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Abstract

Background: Single Nucleotide Polymorphism (SNP) analysis only captures a small proportion of associated
genetic variants in Genome-Wide Association Studies (GWAS) partly due to small marginal effects. Pathway level
analysis incorporating prior biological information offers another way to analyze GWAS’s of complex diseases, and
promises to reveal the mechanisms leading to complex diseases. Biologically defined pathways are typically
comprised of numerous genes. If only a subset of genes in the pathways is associated with disease then a joint
analysis including all individual genes would result in a loss of power. To address this issue, we propose a
pathway-based method that allows us to test for joint effects by using a pre-selected gene subset. In the proposed
approach, each gene is considered as the basic unit, which reduces the number of genetic variants considered and
hence reduces the degrees of freedom in the joint analysis. The proposed approach also can be used to
investigate the joint effect of several genes in a candidate gene study.

Results: We applied this new method to a published GWAS of psoriasis and identified 6 biologically plausible
pathways, after adjustment for multiple testing. The pathways identified in our analysis overlap with those reported
in previous studies. Further, using simulations across a range of gene numbers and effect sizes, we demonstrate
that the proposed approach enjoys higher power than several other approaches to detect associated pathways.

Conclusions: The proposed method could increase the power to discover susceptibility pathways and to identify
associated genes using GWAS. In our analysis of genome-wide psoriasis data, we have identified a number of
relevant pathways for psoriasis.

Background
Genetic association studies aim to detect associations
between disease phenotypes and genetic variants. A
commonly used tool to establish association between a
SNP and a disease is to perform statistical tests of asso-
ciation for each individual SNP marker. A multiple test-
ing correction can then be applied to control the overall
type I error. However, such an approach typically cap-
tures only a small proportion of the contributing genetic
variants. One likely reason is that common and complex
diseases result from the joint effects of multiple loci and
environmental factors, each of which has a small indivi-
dual contribution [1,2]. A variety of tests have been pro-
posed to establish the joint association of multiple SNPs
with the phenotype.

For such joint association analyses, the first category of
statistical methods are those that use single SNP p-values
or test statistics to construct a new joint test statistic. The
Most Significant SNP method (MSS) uses the smallest p-
value to declare significance. Fisher’s method combines p-
values by using negative of the twice of logarithm of pro-
duct of p-values. Another group of test statistics pools
SNPs with relatively strong signals from univariate tests,
which include the sum of the K largest test statistics [3],
the product of all the tests declared to be significant with
some level a [4], the product of the K most significant p-
values (Ranked Truncated Product; RTP) [5], and the
weighted and truncated sum of logarithm of p-values [6].
Another category consists of strategies that modify the

standard multivariate test statistics in order to reduce the
effective degrees of freedom and hence improve the
power [7-9]. Evaluation of some of the methods is pre-
sented in [10]. Some other methods use genetic similarity
between individuals to establish multi-marker association
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in a genomic region with the phenotypes [2,11,12]. A
comparison of the methods using the similarity measures
and some additional references on multi-marker associa-
tion tests can be found in [12].
The above multi-marker association tests are useful to

establish the joint association of a set of SNPs with the
trait. But brute-force searches to identify the subsets of
associated SNPs contained on high-density SNP arrays
are inefficient. Gene annotation databases group func-
tionally relevant genes into biological pathways. Some of
these pathways are likely to be involved in the etiology of
complex diseases [13] and hence testing a few hundred
such pathways to identify the subsets of genes involved in
the diseases avoids a huge multiple testing burden. Thus
pathway-based analyses can offer an attractive alternative
to improve the power of GWAS, and may help us to
identify relevant subsets of genes in meaningful biological
pathways underlying complex diseases.
In the era of post-GWAS analysis there is considerable

interest in pathway analysis, and several approaches for
testing associations with pathways have been proposed.
The Kolmogorov-Smirnov procedure is used to detect
pathways containing a relatively high proportion of sig-
nificant SNPs in [14] or significant genes [15]. The SNP
Ratio Test (SRT) assesses association by comparing the
proportion of significant SNPs within a pathway with
those ratios in permuted data sets [16]. The Prioritizing
Risk Pathways (PRP) method defines a risk score to
identify risk pathways by integrating genetic factors and
biological networks [17]. Combinations of univariate test
statistics or univariate p-values for pathway association
analysis is also considered in the literature. Using the
Adaptive Ranked Truncated Product (ARTP) method
[18] for gene-level p-values, a pathway association
method has been proposed [19]. The sum of the Armi-
tage trend test statistics of all of the SNPs within the
pathway is used in [20]. Accounting for the correlation
among the SNPs within the pathway, three approaches
for combining univariate test statistics have been
recently proposed [21]. Important factors for considera-
tions in pathway analysis and a review of statistical
methods for testing pathway associations are given in
[22]; some interesting insights into the pathway analysis
using the existing data bases are summarized in [23].
Most of the pathway association methods consider all

the genetic variants (e.g. SNPs) within a pathway as pos-
sible risk factors [17,20,21]. If only a subset of genetic
variants within a pathway has contribution to the dis-
ease then these methods may result in loss of power. To
address this problem we propose a pathway-based analy-
sis using a model selection criterion to identify a subset
of associated genes within the pathway. In the proposed
method, each gene is scored by the first principal

component (FPC) of SNP genotypes, which effectively
reduces the number of genetic variants considered for a
model and hence reduces the degrees of freedom for
joint analysis. On the basis of FPC scores, the gene sub-
set is selected using LASSO penalized regression [24]
combined with some model selection criterion. The p-
value of the joint test is calculated by permutation of
disease status among affected and unaffected individuals.
For the GWAS pathway analysis, the False Discovery
Rate (FDR) and the Family-Wise Error Rate (FWER) are
applied to adjust for multiple testing.

Methods
The joint analysis using reduced gene subset
Consider a pathway G with K genes g1,..., gK. Let Y
denote the column vector of disease status for n indivi-
duals; the matrix X = (X1,..., XK) denotes genotype mea-
surements on n independent individuals, where Xj is the
n by pj matrix of genotypes for pj SNPs within gene gj.
The genotype measurements are coded as 0, 1 and 2,
which correspond to the homozygous genotype for the
major allele, the heterozygous genotype and the homozy-
gous for minor allele respectively. In the following, var-
ious steps of the proposed method are described and the
flowchart of the joint analysis is presented in Figure 1.
Gene-based score: the first principal component (FPC)
The first step is to calculate the gene-based scores for
each of the K genes. It is well known that Principal
Components Analysis (PCA) is an effective way to
reduce dimensionality, and the First Principal Compo-
nent (FPC) explains the maximum variance among all
linear combinations [25]. In addition, the power of uni-
variate tests using the FPC is comparable to the power
of multivariate tests using the first few principal compo-
nents [26]. Thus, it is feasible to consider the matrix of
FPC of SNP genotypes within each gene as the gene-
based score. The gene-based score effectively reduces
the number of possible factors from P p jj

K= =∑ 1 to K for
pathway G, where P and K respectively denote the total
number of SNPs and the total number of genes in G.
When calculating FPCs, we choose to first center geno-
types of each SNP over n individuals by subtracting the
mean value. When the data set contains considerable
numbers of missing genotypes, the R package pca-
Methods [27] can be used to calculate FPC scores.
The FPC-based test statistic using all genes
If all K genes are used in the joint analysis then the
pathway G can be tested using the LR statistic of K
genes, which is given by
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where p(Y, b | FPC1,..., FOCK) is the density function
of the phenotype given K FPC scores, the parameter space
Θ = {b0, b1,..., bK} and Θ = {b0}. The p-value of the test sta-
tistic T(G) can be approximated by K

2 . If only a subset
out the K genes is truly associated with the disease then
the multivariate test including all genes may result in a
loss of power due to a large number of degrees of freedom
(see simulation results). Hence, we propose to perform the
multivariate test using a reduced gene subset.
The FPC-based test statistic using the reduced gene subset
We perform the gene subset selection by first using the
LASSO method to generate a series of candidate subsets

and then select the best subset. The LASSO penalized
log-likelihood function is given by

log ( | ) log ( ) | |,L L   = −
=

∑n j

j

K

1

where the vector b = (b0, b1,...,bK) denotes regression
coefficients of K gene-based scores, and logL(b) is the
log-likelihood function. When the tuning parameter l is
first set to be zero, the corresponding subset S1 contains
all the K genes. The parameter l is gradually increased
from l1 = 0 to l2, which is the smallest value to delete
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Figure 1 The flowchart of the various steps of our method.
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at least one gene from S1. The subset produced by l2 is
denoted as S2. By increasing the values of the parameter
l, the LASSO method produces a series of non-empty
subsets {S1, S2,..., SK ’}. In general, there is a nesting
among the subsets, although they are not strictly mono-
tonic. From these subsets, we select the best subset as
the reduced gene subset to carry out the joint analysis.
The standard approach to select the best subset is to
use Cross-Validation (CV) or to optimize the quantity
of the model selection criterion score such as the
Akaike’s Information Criterion (AIC) or the Bayesian
Information Criterion (BIC). In the context of GWAS,
the computation burden of CV is large as compared
with AIC and BIC. Hence, we choose AIC or BIC as the
gene subset selection criterion in our method. For sub-
set Sj (j = 1,..., K’), the AIC score can be expressed by

AIC S L S v Sj j j( ) log ( ( )) ( ),
^

= − +2 2

where log ( ( ))
^

L Sj is the maximized log-likelihood

function of Sj, and v(Sj) denotes the number of genes
contained in Sj. The BIC score of Sj is given by

BIC S L S ( v Sj j j( ) log ( ( )) log ) ( ),
^

= − +2  n

where n is the sample size. Since the penalty function
in BIC, log(n)v(Sj), is usually larger than the one in AIC,
2ν(Sj), the subset selected by BIC are usually contained
within the subset selected by AIC. Denote the reduced
subset selected by AIC or BIC by S* = {g(1),..., g(m)}. The
test statistic of pathway G using S* is defined as the LR
test statistic of S*

T(G) LR(S
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where Θ = {b0, b(1),..,b(m)}, Θ0 = {b0}, and FPC(1),...,
FPC(m) denote the FPC scores of genes g(1),..., g(m).
P-value, False Discovery Rate (FDR) and Family-Wise Error
Rate (FWER)
Although the nominal distribution of T(G) can be

approximated by m
2 , the p-value of pathway G can no

longer be obtained directly from the chi-square distribu-
tion. Therefore the p-value for pathway G is obtained
using a permutation procedure that is based on the per-
mutation of disease status among affected and unaf-
fected individuals. Note that the purpose here is not to
test the association of the fixed set subset S*, but to test
the association of pathway G using this reduced gene
subset. Hence we need to select the reduced subset in

each permuted data set for computing the p-value of
pathway G. In each permutation π, LASSO is applied to
generate a series of candidate subsets using the same
procedure. Under the null hypothesis, the test statistic
in the permuted data set should have the same nominal

distribution as the one in the original data ( m
2 ). Hence,

the size of the selected subsets in permutation π is also
restricted to m (see the Discussion section for additional
discussion). Denote the gene subset selected by LASSO
in the permutation π as S*(π). The test statistic of path-
way G in π is given by

T(G( )) LR(S
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where Y (π) denotes disease status in permutation π,
and FPC(1)(π),..., FPC(m) (π) denote the FPC scores of
the m genes in S* (π). The p-value of pathway G is
defined as

p-value(G
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For GWAS, FDR and FWER are used to adjust for the
multiple hypothesis testing. To be able to compare
across several pathways, we first calculate the normal-
ized LR test statistics denoted here as NLR(G) and NLR
(G(π)). The NLR(G) is written as

NLR(G)
T(G) mean(T(G( )))

SD(T(G( )))
= − 


.

The FDR of pathway G is defined as
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where AG denotes any pathway in GWAS. The FWER
is defined as

FWER(G)
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Simulation description
An extensive simulation study is conducted to compare
the proposed joint analysis with the methods MSS, RTP,
the Admixture Maximization Likelihood (AML) [8]
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method. To mimic a GWAS (more details in RESULTS),
we simulate genotypes for SNPs within associated path-
ways using a published GWAS data set. To model the
disease status based on multiple variants, the number of
associated genetic variants and the estimates for relative
risks are all obtained from this data set. In each simu-
lated data set, we sample 1350 affected and 1350 unaf-
fected individuals, which is similar to the sample size of
the GWAS study. In both the simulated and original
GWAS data sets, we map the SNPs to a gene if they are
within 5 kb of the gene. For each set of parameters, 500
replicates are simulated. The power and type I error are
derived as the proportion of replicates with p-values
≤0.05.
Simulated Pathways
To reflect the power of different methods to detect
small, medium and large pathways, we choose three dif-
ferent pathway patterns in the simulations. The three
pathways considered are “TNFR2 Signaling Pathway”,
“Fructose and mannose metabolism” and “Cytokine-
cytokine receptor interaction"; called here as pathway
patterns 1, 2 and 3 respectively. The pathways and the
genes within them were constructed using two existing
databases (more details are given in the RESULTS sec-
tion). The three pathways capture a wide spectrum of
the constituent gene numbers and effect sizes (Table 1)
observed in GWAS pathway analysis.
Genetic variants associated with disease
We simulate both associated and non-associated genetic
variants within the pathway with the assumption that
not all the genetic variants in the pathway are disease
associated. Associated genes and SNPs are completely
determined by gene-based and SNP p-values in GWAS
analysis. First, based on the LR test with FPC, a list of
associated genes (p-value ≤ 0.05) within the pathway is
generated. For an associated gene, all the SNPs with p-
values ≤ 0.05 are divided into several groups on the

basis of the criterion that the SNPs within the same
group are in strong Linkage Disequilibrium (LD), i.e. r2

≥ 0.8. In each group, we select the one with the smallest
p-value as the causal SNP. The Minor Allele Frequen-
cies (MAFs) and Estimated Relative Risks (ERRs) of cau-
sal alleles are obtained from GWAS study (displayed in
Table 1). In each underlying pathway pattern, the rela-
tive risks (RRs) of risk alleles are first equal to ERRs. To
evaluate the performance of the association statistic
under a spectrum of RRs, we then multiply each of the
ERRs by a factor less than unity.
Simulated genotypes and disease status
To retain the observed LD structure within the genes,
the haplotype frequencies of the control samples in the
GWAS are estimated using PLINK [28]. For simulation,
we generate a sample of haplotypes with probabilities
proportional to the estimated haplotype frequencies.
Under the assumption of Hardy-Weinberg Equilibrium
(HWE), two haplotypes are selected at random to form
a pair of unphased haplotypes for an individual. Finally,
the genotypes for SNPs are obtained by taking the cor-
responding alleles from the haplotype pairs. Given the
RRs and MAFs, the disease status of an individual is
inferred using a multiplicative relative risk model [12].
Using this procedure we have generated 500 replicate
data sets of 1350 cases and 1350 controls.

Methods for comparison
Let us denote our pathway association tests based on
FPCs with gene subset selection using AIC and BIC cri-
teria as FPC_AIC and FPC_BIC respectively; the method
that uses all the genes for the pathway association with-
out the model selection is denoted as FPC_FULL. The
three methods MSS, RTP and AML have been shown to
perform well for detecting the association in comparison
with some other existing methods [8]. To illustrate the
benefit of the gene subset selection, we compare the

Table 1 The information of the three pathway patterns used in simulation

Pathway # of
total
genes
(SNPs)

# of
assoc
genes

# of
causalSNPs

Minor Allele Frequency (MAF) Estimate Relative Risk (ERR)

TNFR2 Signaling
Pathway
(pattern 1)

15
(159)

2 4 0.340, 0.416, 0.298, 0.317 1.070, 1.081, 1.117, 1.130

Fructose and
mannose
metabolism
(pattern 2)

35
(339)

4 6 0.163, 0.353, 0.359, 0.359, 0.424, 0.332 1.113, 1.077, 1.063, 1.101, 1.105, 1.088

Cytokine-
cytokine
receptor
interaction
(pattern 3)

208
(1957)

19 39 0.409, 0.491, 0.491, 0.275, 0.397, 0.315, 0.210,
0.073, 0.372, 0.415, 0.281, 0.219, 0.472, 0.305,
0.355, 0.435, 0.112, 0.323, 0.373, 0.044, 0.063,
0.227, 0.430, 0.070, 0.161, 0.355, 0.161, 0.034,
0.156, 0.417, 0.420, 0.169, 0.210, 0.175, 0.183,
0.269, 0.194, 0.177, 0.499

1.100, 1.065, 1.064, 1.090, 1.055, 1.086, 1.167,
1.172, 1.057, 1.084, 1.141, 1.081, 1.095, 1.149,
1.072, 1.092, 1.087, 1.062, 1.132, 1.134, 1.162,
1.094, 1.060, 1.247, 1.078, 1.062, 1.096, 1.249,
1.123, 1.070, 1.089, 1.073, 1.087, 1.093, 1.074,
1.064, 1.087, 1.123, 1.071
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methods FPC_AIC and FPC_BIC with FPC_FULL. The
modified GSEA algorithm [15] is alternative method to
carry out the pathway analysis in GWAS. However, this
method cannot be applied in a candidate pathway analy-
sis since it needs gene p-values on the whole genome.
Hence, we do not include this method for comparison
with other methods in simulation studies.
The test statistic of the MSS method is the smallest p-

value of single SNP tests of all the SNPs in a pathway.
The test statistic of the RTP method [5] is the product
of the smallest k p-values. In our simulation, we choose
k = 5 (RTP_5) and k = 10 (RTP_10). The AML method
supposes that SNPs detectable in the experiment have
the same contribution to the disease and all genotyped
SNPs are independent. Under these assumptions, the
EM algorithm simultaneously estimates the proportion
of associated SNPs a and their average effect ζ. The LR
statistic is written as

    



( , ) log(( ) ( ( / )

exp( / ) / exp

= − + − −

+ − −( ) +

=
∑
j

P

j

j

z

z

1

2

2

1 2

2 2

exp

(( / ) / ),− −( )z j 
2

2 2

where P is the total number of SNPs, zj denotes the
square root of c2 statistic at locus j. In MSS, RTP and
AML methods, the single SNP p-values are based on
the Cochan-Armitage trend test.

Results
In this section we report the results in parts. The first
part is a comparison of power for our proposed method
relative to four other methods. In the second part, we
evaluate the performance of gene subset selection and
compare it with the gene selection approach based on
corrected p-values. In the third part, our method is
applied to the psoriasis GWAS data from the Collabora-
tive Association Study of Psoriasis (CASP) [29] to detect
susceptibility pathways. This study is part of the Genetic
Association Information Network (GAIN) consortium.
The data set consists of 438 K SNPs genotyped on 1409
psoriasis cases and 1436 controls. As part of our
ongoing meta-analysis study, we have imputed addi-
tional SNPs on this data set. After the standard quality
control filters for GWAS (SNP call rate and sample call
rate ≥90%, Minor Allele Frequency (MAF) >0.005 and
Hardy-Weinberg equilibrium (HWE) p-value> 10-7, rela-
tionship testing and outlier detections), we report our
analysis based on 529,651 SNPs in 1349 cases and 1372
controls.

Power of joint analysis
The power of different methods under the three path-
way patterns are shown in Figures 2, 3 and 4.

The details of the power, the 95% confidence intervals
of estimated probabilities and the p-value of McNemar’s
test of difference in powers between FPC_BIC and other
methods are given in Additional file 1, Tables S1, S2
and S3. For the pathway patterns 1 and 2 (Figures 2
and 3), the FPC_AIC is slightly more powerful than
FPC_BIC; but it is less powerful than FPC_BIC for the
pathway pattern 3 (Figure 4). The possible reason is that
FPC_AIC tends to select too many genes when the per-
centage of non-associated genes is large.
FPC_AIC or FPC_ BIC outperformed other methods
under all the 3 pathway patterns. The power of
FPC_FULL is only slightly less than FPC_BIC in pathway
pattern 1. As the number of non-associated genes
increases in the pathway patterns 2 and 3, the power of
FPC_FULL decreases and it is less than FPC_AIC or
FPC_BIC due to large degrees of freedom associated with
this statistics. One advantage of FPC_FULL is fast com-
putation, because its p-value can be approximated by a
chi-square distribution. FPC_AIC or FPC_BIC performs
much better than the AML and MSS methods. The AML
method assumes that all SNPs are independent and all
causal SNPs have the same effects. Under these two
assumptions AML has been shown to have a good per-
formance in [8]. However, if some SNPs are highly corre-
lated with truly associated SNPs, then AML would
overestimate the number of causal SNPs [8] and may
also reduce the effects of truly associated SNPs. MSS may
result in loss of power if there are many associated SNPs
because it uses only the most significant SNP to declare
significance. Although RTP had higher power than MSS
and AML, its power was still lower than FPC_AIC or
FPC_BIC. The performance of the RTP method depends
on the number of associated genes in the pathway
(Figures 2, 3 and 4) and hence pre-specification of num-
ber of SNPs to for this method is important [8].
We evaluated the performance of the methods under a

spectrum of RRs by multiplying each of the ERRs by a
factor from 1.00 to 0.96. For example, under multiplica-
tive model, the combined RR (1.00*ERRs) for pattern 1
with 4 causal SNPs is 1.46(1.07×1.081×1.117×1.13), but
when the factor 0.99 is multiplied to ERR (0.96*ERRs),
the combined RR drops to 1.24 (1.46×0.964) and results
in reduction of powers for all the pathway association
tests due to the factors like LD pattern of the genes,
effect sizes and MAF of the causal SNPs. Note that the
powers for all the methods are generally low for
0.96*ERRs, but the performance of FPC_AIC or
FPC_BIC was still the best. Table 2 summarizes the type
I error, 95% confidence interval for estimated probability
and the p-value of McNemar’s test to compare the dif-
ference in type I errors between FPC_BIC and other
methods. All the methods had a type I error controlled
around 0.05 under all settings.
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Evaluation of gene subset identification
It is important to evaluate the performance of gene
subset identification using our approach to understand
the proportion of true and false positive genes in the
selected subset of genes. Apart from the AIC and BIC
discussed above, we also consider the classical
approach of identifying the gene subset by using the
multiple test correction. Under multiple testing
(denoted as gene-test here), the p-value for each gene
is obtained using the gene-score LR test and then it is
corrected for the total number of genes tested under
the Bonferroni method. The subsets of associated
genes using this procedure are those that had signifi-
cant corrected p-values (<0.05). The performance of
the methods is examined by two measurements:

Positive Selection Rate (PSR) to describe the ability of
the method to select the associated genes and False
Discovery Rate (FDR) for the purity of the selection.
PSR is defined as

PSR
genes truly declared associated

 associated genes
= #

#
;

FDR is defined as

FDR
 genes falsely declared associated

 genes declared as
= #

# ssociated
.

The FDR of a pathway defined earlier is slightly differ-
ent from the FDR defined here. The former is described
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for real data analysis in which the truly associated genes
are unknown whereas the above definition of FDR is for
the simulation study in which all the associated genes
are known.
Table 3 summarizes the average PSR and FDR over

500 replicates under the three pathway patterns with the
ERR for FPC_AIC, FPC_BIC and the gene-level associa-
tion test (gene-test). Compared with BIC, AIC tended to
select the gene subsets with more genes due to its small
penalty function and hence results in high FDR. For
example, for the pathway pattern 1, the PSR of
FPC_AIC was 0.88, which meant that almost all

associated genes were selected by the AIC criterion but
with high FDR. Although the PSR of BIC was lower
than AIC, BIC enjoyed a much lower FDR. In the path-
way pattern 1, BIC has controlled the FDRs around
0.05, which ensures that majority of genes declared
associated by BIC are likely to be associated. For path-
way pattern 3, the average number of genes selected by
AIC was found to be 38.95 of which 10.17 were truly
associated and 28.78 were false positives. Compared to
the total number of genes in this pathway (208), AIC
not only dramatically reduced the number of candidate
genes to a reasonable number, but also ensured that a
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Figure 3 Power versus relative risk in “Fructose and mannose metabolism” (pattern 2).
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large proportion of associated genes (53.5%) were
selected. This result suggests that AIC provides a possi-
ble candidate gene subsets for further investigation in
follow-up studies. The average number of selected genes
by BIC was 4.01, among which 3.65 genes were truly
associated and 0.36 genes were falsely associated. Thus
genes selected by BIC could be considered as important
genes as the FDR associated with this approach is very
small. It should be noted that the type I error of AIC is
kept around 0.05 in pathway detection, although AIC is
too liberal in gene identification.

The PSR and FDR of the gene-test were much lower
than those of AIC under all the pathway patterns. In the
pathway pattern 1, there was little difference between
the PSR of the gene-test and that of BIC. But, the PSR
of gene-test is lower than that of FPC_BIC in the other
two pathway patterns. It is likely that the Bonfferoni
correction becomes too conservative as the number of
genes within pathway increases. The FDR of BIC is
higher than that of gene-test, but is still controlled at a
reasonable level (<0.10). These results showed that our
method is more powerful than the gene-test for gene
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Figure 4 Power versus relative risk in “Cytokine-cytokine receptor interaction” (pattern 3).
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identification and has a comparable FDR when using
BIC as the selection criterion.

Application to a published psoriasis GWAS data set
Psoriasis is a chronic inflammatory skin disease that is
marked by a complex interplay of Dendritic Cells (DCs),
T-cells, cytokines, and downstream transcription factors
as part of a self-sustaining type 1 cytokine network [30].
Here, we applied the proposed method in a published
psoriasis GWAS data set from the CASP to identify sus-
ceptibility pathways and important genes. We mapped
all 529,651 SNPs to genes within the 5 kb upstream and
downstream region. If the SNPs are mapped to multiple
genes using this definition, we used a hierarchical map-
ping scheme (coding> intronic> 5’utr> 3’utr) following
[31]. The information on gene ID, gene names, and
their start and end positions on a chromosome was
downloaded from the National Center for Biotechnology
Information (NCBI)’s Genome database http://www.
ncbi.nlm.nih.gov/Genomes/. The quantile-quantile plot
in the original study [29] showed that signals in MHC
are much stronger than those in non-MHC. Hence, our
analysis only considered non-MHC genes across the
whole genome to aviod the bias arising from strong sig-
nals in the MHC. We generated 201 annotated pathways
from KEGG Pathway Database and 320 annotated

pathways from Biocarta Pathway Database by using
Database for Annotation, Visualization and Integrated
Discovery (DAVID) [32]. We only examined the 247
pathways with at least 15 genes to avoid testing overly
narrow pathways.
We applied the proposed methods FPC_AIC,

FPC_BIC, GSEA algorithm, and the AML to carry out
the pathway-based analysis. Table 4 summarizes the
pathways detected by at least one method. The proposed
method with the BIC criterion detected 6 biologically
plausible pathways for psoriasis (1 to 6). The detected
pathways under the AIC criteria were similar to the
ones under the BIC criteria (1-3, 5-7) and these are also
reported in previous studies [33-38]. Although “NF-kB
Signaling Pathway” reported in the original paper [29]
was not declared to be associated due to slightly high
FWERs (AIC: 0.144, BIC: 0.078), it had p-values less
than 0.001 and FDRs less than 0.05. The methods
FPC_AIC or FPC_BIC also identified important genes
within the detected pathways (Table 5). By comparing
the total number of genes (set size) with the number of
genes identified by the proposed approach (subset size),
it can be seen that our approach effectively identified a
few associated genes within the pathway. At the same
time, our analysis is able to identify nearly all of the
genes reported by previous studies, such as IL13,

Table 2 Type I error of different methods

Methods TNFR2 Signaling Pathway (pattern
1)

Fructose and mannose metabolism
(pattern 2)

Cytokine-cytokine receptor interaction
(pattern 3)

Type I error (95% CI)
P-value

Type I error (95% CI)
P-value

Type I error (95% CI)
P-value

FPC_AIC 0.060 (0.039,0.081)
0.302

0.058 (0.038,0.078)
0.326

0.054 (0.034,0.074)
0.653

FPC_BIC 0.050 (0.031,0.069) NA 0.048 (0.029,0.067) NA 0.048 (0.029,0.067) NA

FPC_FULL 0.058 (0.038,0.078)
0.492

0.054 (0.034,0.074)
0.673

0.048 (0.029,0.067)
0.932

AML 0.062 (0.041,0.083)
0.346

0.042 (0.024,0.060)
0.653

0.034 (0.018,0.050)
0.285

MSS 0.058 (0.038,0.078)
0.523

0.050 (0.031,0.069)
0.933

0.042 (0.024,0.060)
0.689

RTP_5 0.058 (0.038,0.078)
0.536

0.046 (0.028,0.064)
0.917

0.042 (0.024,0.060)
0.673

RTP_10 0.064 (0.043,0.085)
0.258

0.048 (0.029,0.067)
0.922

0.044 (0.026,0.062)
0.797

For each of the methods, we presented the type I error, the 95% confidence interval of all estimated probabilities, the p-value of McNemar’s test for the
difference of type I error between FPC_BIC and other methods. The type I error was calculated on the basis of 500 replicates at significance level 0.05.

Table 3 PSR and FDR for Gene subset identification of different methods

Methods TNFR2 Signaling Pathway
(pattern 1)

Fructose and mannose metabolism
(pattern 2)

Cytokine-cytokine receptor interaction
(pattern 3)

PSR FDR PSR FDR PSR FDR

FPC_AIC 0.880 0.524 0.473 0.665 0.535 0.739

FPC_BIC 0.318 0.031 0.243 0.093 0.192 0.090

Gene-test 0.310 0.024 0.185 0.075 0.085 0.025
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STAT2, IL23R, IL12B, IL23A, IL4, TNFAIP3 [29], and
RAD50 [39]. The findings demonstrate that the pro-
posed method is a promising way to identify associated
pathway and important genes in GWAS.
The modified GSEA algorithm identified 4 pathways

(8-11). Although no common pathways were detected
by both the FPC_AIC or FPC_BIC and the modified
GSEA algorithm, the p-values of pathways 2, 5 and 8
were less than 0.005 for both of the two approaches.
FPC_AIC and FPC_BIC were not able to identify path-
ways 10 and 11 partly due to the fact that no genes with

significant p-values within these 2 pathways were found.
The smallest gene p-values within pathways 10 and 11
are respectively 0.0197 and 0.004. In the modified GSEA
algorithm, the enrichment score is constructed by using
all of the genes within pathways, so the large percentage
of non-associated genes will result in loss of power.
Although the modified GSEA algorithm can highlight
genes with extreme statistics of association by setting
the parameter p > 1 in the enrichment score, the
authors recommend using p = 1[15]. Otherwise, the
modified GSEA algorithm suffers from the need to

Table 4 The pathways detected by at least one method in GAIN data set

FPC-BIC FPC-AIC GSEA AML

Pathway P-value (FDR,
FWER)

P-value (FDR,
FWER)

P-value (FDR,
FWER)

P-value (FDR,
FWER)

1. Cytokine Network <0.001
(0.006, 0.006)

<0.001
(0.001, 0.001)

0.020
(0.182, 0.945)

0.888
(0.911, 1.000)

2. Jak-STAT signaling pathway <0.001
(0.004, 0.008)

<0.001
(0.001, 0.002)

0.001
(0.017, 0.080)

0.104
(0.518, 1.000)

3. Dendritic cells in regulating TH1 and TH2
Development

<0.001
(0.005, 0.015)

<0.001
(0.004, 0.019)

0.108
(0.448, 1.000)

0.634
(0.906, 1.000)

4. Cytokines and Inflammatory Response <0.001 (0.005, 0.020) 0.001
(0.006, 0.057)

0.127
(0.455, 1.000)

0.710
(0.917, 1.000)

5. Cytokine-cytokine receptor interaction <0.001
(0.005, 0.023)

<0.001
(0.004, 0.027)

0.004
(0.090, 0.534)

0.005
(0.494, 0.624)

6. Role of BRCA1, BRCA2 and ATR in Cancer Susceptibility <0.001
(0.005, 0.037)

<0.001
(0.001, 0.001)

0.243
(0.560, 1.000)

0.014
(0.390, 0.871)

7. TNFR2 Signaling Pathway 0.001
(0.009, 0.099)

<0.001 0.004, 0.021 0.249
(0.559, 1.000)

0.303
(0.641, 1.000)

8. Calcium signaling pathway 0.022
(0.166, 1.000)

0.001
(0.040, 0.591)

<0.001 (0.009, 0.009) 0.002
(0.362, 0.655)

9. Axon guidance 0.017
(0.165, 0.997)

0.040
(0.139, 1.000)

0.001
(0.005, 0.010)

0.238
(0.600, 1.000)

10. ECM-receptor interaction 0.792
(0.858, 1.000)

0.392
(0.461, 1.000)

<0.001 (0.004, 0.012) 0.197
(0.600, 1.000)

11. Cell adhesion molecules (CAMs) 0.332
(0.520, 1.000)

0.011
(0.081, 0.957)

0.001
(0.007, 0.027)

0.023
(0.363, 0.994)

All the p-values, false discovery rates (FDRs) and family-wise error rates (FWERs) were obtained via 1000 permutations. Gene p-value in pathway enrichment
method was the p-value of the most significant SNP within gene. The AML method was based on the test statistic of Cochan-Armitage trend test.

Table 5 The identified genes by AIC or BIC in their 5 common detected pathways

Pathway Set
size

Subset
size

Identified genes

Cytokine Network 17 5/1 IL13, IL4, IL9, IL5, IL2

Jak-STAT signaling pathway 126 25/5 IL13, IL23R, IFNE1, STAT2, IL12B, IL4, IL9, IL29, IL5, IL6, IL5RA, IL2, PIK3R5, PIK3R2, EP300, PIK3CG,
CSF2RB, TSLP, CNTFR, IFNA21, OSMR, IFNGR1, PIAS4, PIK3CB, SOCS4

Dendritic cells in regulating TH1
and TH2 Development

19 4/1 IL13, IL4, IL5, ANPEP

Cytokine-cytokine receptor
interaction

208 49/6 IL13, IL23A, IL23R, IL1R2, IL12B, IFNE1, IL4, IFNA21, PF4V1, IL9, IL29, INHBA, IL5, FAS, OSMR,
CCL22, FLT3, TNFRSF21, CSF1, CXCL11, CNTFR, IL1B, IL18RAP, TGFB2, CCL23, IL8RB, IL5RA, IL6,
IL11RA, IL2, TNFRSF19, EGF, CCL3, IFNAR2, CCR6, CSF1R, TNFRSF8, PDGFRA, CSF2RB, TNFSF8,
CCL1, TSLP, TNFRSF1A, KDR, IL17RB, IFNGR1, TNFRSF11B, IL22RA2, PDGFRB

Role of BRCA1, BRCA2 and ATR in
Cancer Susceptibility

21 3/1 RAD50, BRCA2, RAD9A

Column “subset size” (# by AIC/# by BIC) presents the subset sizes selected by AIC and BIC, respectively. Column “selected genes” presents the identified genes
by AIC and BIC, where genes with underline denote the ones selected by both AIC and BIC, and genes with no underline denote the ones selected only by AIC.
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select the appropriate value for p. Compared to GSEA,
the proposed approach with AIC or BIC would effec-
tively increase the power to detect the association since
the joint analysis is performed in a reduced gene subset.
The AML method did not detect any pathway, but it
also has p-values 0.005 and 0.002 for pathways 5 and 8.
In our ongoing meta-analysis including multiple cohorts,
we find that some of the pathways identified by our ana-
lysis in GAIN are also replicated in other cohorts. Com-
plete Meta pathway results will be reported later.

Discussion
Genes rather than SNPs are considered the basic units
in our method, which is expected to reduce the degrees
of freedom of the pathway test statistic. As part of our
pathway association, we conducted gene-level associa-
tion tests based on FPC scores using published psoriasis
GWAS data and compared the result with single SNP
analysis. Besides the genes reported by in the original
paper [29], our gene-level analysis identified several
additional genes (See details in Additional file 2, Table
S4). It is likely that, if a gene contains a number of
SNPs with medium-size effects, the gene-based score
combines their information and hence increases the
effect size. Hence, our proposed method using gene-
based scores should increase the power to detect an
association.
In the analysis of empirical data, the proposed method

identified a number of biologically plausible pathways
for psoriasis. The pathogenesis of psoriasis is character-
ized by skewed cytokine levels of pro-inflammatory and
anti-inflammatory cytokines [34]. Cytokines are the hor-
monal messengers responsible for most of the biological
effects in the immune system. Cytokines can be func-
tionally divided into two groups: those that are pro-
inflammatory and those that are essentially anti-inflam-
matory [38]. A subgroup of the T lymphocytes, also
known as helper T cells, is regarded as being the most
prolific cytokine producers. This subset can be further
subdivided into Th1 and Th2, and the cytokines they
produce are known as Th1-type cytokines and Th2-type
cytokines. Th1-type cytokines (IL-1, IL-2, IFN-g and
TNF-a) tend to produce the pro-inflammatory
responses, while Th2-type cytokines (IL-4 and IL-10)
have an anti-inflammatory response. Thus, pathways
“Cytokine Network” and “Cytokine - cytokine receptor
interaction” are relevant to the etiology of psoriasis. Our
results highlighted a possible role for dendritic cells in
regulating TH1 and TH2 development. DCs are key sen-
tinels of the immune system, bridging the gap between
innate and adaptive immunity [36]. A facet of DCs is
that these cells may have alternative differentiation path-
ways that stimulate differing T-cell subsets that typify
Th1 vs. Th2 skin diseases [37]. Collectively, cytokines

like TNF-a and IFN-g induce a wide variety of
responses including: STAT1 stimulation followed by
expression of downstream response genes and NF-� B
signaling pathways seen in psoriatic lesions [30]. NF-�B
activation regulates the transcription of other pro-
inflammatory genes [35]. Evidences suggest that BRCA1
part of the “Role of BRCA1, BRCA2 and ATR in Cancer
Susceptibility” pathway significantly enhances the ability
of TNF-a or IFN-g to activate transcription from the
promoters of NF-�B target genes. Together, this infor-
mation suggests that BRCA1 may play a role in cell life-
death decisions following cell stress by modulation of
the activity of NF-�B [33]. Thus, “Jak-STAT signaling
pathway”, “TNFR2 signaling Pathway” and “Role of
BRCA1, BRCA2 and ATR in Cancer Susceptibility” are
involved in the regulation of cellular responses to cyto-
kines with the aim to providing an insight to the mole-
cular mechanism involved in psoriasis.
In our analysis we compared results from the pro-

posed method to that of the GSEA method, since both
of the two methods consider genes as basic genetic var-
iants. We also note that there are other existing path-
way-based methods for GWAS [14,16-21]. However,
most of these methods are taking SNPs as basic genetic
variants in the analysis, so we did not choose them as
methods for comparison. Our annotation of SNPs to
genes is based on 5 kb window size around the gene.
There are several options for annotation of SNPs to
gene such as 10 kb, 50 kb, and even 500 kb [40,41,15]
window sizes around the gene but we used only 5 kb
window size because a large window size would result
in too many overlapping genes. The first principal com-
ponent of SNP genotypes is used to capture the infor-
mation in a gene, which is reasonable but not necessary.
Many alternative ways are feasible, such as the most sig-
nificant SNP test statistic used in the GSEA method
[15], the first few principal components discussed in
[26].
We have also performed several diagnostic tests to

examine the proposed pathway approach. First to find
out whether our defined gene-based score is affected by
the length of the associated genes, we performed
Welch’s t-test to compare the mean numbers of SNPs
in the “associated” genes (p-value ≤ 0.05) vs those in
“non-associated” genes (p-value > 0.05). The mean num-
bers of SNPs in the “associated” and “non-associated”
genes are 15.18 and 16.07, respectively; combined esti-
mate of standard deviation of two samples is 0.82; the
p-value for the test of equality of the mean gene lengths
is 0.276; 95% confidence interval for the mean difference
is (-2.79, 0.71). This result shows that gene-based test
using FPC is not biased due to the number of SNPs in
the genes. Second, we have only used the first principal
component of SNP genotypes to capture the
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information in a gene, which is may not account for all
the variation within the gene. To assess whether the
FPC captures all the information within the genes, we
performed an alternative gene-level analysis by using the
first two principal components. The LR test was done
for each of the two principal and the smallest p-value as
is taken as the gene-level p-value. We compared the top
50 genes in these two gene-level analyses and found
that the FPC did not detect only 5 genes detected by
the first two principal components. This findings show
that FPC contains most of the information across multi-
ple SNPs within the same gene. Hence, it is feasible to
consider the FPC as the gene-based score to represent
genes without increasing the multiple test burdens with
many principal components [26].
In the proposed permutation procedure, the size of

the gene subset is kept to be the same as the one in the
original analysis (m). This guarantees the LR test statis-
tics of the original data and permuted data to have the
same nominal distribution ( m

2 ) under the null hypoth-
esis. If the size of gene subset is re-computed in permu-
tation π (denoted by m(π)), the corresponding LR test
statistic approximately follows  m( )

2 under the null
hypothesis. When m(π) is not equal to m, the test statis-
tics in original data and in the permuted data will not
follow the same nominal distribution and hence it is dif-
ficult to compare both of them. As discussed in [42],
one disadvantage of the permutation procedure is that
the test statistic may not follow the overall mean and
standard deviation. To overcome this problem a restan-
dardization procedure was proposed by combining the
randomization with the permutation procedure [42].
Currently, we are extending this idea to work on a novel
procedure for the calculation of p-values. However, it is
beyond the scope of this article.
The method proposed here can be extended in several

ways. For example, we have considered only the disease
trait (affected vs. unaffected) but this can easily be
extended to quantitative traits as well. This approach
can also be used to perform whole genome prioritized
analysis such as the SNPs in the transcription factor
binding sites. Association through Copy Number Var-
iants (CNVs) and meta-analysis can also performed
under this framework. To relieve the multiple testing
burdens, our pathway analysis uses available knowledge
on annotated biological pathways. As a result, it is
important that these annotated pathways are well sup-
ported by data to avoid false positive findings.

Conclusions
In this paper, we proposed a pathway-based approach to
examine the joint effects of a biological pathway through
jointly testing the reduced gene subset. Apart from

identifying susceptibility pathways, our method also pro-
vides a solution to detect important genes using gene
selection criteria. The simulation results show that our
method effectively increased the power to detect the
associated pathways compared to a number of widely
used approaches. In the GWAS of psoriasis in GAIN
population, our method using the AIC criterion identi-
fied 6 biologically plausible pathways and several impor-
tant genes for psoriasis. The findings demonstrate that
our proposed method is a promising way to discover
susceptibility pathways and identify important genes in
GWAS.

Additional material

Additional file 1: Additional Tables S1, S2, S3 listing the power of
different methods. Tables S1, S2 and S3 respectively summarizes the
powers of different methods for three pathways “TNFR2 Signaling
Pathway”, “Fructose and mannose metabolism” and Cytokine-cytokine
receptor interaction” in simulation studies.

Additional file 2: Additional Table S4 listing the top 10 associated
genes in GAIN data set. Table S4 lists the top 10 genes associated in
psoriasis GAIN data set by using the FPC-based gene level test.
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