate protein domain classification.

Related work
A number of programs exist to handle frameshifts
through DNA versus protein sequence alignment. The

simplest methods discard sequences that might contain
frameshifts rather than trying to correct them. For
example, BLASTX provides insightful information about
whether a query DNA sequence contains frameshifts
using six-frame translations. However, it neither expli-
citly outputs positions of insertions or deletions that
create frameshifts, nor does it try to fix them by con-
structing an alignment from pieces obtained from differ-
ent reading frames. Other tools are available to detect
and fix frameshift errors automatically. Frame [4] uses
BLASTX to compare all six reading frames of the query
nucleotide sequence against protein sequences. Then
the aligned regions are combined for frameshift detec-
tion. Guan et al. [5], Zhang et al. [6], and Halperin et al.
[7] describe dynamic programming algorithms for fra-
meshift detection during pairwise DNA and protein
sequence alignment. Instead of using all reading frames
of a DNA sequence to maximize the alignment score,
another group of tools [8,9] translate a protein sequence
back into DNA sequences and formulate the alignment
problem as a network matching problem. Frameshift
detection has also been applied to finding distant pro-
tein homologies where the divergence is the result of
frameshift mutations and substitutions [10-12].
Some gene-finding tools detect frameshifts. FrameD

[13] relies on a directed acyclic graph for gene predic-
tion in the presence of frameshifts. Kislyuk et al. [14]
apply an ab initio method to detect possible frameshifts
from coding potential generated by GeneMark [15].
GeneTack [16] and FragGeneScan [17] use hidden Mar-
kov models for ab initio frameshift detection in gene
finding.
Despite the extensive study of frameshift detection,

the above programs are not designed for protein family
classification through DNA versus protein family align-
ment. Alternatively, Genewise [18], a widely used DNA
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Figure 1 Frameshifts cause short alignments with marginal scores. Xiis the ith base of a DNA sequence. Every codon is underscored. aij is
the jth amino acid of a peptide sequence derived under reading frame i. The correct peptide sequence can be derived from the error-free
sequence (shown on the top of the figure) under reading frame 1. Because of insertions of two nucleotides (bolded X and Y), the correct
peptide sequence is the concatenation of three short peptide sequences derived using different reading frames. Thus, each peptide sequence
derived using one reading frame can only generate short alignments with insignificant scores.
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versus protein alignment tool, allows comparison of a
DNA sequence with a profile HMM. Our algorithm
differs from Genewise by explicitly incorporating a
position-specific error model that is trained on data
from different sequencing platforms such as 454 GS
FLX Titanium.

Method
The representative protein domain classification tool
HMMER [3] classifies a query protein sequence into a
profile HMM-represented protein family using the
Viterbi or the Forward algorithm [19]. The Viterbi algo-
rithm aligns a query protein sequence to a profile HMM
by searching for the most probable state path in the
model. If the alignment score or E-value meets the pre-
defined threshold, the query is classified into the corre-
sponding family. The alignment generated by the Viterbi
algorithm only accounts for the difference caused by
evolutionary divergence between a sequence and a pro-
tein family. In order to classify error-containing
sequences into their native families, the alignment algo-
rithm must detect the differences resulted from both
evolution and sequencing errors.
In this section, we describe HMM-FRAME, the imple-

mentation of an augmented Viterbi algorithm that
searches for the optimal alignment between a DNA
query and a profile HMM by considering both evolu-
tionary divergence and sequencing errors. HMM-
FRAME differs from HMMER in the following ways: 1)
HMM-FRAME directly accepts a DNA sequence as
input, 2) HMM-FRAME accepts a sequencing error
model as input, 3) HMM-FRAME can detect and fix fra-
meshifts caused by sequencing errors in the DNA
sequence. The output alignment indicates which bases
are inserted or deleted due to evolutionary change or
sequencing error.

Error models
Here we describe the error models used in our experi-
ments. Different sequencing technologies may have dif-
ferent types of errors. For example, previous work
[20-22] has shown that insertions and deletions occur
more often in homopolymer regions than in non-homo-
polymer regions for pyrosequencing reads. Substitution
errors occur more often than insertions or deletions in
Illumina sequencing reads. Because deletion or insertion
errors cause frameshifts, we focus on applying HMM-
FRAME to pyrosequencing data sets.
In this work, we consider two error models. The first

one is a published model trained from GS20 sequen-
cing reads [20]. The insertion and deletion error rates
in non-homopolymer and homopolymer regions are
0.0007 and 0.0044, respectively. The second error

model is computed on data from FLX Titanium
sequencing platform. We obtained a set of Titanium
sequence reads (Cole and Wang, unpublished)
extracted from the region H of the 16S rRNA, which
were amplified from the Baylor mock community (22
strains, 24 sequences). Then we computed error rates
using insertions and deletions that were annotated by
generating careful Needleman-Wunsch alignments
between the Titanium sequencing reads and the con-
trol sequences. In total, 7,040 sequences passed the
initial quality control of RDP [23] after contamination
and chimera detection. There were 1,721 insertion
and deletion errors. Note that PCR, which was used
to generate the amplicons of the sample, can intro-
duce errors. However, because most of the errors
introduced by PCR are substitution errors, we
assumed that the deletions and insertions were mainly
sequencing errors. The derived error rates for homo-
polymers of different sizes were: 1: 0.000532, 2:
0.000698, 3: 0.00102, 4: 0.000688, 5: 0.0372, 6:
0.00167, 7: 0.143, where the first number is the size of
homopolymer regions (1 means non-homopolymer)
and the second number is the rate of insertion and
deletion errors. If we sum the error rates for homopo-
lymer regions of different sizes, the insertion and
deletion error rates for non-homopolymer and homo-
polymer regions were 0.0005 and 0.001, respectively.
They are slightly smaller than the published G20 error
rates [20]. We will compare their performance on a
data set with annotated errors in the Results and
Discussion section.

The augmented Viterbi algorithm for sequencing error
correction
Let π be a state path in a profile HMM M . Let r be a
set of insertion and deletion positions in a DNA
sequence x. The augmented Viterbi algorithm searches
for the most probable path π* and the most probably
error position set r* such that (π*, r* ) = argmax(π,r)P
(x, π, r). Intuitively this algorithm searches for an
optimal alignment between a DNA sequence and a
profile HMM by simultaneously considering 1) evolu-
tionary divergence (i.e. the insertion, deletion, and
substitution of amino acids) and 2) sequencing errors
(i.e. insertion and deletion of nucleotides). To solve
the above equation, we first divide the search space
according to different types of sequencing errors
inside a codon and between two consecutive codons.
For each type of error, we search for the most prob-
able state path.
Input: a DNA sequence x, a profile HMM M , and a

sequencing error model. Notations of M and the error
model will be described below.
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Output: the optimal alignment between DNA
sequence x and M , as well as error positions in r.
Algorithm: we first define notations that will be used

in the dynamic programming equations.

• Notations about the profile HMM M: States Mj,
Ij, and Dj are matching, insertion, and deletion states
in M. as1s2 is the transition probability from state s1
to s2. es(T (xi-2xi-1xi)) is the emission probability for
state s to emit amino acid T (xi-2xi-1xi), which is
translated from the codon xi-2xi-1xi. For a detailed
description of a profile HMM M , we refer the
reader to the textbook [19] and the users’ guide of
HMMER [3]. State Gj is the only state that is not
defined in profile HMMs from HMMER 3.0. It
encodes insertions of nucleotides between codons.
aMjGj is the transition probability from matching
state Mj to nucleotide insertion state Gj. It is set to
the insertion error probability. aGjGj is the self-transi-
tion probability for Gj, encoding the probability of
consecutive insertions. When consecutive insertion
is not allowed, it is set to 0. aGj−1Mj is the transition
probability from Gj-1 to the next matching state Mj.
When only one insertion error is allowed, it is set
to 1.0.
• Notations about the sequencing error model: pI
(xi) is the probability that base xiis an insertion
error. pD(xi) is the probability that there is a deletion
error after base xi.
• Subproblems and the recursive equations: Based
on our analysis of error patterns, it is very rare that
there are consecutive insertions or deletions in a
sequence read. Thus, the following DP algorithm
assumes that there is at most one insertion or dele-
tion inside a codon. The algorithm can be extended
to handle all possible cases.

- VM
j (i) is the score of the best alignment match-

ing subsequence x1..i to the submodel up to the
matching state Mj, given that xiis the third base
of a codon and this codon encodes an amino
acid emitted by Mj.
- VI

j (i) is the score of the best alignment match-
ing subsequence x1..i to the submodel up to the
insertion state Ij, given that T (xi-2xi-1xi) is
emitted by Ij.
- VG

j (i) is the score of the best alignment ending
in xibeing emitted by state Gj, which encodes an
insertion of nucleotides between codons.
- VD

j (i) is the score of the best alignment match-
ing subsequence x1..i to the submodel up to the
deletion state Dj.

VM
j (i) = max{

case I : no sequencing error in the codon xi−2xi−1xi :

eMj(T(xi−2xi−1xi)) × VM
j−1(i − 3) × aMj−1Mj ,

eMj(T(xi−2xi−1xi)) × VI
j−1(i − 3) × aIj−1Mj ,

eMj(T(xi−2xi−1xi)) × VD
j−1(i − 3) × aDj−1Mj ,

eMj(T(xi−2xi−1xi)) × pI(xi−3) × VG
j−1(i − 3) × aGj−1Mj ,

case II : nucleotide xi−1 is an insertion :

eMj(T(xi−3xi−2xi)) × pI(xi−1) × VM
j−1(i − 4) × aMj−1Mj ,

eMj(T(xi−3xi−2xi)) × pI(xi−1) × VI
j−1(i − 4) × aIj−1Mj ,

eMj(T(xi−3xi−2xi)) × pI(xi−1) × VD
j−1(i − 4) × aDj−1Mj ,

eMj(T(xi−3xi−2xi)) × pI(xi−1) × VG
j−1(i − 4) × aGj−1Mj ,

case III : nucleotide xi−2 is an insertion :

Repeat the above four equations for eMj(T(xi−3xi−1xi)),

case IV : there is a deleted nucleotide (represented by d) between xi−1 and xi :

eMj(T(xi−1d xi)) × pD(xi−1) × VM
j−1(i − 3) × aMj−1Mj ,

eMj(T(xi−1d xi)) × pD(xi−1) × VI
j−1(i − 3) × aIj−1Mj ,

eMj(T(xi−1d xi)) × pD(xi−1) × VD
j−1(i − 3) × aDj−1Mj ,

eMj(T(xi−1d xi)) × pD(xi−1) × VG
j−1(i − 3) × aGj−1Mj ,

case V : there is a deleted nucleotide between xi−2 and xi−1 :

Repeat the above four equations for eMj(T(d xi−1xi)).

}

In cases IV and V, we use d to represent the deleted
bases. We choose d to maximize the emission probabil-
ity of T (xi-1d xi) (or T (d xi-1xi)) in the matching state
Mj.

VI
j (i) = max{eIj(T(xi−2xi−1xi)) × VM

j (i − 3) × aMjIj , eIj(T(xi−2xi−1xi)) × VI
j (i − 3) × aIjIj}

VG
j (i) = max{pI(xi) × VM

j (i − 1) × aMjGj , pI(xi) × VG
j (i − 1) × aGjGj}

VD
j (i) = max{VM

j−1(i) × aMj−1Dj , V
D
j−1(i) × aDj−1Dj}

Running time analysis
The time complexity of the above dynamic programming
algorithm is O(δ|x||M |), where |x| is the length of input
DNA sequence and |M | is the number of states in M . δ is
the number of different types of errors inside a codon plus
the case of insertions between two codons. In our current
implementation, δ = 26, which renders a longer running
time than the standard Viterbi algorithm. Thus, it is not
practical to compare millions of metagenomic sequence
reads to over 10,000 protein families in Pfam. Instead, we
only run HMM-FRAME on sequences that are likely to
contain insertion or deletion errors. For large-scale appli-
cations, we suggest applying HMMER 3.0, which is as fast
as Blast [24], to all input sequence reads using a big E-
value cutoff (such as 100). Alignments covering at least
80% of the translated DNA sequence with significant E-
values can be classified by HMMER in this step. Sequence
reads that do not yield any partial alignments are unlikely
to be members of any protein family. Thus, we only apply
HMM-FRAME to reads yielding partial alignment with
marginal scores because these reads could potentially con-
tain sequencing errors.
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Results and Discussion
In this section, we compare the sensitivity and false
positive rates (FP rates) of HMM-FRAME with Gene-
wise [18] and FragGeneScan [17]. We then apply
HMM-FRAME to Targeted Metagenomics and a pub-
lished metagenomic data set. Our experimental results
show that the length, scores, and E-values of profile
HMM alignments are significantly improved after error
correction. As profile HMM-based alignment tools
determine membership by comparing E-value or length
with user-defined thresholds, the improvement of these
parameters enables more error-containing sequences to
be classified into their native families.

Accuracy of HMM-FRAME
In order to evaluate the accuracy of HMM-FRAME in
detecting insertion and deletion errors, we obtained a
control data set with annotated error positions from
RDP (Cole and Wang, unpublished). In this data set,
NifH gene families from the Desulfitobacterium haf-
niense strain DCB-2, the Burkholderia xenovorans strain
LB40, and the PCC 7120 strain of Anabaena were
amplified and then sequenced using 454 Titanium. The
sequenced gene families were aligned with the nifH
genes in these three organisms using the Needleman-
Wunsch algorithm. Insertion and deletion errors were
identified from the alignments. After contamination and
chimera screening, we had 18,900 sequences, of which
3,408 sequences contained 4,623 insertion or deletion
errors. We conducted the protein domain analysis on
the 18,900 sequences using HMM-FRAME under the
two error models presented in the Method Section. The
input profile HMM was trained on 25 nifH genes
obtained from RDP’s functional gene repository website
[25].
We evaluated the performance of error-prediction

tools using two types of sensitivity and FP rates. Let S+

be the set of error-containing sequences in the control
data set. Let S be the set of predicted error-containing
sequences. The Sequence-level sensitivity and FP rate are
S ∩ S+

s+
and

S − S+

s
, respectively. Similarly, let Q+ be the

set of insertion and deletion positions in error-contain-
ing sequences from the control data set. Let Q be the
set of predicted error positions. The Base-level sensitiv-

ity and FP rate are
Q+ ∩ Q
Q+

and
Q − Q+

Q
, respectively.

Using the control data set, we first evaluated the per-
formance of HMM-FRAME under the published GS20
and our self-trained Titanium error models. Then we
compared the performance of HMM-FRAME with Gene-
wise [18] and FragGeneScan [17]. Similar to HMM-
FRAME, Genewise can directly compare DNA sequences
with a profile HMM and can accept user-defined error

rates. We tested Genewise using different parameters
including error rates and the alignment score thresholds
(ranging from 0 to 20). The results with the best tradeoff
between sensitivity and FP rate were kept for comparison
with HMM-FRAME. FragGeneScan [17] is a newly devel-
oped gene prediction tool for short and error-prone
sequences. It predicts genes and identifies sequencing
errors inside predicted genes. We applied FragGeneScan
on the above sequence set (all genes) and tested its sensi-
tivity and FP rate. FragGeneScan successfully recognized
all input as protein-coding genes, rendering a high gene-
prediction sensitivity in this data set. However, FragGen-
eScan had higher FP rates than HMM-FRAME in error
detection. The results are summarized in Table 1.
As shown in Table 1, each tool has higher sensitivity

and smaller FP rates in identifying error-containing
sequences than in locating error positions. HMM-
FRAME has a better tradeoff between sensitivity and FP
rate than both Genewise and FragGeneScan. Both GS20
and our self-trained Titanium error models have small
FP rates in predicting error positions, but GS20 has
higher sensitivity. Thus, we plan to use GS20 in all
further experiments.

Using HMM-FRAME in “Targeted Metagenomics”
In this section, we present the utility of HMM-FRAME
in two applications of “Targeted Metagenomics”, where
one or several gene families are amplified from environ-
mental DNA and these amplicons are sequenced using
high-throughput sequencing platforms. One typical
application of Targeted Metagenomics is to sequence
the amplicons of the 16S rRNA gene for phylogenetic
complexity analysis. Besides 16S rRNA, protein-coding
genes that are important to a particular habitat can be
amplified and sequenced for targeted functional analysis
in metagenomic data sets. For example, Targeted Meta-
genomics of the nifH gene, which encodes nitrogenase
reductase, is important for analyzing microbial genomes
sequenced from soil. Although these sequences are
sampled from one or several targeted gene families,

Table 1 Comparing the error detection performance of
HMM-FRAME, Genewise, and FragGeneScan

HMM-FRAME:
G20

HMM-FRAME:
self-trained

GeneWise FragGeneScan

seq-sen 95.25% 90.6% 53.8% 83.04%

base-sen 85.08% 82.4% 53.39%

seq-FP 0.154% 0 0.001% 0.7%

base-FP 2.1% 0.003% 59.57%

Sensitivity and FP rate of each program when detecting annotated insertion
and deletion errors in nifH genes. seq-sen: sequence-level sensitivity. base-sen:
base-level sensitivity. seq-FP: sequence-level FP rate. base-FP: base-level FP
rate. The score cutoff of Genewise is set to zero to maximize the sensitivity.
As Genewise has low sequence-level sensitivity, we did not evaluate its
performance at the base-level.
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frameshift errors can cause short alignments with mar-
ginal scores between the input and the targeted gene
families. As a result, sequences lacking significant align-
ment length and scores will be regarded as contami-
nants and be discarded. Thus, it is desirable to fix
frameshift errors to maximize the number of usable
samples. Given a DNA read and a profile HMM built
from a set of known protein sequences, HMM-FRAME
can be applied to detect and correct frameshift errors in
amplicon reads.
In the first experiment, we obtained 3,937 nifH

sequences of an average length of 76 bases generated by
the 454 FLX sequencing technology. In order to discard
contaminants that originated from non-target genes, we
aligned the 3,937 sequences with the nifH gene family,
which was built on a small set of 25 expert-verified full-
length nifH protein reference sequences from RDP’s
functional gene repository [25]. In the gene family build-
ing process, we first applied ClustalW [26] to align the
25 reference sequences. Then we applied HMMER 3.0’s
hmmbuild program to derive a profile HMM from the
multiple sequence alignment. Of the 3,937 454 FLX
sequences, 111 were found to be contaminants and were
excluded from further analysis. Of the remaining 3,826
sequences, HMM-FRAME detected 296 insertions and
deletions in 256 sequences. Thus, approximately, 7% of
the samples contained frameshift errors. Of the 256
sequences containing insertion or deletion errors, 224
(87.5%) only contained one insertion or deletion error.
24 (9.4%) sequences contained two errors, and eight
(3.1%) contained three errors. Of the 296 insertions or
deletions, 224 (75.7%) were inside or beside homopoly-
mer regions.
Because protein domain classification tools compare

alignment lengths, scores, and E-values with pre-defined
thresholds to determine a sequence’s membership, the
changes in the alignments affect the final domain com-
position analysis. After error correction, profile HMM-
based alignment tools are expected to generate longer
alignments with bigger scores and smaller E-values. This
gives error-containing sequences a better chance of
being classified into the correct families rather than
being labeled contaminants.
In order to conduct a fair comparison on alignments

before and after error correction, we choose a third-
party tool HMMER 3.0 to generate alignments for origi-
nal and corrected sequences. The changes of alignments’
E-values and lengths due to error correction are pre-
sented in Figure 2. In order to test whether the
improvement was statistically significant, we conducted
a two-sample Kolmogorov-Smirnov test (K-S test) on
the alignments’ lengths and E-values before and after
error correction. The p-values for the alignments’ length
and E-value distributions were 3.1037e-010 and 1.1802e-

045, respectively. In particular, the comparison between
alignments’ lengths and the sequence reads’ lengths
shows that most partial alignments generated by error-
containing sequences become complete alignments after
error correction. Thus, when comparatively longer align-
ments (e.g., 23 amino acids or 69 bases) are required for
domain classification, more sequence reads (213 more
under when the threshold is 69 bases) will be classified
into their native families.

Protein domain analysis of the bacterial aromatic
dioxygenase genes
In the second experiment, we obtained 2486 pyrose-
quencing samples of an average length of 224 bases
from the bacterial aromatic dioxygenase genes in a soil
sample [27]. Although these pyrosequencing reads were
sequenced from the 5’ end of PCR amplicons of bacter-
ial aromatic dioxygenase genes, we were interested in
classifying them into three sub-families of dioxygenase
genes: toluene/biphenyl, naphthalene, and benzoate [28].
Note that there is another subfamily (phthalate). How-
ever, due to lack of training proteins for this family (Dr.
Iwai, personal communication), we only searched for
members of three sub-families. Three sets of reference
protein sequences were extracted from Pfam [2] for
toluene/biphenyl, naphthalene, and benzoate [28]. Based
on these training sets, we built three profile HMMs
using ClustalW and HMMER 3.0. Then we applied
HMM-FRAME to align the 2486 reads with the three
profile HMMs. HMM-FRAME detected 77 insertions
and 52 deletions, which were distributed in 121
sequences. Of the 121 error-containing sequences, 77
could not be classified into any subfamily by HMMER
3.0 under the E-value threshold 0.1. After error correc-
tion using HMM-FRAME, these 77 sequences were clas-
sified into different families with an average E-value of
3.3e-06, indicating that they were highly likely to be true
members of the underlying families. For other error-
containing sequences, the profile HMM alignments’ E-
values and lengths were significantly increased after
error correction. The change is plotted in Figure 3. We
applied a two-sample K-S test on the alignments’
lengths and E-values before and after error correction.
The p-values for the length and E-value distributions
were 8.0609e-011and 1.9776e-040, respectively. The
improved alignment lengths and E-values provide stron-
ger evidence for the membership of the input samples. In
total, after error correction by HMM-FRAME, we could
classify 1,214 sequences into three subfamilies. 1,042
reads were members of the naphthalene subfamily. 96
reads belonged to the benzoate subfamily. 76 reads
belonged to the toluene/biphenyl subfamily. The remain-
ing 1272 reads could potentially be members of the sub-
family phthalate (Dr. Iwai, personal communication).
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Protein domain classification in the deep mine data set
In order to show the utility of HMM-FRAME in a meta-
genomic data set containing members of multiple
domain families, we applied HMM-FRAME to the first
454 sequencing project for environment samples, which
were sequenced from two sites in the Soudan Mine,
Minnesota, USA [29]. In this experiment, we down-
loaded the Black Sample from the paper’s supplemen-
tary data website. This data set contains 388,627
sequence reads with an average length of 99 bases.
There were two steps in the annotation. First, we

applied gene-prediction tools. Second, we conducted the
domain classification on predicted genes. A number of
gene-prediction tools are available for metagenomic data
sets. However, not every tool can handle short reads.
Glimmer [30] did not output meaningful predictions
when it was applied to this data set. The sensitivity of
Metagene [31] drops to 59% for 100-base sequences
[32]. We thus chose FragGeneScan, a newly developed
gene-prediction tool for short reads. FragGeneScan

predicted 281,658 genes, of which 72,355 contained
errors. For convenience in discussion, let S be the set of
genes predicted by FragGeneScan. Let S’ be the raw
read set corresponding to genes in S. Thus, 72,355
sequences in S were different from their raw reads in S’
because FragGeneScan predicted and corrected errors in
S’. We compared three domain classification pipelines:
1) apply HMMER 3.0 on raw reads S’, 2) apply Frag-
GeneScan and then HMMER 3.0 on corrected reads S,
and 3) apply HMM-FRAME on raw reads S’. We
recorded how many reads could be classified into one of
the 2,558 Pfam domain families that contain the key-
word “bacteria”. The number of classifiable reads for the
three pipelines were: 13,544 for HMMER, 12,328 for
FragGeneScan + HMMER, and 17,496 for HMM-
FRAME. The classification results have large overlaps,
which are illustrated in Figure 4. In summary, HMM-
FRAME was able to classify 2,948 more reads than the
other two annotation pipelines. HMM-FRAME found
errors in all of these 2,948 reads. Thus, it is likely that
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other two pipelines failed to classify them because of
frameshifts. HMM-FRAME failed to classify four reads
that can be aligned by FrageGeneScan + HMMER. A
closer examination showed that FragGeneScan and
HMM-FRAME output different error positions in these
four sequences.
The performance evaluation of FragGeneScan must

consider both gene-prediction and error-prediction. Of
the 281,658 predicted genes, only 12,328 could be clas-
sified into existing domain families. Further analysis is
needed to examine whether other predictions are novel
genes or wrong predictions. It is worth noting that
FragGeneScan could classify 1,008 more sequences
after its error correction than applying HMMER 3.0
alone on raw reads. However, while 2,224 raw reads
could be classified into existing domain families by
HMMER 3.0, they could not be aligned with any family
after error correction by FragGeneScan. This indicates
that FragGeneScan might have over-predicted errors in

the 2,224 sequences. This is consistent with our obser-
vation that FragGeneScan has a high FP rate in the
control data set.

Conclusion and future directions
Despite the advances of high-throughput sequencing
technologies, sequencing errors still pose challenges for
data annotation. In particular, our error model analysis
shows that 454 FLX Titanium only slightly decreases
the insertion and deletion error rates compared to
GS20. Thus, correcting frameshifts caused by insertion
or deletion errors is still important for metagenomic
sequence annotation. In this work, we introduce a pro-
tein domain classification tool HMM-FRAME, which
can classify error-prone DNA sequence reads into pro-
tein domain families. HMM-FRAME can accept any
error model trained on data from high-throughput
sequencing technologies and thus achieve high detection
sensitivity while maintaining a low false positive rate.
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Applying HMM-FRAME to a data set with annotated
errors shows its high sensitivity and accuracy in error
detection. In particular, by fixing frameshift errors, we
can obtain significantly longer profile HMM alignments
with smaller E-values. As alignments’ lengths, scores,
and E-values are often used to determine family mem-
bership, improving them helps to classify more
sequences into the native domain families. In our
experiments, sequences that fail HMMER 3.0 under the
default E-value or score threshold are classified into cor-
rect domain families using HMM-FRAME. Thus,
HMM-FRAME can be used as a complementary tool to
HMMER 3.0 on error-prone sequences.
HMM-FRAME is more computationally expensive

than HMMER 3.0 mainly because of diverse sequencing
errors inside codons. We plan to improve the efficiency
of our DNA versus profile HMM alignment algorithm
so that it can be used efficiently in large-scale protein
domain analysis. Besides applying DP matrix pruning
techniques to reduce the computational cost, we plan to
use a faster but less accurate Viterbi algorithm as a fil-
tration stage. Specifically, we can apply a faster Viterbi
algorithm to predict whether there are any errors inside
a codon before identifying error positions. If such errors
exist, we can then use a more sensitive method to deter-
mine the exact number and positions of insertions or
deletions.
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