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An application of kernel methods to variety
identification based on SSR markers genetic
fingerprinting
Florian Martin

Abstract

Background: In crop production systems, genetic markers are increasingly used to distinguish individuals within a
larger population based on their genetic make-up. Supervised approaches cannot be applied directly to
genotyping data due to the specific nature of those data which are neither continuous, nor nominal, nor ordinal
but only partially ordered. Therefore, a strategy is needed to encode the polymorphism between samples such
that known supervised approaches can be applied. Moreover, finding a minimal set of molecular markers that have
optimal ability to discriminate, for example, between given groups of varieties, is important as the genotyping
process can be costly in terms of laboratory consumables, labor, and time. This feature selection problem also
needs special care due to the specific nature of the data used.

Results: An approach encoding SSR polymorphisms in a positive definite kernel is presented, which then allows
the usage of any kernel supervised method. The polymorphism between the samples is encoded through the Nei-
Li genetic distance, which is shown to define a positive definite kernel between the genotyped samples.
Additionally, a greedy feature selection algorithm for selecting SSR marker kits is presented to build economical
and efficient prediction models for discrimination. The algorithm is a filter method and outperforms other filter
methods adapted to this setting. When combined with kernel linear discriminant analysis or kernel principal
component analysis followed by linear discriminant analysis, the approach leads to very satisfactory prediction
models.

Conclusions: The main advantage of the approach is to benefit from a flexible way to encode polymorphisms in a
kernel and when combined with a feature selection algorithm resulting in a few specific markers, it leads to
accurate and economical identification models based on SSR genotyping.

Background
Genetic markers are target sites in the genome that dif-
fer between individuals of a population. These differ-
ences can occur in DNA that codes for specific genes,
or usually in the vast areas of intergenic DNA. These
differences in the make-up of the genetic content at a
specific site in the genome are often referred to as poly-
morphisms (literally “multiple forms”). These poly-
morphisms are detected with a range of different
technologies of which simple sequence repeat markers
(SSRs) [1] and single nucleotide polymorphisms (SNPs)
are currently the most commonly used types. The

markers used in this study are SSRs. The SSRs of inter-
est for marker development include di-nucleotide and
higher order repeats (e.g. (AG)n, (TAT )n, etc.). The
number of repeats usually ranges between just a few
units to several dozens of units. The polymorphism can
exist at a locus containing a microsatellite between indi-
viduals of a population and is characterized as a differ-
ent number of repeat units of the microsatellite, which
is reported by several authors to result from an unbiased
single-step random walk process [2,3].
The detection of these differences occurs by site-speci-

fic amplification using polymerase chain reaction (PCR)
[4] of the DNA followed by electrophoresis in which the
DNA fragments are essentially separated by size. Frag-
ment sizes at a specific locus in the genome are also
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referred to as “alleles”. Depending on the ploidy level of
the organism being studied (haploid, diploid, tetraploid),
an individual can have one or more alleles at a specific
locus. The set of alleles that has been collected for a
given individual (often representing a single sample in
the study) is referred to as the “genotype” of that
individual.
The polymorphism within a population can serve dif-

ferent purposes [5-7]: marker assisted selection in plant
breeding [8], genome selection during gene introgression
in plant breeding [9], genome mapping [10-12], gene
tagging [13], population genetic structure [14,15], and
cultivar identification [16-20].
Our purpose is to propose an approach for using SSR

marker genotypes to build predictive models to identify
commercial tobacco varieties. Predicting unknown sam-
ples requires genotyping. When large numbers of sam-
ples and SSR markers are involved, the genotyping
process can be costly in terms of laboratory consum-
ables, labor and time. As a consequence, it generally
makes sense to select a minimal set of markers to build
the prediction model.
As mentioned above, primers associated with an SSR

marker that are amplified by PCR on a DNA sample lead
to several amplicon sizes, (the “alleles”) defining the gen-
otype of the sample. The results of such amplification on
one sample are of the form g1 = a1/a2/.../am where ai is
an integer depending on the number of microsatellite
repeats between the two flanking primers and m depends
on the ploidy type of the organism from which the DNA
is extracted (it can vary from one to several). For SSR
markers, the number ai is qualitative only and not quan-
titative as (ai, ai +10) is no more different than (ai, ai +
2) from the point of view of the genetics. A snapshot of
such a dataset is given in Table 1.
The challenge in building a supervised prediction

model is therefore to handle these data, which are neither
continuous, nor nominal, nor ordinal. A straightforward
approach would be to code all the alleles and treat the 0 -
1 data in the feature space whose dimensions are defined
by the distinct alleles in the training set. However, unless
the initial feature space is enriched with extra dimensions
and the prediction model is retrained, metrics on this
binary data space will not take into account new alleles
coming from new samples in order to use a prediction
model built on this feature space of fixed dimension.
Defining the feature space as the infinite (countable)

direct sum of {0, 1} spaces and the usage of a kernel over-
comes this limitation.
Geneticists ususally compute the Nei-Li distance [21]

to estimate the evolutionary distance between the sam-
ples and unsupervised methods, like hierarchical cluster-
ing or principal coordinate analysis on the Nei-Li
distance matrix, are commonly used to treat SSR data;
but those are not suited to predict new DNA samples.
To our knowledge, only Artificial Neural Networks have
been used in a supervised manner in this context [22],
where the allele binary coding was used.

The purpose of this article is twofold:
1) show that encoding the SSR marker polymorph-
ism into the Nei-Li similarities indeed defines a posi-
tive definite kernel that will allow the usage of
supervised methods to address specific discrimina-
tion tasks;
2) describe a simple filter method [23] for selecting
identification kits, consisting of a small number of
SSR markers that have acceptable discrimination
ability for a specific task.

Results and Discussion
In this study, Nicotiana tabacum, a functional diploid
was used. The methods described above will be applied
to four datasets, with distinct discrimination purposes.
The material and method description for the primers
development and genotyping of the samples can be
found in [24]. Four datasets were developed:

a) tobType: A set of 91 varieties were genotyped on
186 SSR markers without replicates; that lead to 91
observations (see additional file 1). The objective is
to discriminate the following tobacco types: Burley,
Flue Cured and Oriental.
b) landRace: A set of 10 different landraces of a
given variety (5 plants with 5 replicates) were geno-
typed on 19 SSR markers for a total of 250 observa-
tions (see additional file 2). The groups to
discriminate are the 10 landraces of this variety.
c) geoVar: A set of 67 different varieties from the
same geographic region were genotyped on 48 SSR
markers for a total of 93 observations (see additional
file 3). The objective is to discriminate the 12 known
subtypes.
d) ORvar: A set of 38 different varieties from the
same tobacco type (oriental) were genotyped on 48
SSR markers for a total of 88 observations (see addi-
tional file 4). The objective is to discriminate 8 pre-
defined families.

Mutual Information based Feature Selection (MIFS)
[25] and maximum Relevance - Minimum Redundancy

Table 1 Sample of SSR genotyping data

SSR1 SSR2 SSR3 SSR4 ...

Sample 1 177/181 191/193 172 176/182/186 ...

Sample 2 177/181 - 172/174 176 ...

Sample 3 175/177 193 168/172 180/182 ...

Martin BMC Bioinformatics 2011, 12:177
http://www.biomedcentral.com/1471-2105/12/177

Page 2 of 7



(mRMR) [26] and our method (the naive case a = 0 and
the cases a > 0) are compared on those four datasets,
generated internally. The comparison is done on a range
from N = 2 to 8 markers. For MIFS, the additional para-
meter b[25] (which balances the importance and the
complementarity of a feature) is chosen by cross-valida-
tion over the set of values 0, 0.75, 1, 1.25 and for our
method a is chosen over the same set. The cross-valida-
tion loop includes the feature selection to avoid a possi-
ble selection bias. The results shown in the tables are
the best 10-fold cross-validated results over the para-
meters of each method and the classification error rates
for the different kit sizes, when combined with kernel
linear discriminant analysis (KLDA) or kernel principal
component analysis followed by linear discriminant ana-
lysis (KPCLDA) are shown in Table 2 and Table 3. The
number of markers in the kit, N, is kept as a separate
parameter as a consensus between performance and kit
size has to be reached.
Overall, the proposed method leads to satisfying

results, comparable or better than the other ones. Only
in four cases (both classification methods confounded),
improved performance by at least 3% lower error rate
were found by the other selection methods. Out of 56
cases, the proposed method obtained the best results
(equal or better to the compared methods) in 42 cases.
Though generally the improvements are slight, for a
few cases the relative difference in error rates is
substantial.

It is interesting to consider the case a = 0 separately
as it forbids skipping features and allows an evaluation
of the benefit of skipping markers. In the vast majority
of comparisons, skipping markers is beneficial and the
differences in error rate range from 1% to 15% (ORvar
dataset, N = 2).
Comparing the obtained results on all three methods

to the classification error rates using all the markers
(see Table 4), one can observe that better error rates
can be obtained by the selected kits for all the datasets
except the geoVar dataset, where only KPCLDA with 6
markers can almost reach the error rate of the full set
of SSR.
In order to evaluate how the selected set of markers

performs versus the other subsets of cardinality 5, an
exhaustive search (11’628 possibilities) was performed.
The 10-fold cross-validation results from this simula-
tions are summarized in Table 5. Among all the subsets
of size 5, the one chosen by the algorithm belongs to
the best 0.5% sets of size 5 for KPCLDA (best selected
kit error rate = 7% (mRMR) - 8% (FS), best subset =

Table 2 KPCLDA cross-validation results

KPCLDA N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

tobType

FS 0.02 0.01 0.00 0.00 0.00 0.00 0.00

FS, a = 0 0.02 0.02 0.00 0.00 0.01 0.01 0.00

MIFS 0.01 0.01 0.01 0.00 0.00 0.00 0.00

mRMR 0.16 0.06 0.00 0.00 0.00 0.00 0.00

landRace

FS 0.40 0.19 0.11 0.08 0.03 0.02 0.03

FS, a = 0 0.43 0.18 0.10 0.08 0.05 0.03 0.04

MIFS 0.36 0.19 0.16 0.14 0.09 0.04 0.03

mRMR 0.36 0.19 0.11 0.07 0.06 0.06 0.04

geoVar

FS 0.35 0.25 0.24 0.22 0.14 0.21 0.15

FS, a = 0 0.37 0.29 0.31 0.28 0.19 0.18 0.15

MIFS 0.33 0.31 0.26 0.19 0.19 0.26 0.15

mRMR 0.35 0.24 0.22 0.13 0.20 0.18 0.21

ORvar

FS 0.14 0.13 0.08 0.09 0.06 0.07 0.03

FS, a = 0 0.29 0.16 0.17 0.11 0.14 0.12 0.08

MIFS 0.19 0.12 0.11 0.14 0.11 0.18 0.09

mRMR 0.26 0.13 0.09 0.13 0.09 0.06 0.07

Table 3 KLDA cross-validation results

KLDA N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

tobType

FS 0.01 0.01 0.00 0.00 0.00 0.01 0.00

FS, a = 0 0.02 0.01 0.00 0.02 0.01 0.00 0.01

MIFS 0.09 0.02 0.03 0.01 0.01 0.02 0.02

mRMR 0.23 0.19 0.06 0.08 0.04 0.02 0.04

landRace

FS 0.36 0.16 0.06 0.03 0.02 0.00 0.00

FS, a = 0 0.40 0.16 0.07 0.04 0.03 0.01 0.01

MIFS 0.35 0.13 0.11 0.09 0.04 0.02 0.01

mRMR 0.36 0.13 0.11 0.05 0.02 0.02 0.01

geoVar

FS 0.36 0.20 0.23 0.18 0.15 0.17 0.16

FS, a = 0 0.35 0.33 0.31 0.20 0.16 0.14 0.18

MIFS 0.36 0.26 0.25 0.21 0.20 0.22 0.17

mRMR 0.31 0.28 0.25 0.14 0.17 0.16 0.16

ORvar

FS 0.15 0.12 0.09 0.09 0.05 0.05 0.03

FS, a = 0 0.27 0.14 0.11 0.13 0.11 0.07 0.10

MIFS 0.19 0.12 0.14 0.12 0.11 0.14 0.06

mRMR 0.24 0.10 0.08 0.09 0.07 0.08 0.07

Table 4 Cross-validation results using the full set of
markers

Dataset KPCLDA KLDA

tobType 0 +/- 0 0.065 +/- 0.029

landRace 0.117 +/- 0.012 0 +/- 0

geoVar 0.132 +/- 0.041 0.081 +/- 0.04

ORvar 0.069 +/- 0.044 0.098 +/- 0.043
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4%) and the best 0.5% for KLDA (best marker error rate
= 3% (FS), best subset = 1%), which show the abiltiy of
the feature selection algorithm to capture the few most
important markers.
The final kit sizes retained for the datasets under con-

sideration are 3 for tobType, 5 for landRace, 5 for geo-
Var, 6 for ORvar. For the 2 first datasets no marker is
skipped, for the third dataset the fifth most powerful
marker is skipped and finally for the fourth dataset the
third and fourth most powerful markers are skipped by
the algorithm.

Conclusions
The Nei-Li similarity was shown to define a positive
definite kernel on the set of marker genotypes and
therefore is a very convenient way to encode the poly-
morphisms contained in SSR marker data. It has shown
its ability to be used further for SSR fingerprint based
predictions. To our knowledge, the usage of kernel
methods in this context is new.
On the four case studies presented, the proposed algo-

rithm for selecting SSR marker kits can definitely lead to
economical and efficient prediction models for discrimi-
nation. The algorithm is independent of the supervised
method chosen in the modelling process (so-called filter
method).
The results also show that as a general rule, the full

set of markers is not necessarily the most predictive kit,
and for all case studies presented, similar classification
performance can be achieved with less than 8 markers.
Simulation studies show that the kit selection algo-

rithm performs well as compared to the best subset
selection when combined with KLDA or KP-CLDA;
both methods leading to low classification error rate.
Feature selection strategies that can deal with categorical
data in classification are not so common and the pro-
posed filter approach might be useful in other contexts
as well.
The main advantage of the approach is to benefit from

a fast algorithm that results in a few specific markers for

a given task. An exhaustive search is generally infeasible
or is very time consuming. The choice of the constant
can be done by cross-validation. However, from our
experience a = 1, is consensually a good default choice
and performs well.
The choice a = 0 (i.e, no consideration for the redun-

dancy) leading to a very straightforward approach, is
usually less performant; even though it leads to the best
results in 9 cases. Hence, this possibility should not be
disregarded when performing a cross-validation experi-
ment on a.
When the number of markers becomes smaller, the

missgenotyping effect becomes more pronounced and
new genotypes on new measured samples affect the
genetic dissimilarities more (even with a smaller propor-
tion of prototypes). Therefore, it should be stressed that
choosing the minimum number of markers for a given
problem can lead to weaker generalization properties of
the classifier due to the fact that the new samples whose
type or landraces are unknown are perhaps not in the
original dataset and may have new genotypes. It is
therefore recommended, in practice, to use at least 5
markers in a selection kit, if the number of classes to
discriminate is greater than 4. Moreover, the pre-proces-
sing and identification of the electrophoresis amplicons
as well as the marker usage have to be well established
in order to test new samples. The quality of the labora-
tory work and of the SSR markers development used
here also contributed to the efficiency of the models.

Methods
Kernel methods for genotyping data
As mentioned in the introduction, genotyping data are
neither continuous, nor nominal, nor ordinal. Consider-
ing the allele (and not genotype) data as nominal and
using a 0 - 1 coding can be done but is not without
problems.
The difficulty in using this special type of data is dis-

cussed in [27], where the authors argue against the use
of Fisher Discriminant Analysis due to the discrete nat-
ure of the data, preferring the usage of Artificial Neural
Networks based on the allele frequencies. A possible
way to handle the binary data is to build a model using
the DISQUAL approach as presented in [24,28]. Despite
the presence of Multiple Correspondence Analysis
(which is intended to make the model more robust),
this approach is rather sensitive to genotyping error
(misassignment of alleles).
Indeed, the natural binary coding feature space whose

dimensions are the alleles in the training set ({0, 1}N

where N is the number of distinct alleles in the training
set) is not the best option because, for a given SSR mar-
ker, the alleles obtained on new samples can often be
lacking in the original training set. Therefore, any metric

Table 5 Simulation results

Quantiles KPCLDA KLDA

0% 0.04 0.01

0.5% 0.08 0.03

1% 0.10 0.04

5% 0.15 0.08

25% 0.23 0.14

50% 0.31 0.20

75% 0.38 0.25

100% 0.78 0.62

Summary of the cross-validation results for all possible combinations of 5
markers among 19 markers (landRace dataset)
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on {0, 1}N cannot use the information in the newly
detected alleles in a prediction model built on the origi-
nal 0 - 1 space of fixed dimension and may lead to erro-
neous results. To avoid this issue, one should rather
consider an infinite dimensional 0 - 1 coding in
⊕
n≥1

{0, 1}n where N ≅ Nm dimensions represent all the

possible alleles of m markers. This consideration makes
the use of kernels and kernel methods well suited in
this context.
Geneticists usually estimate the degree of polymorph-

ism between two sample genotypes by computing the
Nei-Li genetic distance between them. The similarity
associated with that distance will be shown to define a
positive definite kernel on the set of the genotyped sam-
ples. Hence, this kernel will be our prefered choice.
Given two samples S1, S2 on which m SSR markers are

amplified, leading to m genotypes for the first sample

g(1)1 , . . . , g(1)m and m genotypes for the second sample

g(2)1 , . . . , g(2)m , where g(j)i = {a(j)1 , . . . , a(j)mj } is seen as the

amplicons set, the Nei-Li genetic distance between S1
and S2, is computed as

δNeiLi(S1, S2) =

∑
i | g(1)i �g(2)i |∑

i |g(1)i �g(2)i | + 2 · |g(1)i ∩ g(2)i |
Where Δ denotes the symmetric difference of the two

sets and | ...| the set cardinality.
This approach overcomes the issues mentioned above

as new alleles will be implicitly used in the computation
of the Nei-Li distance. Moreover, it is well suited to
these data due to their biological meaning and is coher-
ent with the fact that the set of genotypes is partially
ordered by set inclusion:
g1 = a1/ · · · /an ≤ g2 = a′

1/ · · · /a′
m if and only if {a1,..., an}

is contained in {a′
1, ..., a

′
m}, which reflects the biological

comparison of genotypes. Therefore, given a data set of
samples on which m SSR markers are amplified, it leads
to a dissimilarity matrix whose entries are the estimated
genetic distance between a pair of samples. The purpose
here is not to accurately estimate the evolutionary dis-
tances between the varieties (as those distances are sup-
posed to, see [21]) but to exploit the polymorphism
encoded in the SSR data in a meaningful way.
The basic concept of kernel discrimination methods is

to model a classifier in a feature space (which will be a
Hilbert space) based only on a"similarity” matrix which
is assumed to be positive definite. Indeed, if the measure
of similarity between the samples is a positive definite
kernel [29,30], then classifiers can be trained in the
reproducing Hilbert space associated with it [30]. It
turns out that the Nei-Li similarity defines a positive
definite kernel.

Lemma 1 - δNeiLi defines a positive definite kernel over
the set of genotypes associated to SSR markers.
Proof Let S1, S2 be two samples genotyped and let us

consider them as binary vectors in ⊕
n≥1

{0, 1}n.
Then 1 - δNeiLi can be rewritten as

2〈S1|S2〉
||S1|| + ||S2||. Using

the fact that a pointwise product of positive definite ker-
nel is also positive definite (see e.g. [29]), it is sufficient

to show that
1

||S1|| + ||S2|| is positive definite. Now let us

define a mapping from ⊕
n≥1

{0, 1}n into L2(ℝ+), by j: S ↦

(t↦e-||S||t). Now

〈φ(S1)|φ(S2)〉L2 =
∫ ∞

0
e−||S1||te−||S2||tdt

=
−1

||S1|| + ||S2|| e
−(||S1||+||S2||)t

∣∣∣∣
∞

0

=
1

||S1|| + ||S2||
which proves the lemma.
Once this valid kernel is defined, a wide range of

supervised methods can be applied. The supervised
approaches investigated in our examples are Kernel-Lin-
ear Discriminant Analysis (KLDA, [31]) and Kernel-
Principal Component-Linear Discriminant Analysis
(KPCLDA, Kernel-Principal Component Analysis fol-
lowed by Linear Discriminant Analysis as described in
[29,32]). To our knowledge kernel approaches have not
yet been applied to SSR data.

Identification kit selection: Discrimination power of a SSR
marker
The cost of the SSR analysis is to be taken into account
when building a predictive model: the classification
results should be obtained with a minimal number of
SSR markers in order to be used at a reduced cost.
The exhaustive subset selection is obviously too com-

puter extensive, as subsets of size 5 to 20 should be
extracted from hundreds of SSR markers. Hence a strat-
egy has to be developed to address this issue.
As the feature selection in the reproducing kernel Hil-

bert space associated with our kernel is not useful and by
definition of the kernel building, classical embedded
method [23] like Lasso [33] or L1-SVM cannot be
applied. Therefore, filter methods for SSR selection are
natural in our context. Additionally, as the data generated
have a long life-cycle and can be used in the long run, the
set of markers proposed for a given task is preferred to be
independent of the classification method used.
The criteria for having a suitable identification SSR

markers kit can be stated as follows: “Choose the set of
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markers that show the biggest polymorphism between the
groups to discriminate and the lowest polymorphism
within the groups”. This criteria is to be thought of as
similar to the famous Fisher’s “between/within” maximi-
zation criteria used in canonical discriminant analysis.
A score will be computed for each of the SSR mar-

kers which represents the ability of a given SSR marker
to discriminate between the groups. Additionally, a
redundancy score will also be computed in order to
assess wether the polymorphism contained in a marker
A is “similar” to the polymorphism of a second marker
B. If this is the case, one marker should be dropped
in favor of another one explaining a different
polymorphism.
Due to the nature of the genotype data, information

theoretic measures are well suited here: association
between the marker and the group to discriminate is
measured through Asymmetric Uncertainty Coefficient
[34], which reflects the dependency of the SSR marker
and the group to be discriminated and the redundancy
between two markers will be quantified by the Uncer-
tainty Coefficient (a normalized version of the mutual
information).
For X and Y two discrete variables, let H(X) and H(X,

Y ) denote the entropy and the joint entropy respec-
tively. Empirical estimates are used to evaluate these

quantities (p̂i. =
ni.
n
, and p̂ij =

nij
n
).

Following [34], we have:

1) The symmetric uncertainty coefficient is defined by

U (X,Y) = 2
H(X) +H(Y) − H(X,Y)

H(X) +H(Y)
. Its asymptotic

variance is

4
∑
i,j

nij
[
H(XY) ln(

ni.n.j
n2

) − (H(X) +H(Y)) ln(
nij
n
)
]2

n2(H(X) +H(Y))4

2) The asymmetric uncertainty coefficient is defined

by U(Y|X) = 2
H(X) +H(Y) − H(X,Y)

H(Y)
. Its asympto-

tic variance is given by

1

n2H(Y)4
∑
i,j

nij[H(Y)ln(
nij
ni.

) + (H(X) − H(XY))ln(
n.j
n
)]

2

In what follows, the value U(Group|SSRi) ≐ pi for an
SSR marker will be called the discrimination power of
the marker for the given group classification, and U
(SSRi, SSRj) ≐ Ui,j will be referenced as the redundancy
between the markers i and j. Therefore a greedy feature
selection algorithm can be depicted as follows:

Sort the discriminating power in decreasing order p(1)
≥ ... ≥ p(m), and add the marker associated with the p(1)
to the subset S. Now for each following p(i), select marker
(i) if the kit size is less than N and if

p(i)
Sd(p(i))

> α ·
∑

(j)∈S U(i),(j)√
n · ∑

(j)∈S Sd(U(i),(j))
2

where 0 ≤ a is a positive parameter controlling the
trade-off between power and redundancy.
The rationale is to keep a discriminating marker (high

discriminating power) only if the information encoded
in it is not redundant with any of the previous markers
in the set. The right-hand side is thought as a heuristic
estimate of the multivariate uncertainty Z-score of
U(SSR(i), (SSRm1 , . . . , SSRmn)) (S = {m1, . . . ,mn}), which
cannot be estimated reliably with a reasonable sample
size. The coefficient controls the tradeoff between the
discrimination power and the redundancy. This algo-
rithm follow the rationale of both MIFS and mRMR but
differs in three ways:

1. It uses the normalized version on the mutual
information, the uncertainty coefficients;
2. It leverages the asymptotic variances of those
coefficients and therefore enables accounting for the
sample variation through the usage of the associated
Z-scores;
3. It does not select the feature maximizing a gap
between informativeness on the group and the
redundancy, but goes in order through the features
maximizing the discrimination power and eliminate
sequentially the features where the evidence of non-
zero redundancy is a times lower than the evidence
of non-zero discrimination power.

The parameter is set by default to 1, reflecting that a
marker is included if the statistical evidence for its dis-
crimination power is bigger than the evidence of its
redundancy with the markers already selected. The
influence of a is one parameter to cross-validate over in
the case studies presented with the exception of the
simplest case a = 0, for which the algorithm is simply
choosing the N biggest discrimination power.

Additional material

Additional file 1: tobType dataset. A set of 91 varieties were
genotyped on 186 SSR markers without replicates; that lead to 91
observations. The objective is to discriminate the following tobacco
types: Burley, Flue Cured and Oriental.

Additional file 2: landRace dataset. A set of 10 different landraces of a
given variety were genotyped on 19 SSR markers for a total of 250
observations (5 plants with 5 replicates). The groups to discriminate are
the 10 landraces of this variety.
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Additional file 3: geoVar dataset. A set of 67 different varieties from
the same geographic region were genotyped on 48 SSR markers for a
total of 93 observations. The objective is to discriminate the 12 known
subtypes.

Additional file 4: ORvar dataset. A set of 38 different varieties from the
same tobacco type (oriental) were genotyped on 48 SSR markers for a
total of 88 observations. The objective is to discriminate 8 pre-defined
families.
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