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Abstract

Background: MicroRNAs (miRNAs) play a key role in regulating various biological processes such as participating in
the post-transcriptional pathway and affecting the stability and/or the translation of mRNA. Current methods have
extracted feature information at different levels, among which the characteristic stem-loop structure makes the
greatest contribution to the prediction of putative miRNA precursor (pre-miRNA). We find that none of these
features alone is capable of identifying new pre-miRNA accurately.

Results: In the present work, a pre-miRNA stem-loop secondary structure is translated to a network, which
provides a novel perspective for its structural analysis. Network parameters are used to construct prediction model,
achieving an area under the receiver operating curves (AUC) value of 0.956. Moreover, by repeating the same
method on two independent datasets, accuracies of 0.976 and 0.913 are achieved, respectively.

Conclusions: Network parameters effectively characterize pre-miRNA secondary structure, which improves our
prediction model in both prediction ability and computation efficiency. Additionally, as a complement to feature
extraction methods in previous studies, these multifaceted features can reflect natural properties of miRNAs and be
used for comprehensive and systematic analysis on miRNA.

Background
MicroRNAs (miRNAs) are short non-coding RNA mole-
cules of ~22 nucleotides (nt) that can affect stability
and/or translation of mRNAs. In mammals, the primary
transcript (pri-miRNA) is processed into a precursor
(pre-miRNA) of ~70 nt with a characteristic stem-loop
structure by the enzyme, Drosha, and then the pre-
miRNA is transported from nucleus to cytoplasm by
exportin-5. The Dicer nuclease cuts out the mature
miRNA from one strand of the pre-miRNA, and loads it
into RNA-induced silencing complex (RISC) [1-3].
Finally, the cleavage or translational repression is
induced, depending on the degree of base pairing
between RISC-miRNA and target mRNA [4,5].
The first miRNA, lin-4, was discovered in the lab of

Victor Ambros in 1993 [6], which was complementary
to the 3’UTR (3’ untranslated region) of the mRNA

transcribed from the lin-14 gene. Seven years later, the
second miRNA let-7 was found in Gary Ruvkun’s lab
[7]. Subsequently, miRNAs have become a hot spot and
a large number of miRNAs have been identified in var-
ious species across time [8-12]. There are 10883 mature
miRNA products, according to the release 14.0 of miR-
Base [13]. MiRNAs are integral components in many
biological processes including development, differentia-
tion, apoptosis, etc. Moreover, unexpected novel func-
tions have been discovered recently. However, the
experimental techniques are difficult to systematically
detect miRNA molecules under the assumption that
highly diverse functions and activities are involved in
biological processes.
At present, computational methods, including com-

parative and non-comparative methods, prove good at
identifying miRNA precursor from both pseudo miRNA
and other ncRNA (non-coding RNA), which are also
available for human pre-miRNA recognition. Xue et al.
(2005) presented a classifier (triplet-SVM) based on sup-
port vector machine to classify human pre-miRNA from
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pseudo hairpin with structure-sequence triplet features.
MiPred extended the triplet-SVM, using the random for-
est algorithm based on hybrid features to improve the
classification results [14,15]. To the contrary, miPred
and microPred regarded some other ncRNAs (such as
tRNAs and rRNAs) as a negative training/testing dataset
for the reason that pseudo hairpin structures can be
found in the complete secondary structures of other
types of ncRNAs and their motifs. Therefore, a proper
approach for novel human pre-miRNA recognition
should distinguish real pre-miRNA hairpins effectively,
from both genome pseudo hairpins and other ncRNAs
[16-18].
Almost all pre-miRNAs have characteristic stem-loop

hairpin structures, which are thought to provide insight
into the biological function [19]. During the biogenesis
of a mature miRNA, hairpin structure acts as a structure
motif for Exportin-5 in the nuclear-cytoplasm transpor-
tation and a substrate for Dicer [20-22], and it is also of
great importance in the specific nucleotide base-paring
and stacking interactions. In the RNA folding, the
adopted shapes or folds can be highly complex while
capable of carrying out a variety of molecular functions,
such as binding metabolites and proteins with high spe-
cificity [6,23-27]. Genomic regions are also binding tar-
gets for RNAs allowing for their hybridization with
nucleotide sequences [28-30]. As for researches into
microRNA function, the identification of miRNA targets
using computational methods has developed in an
increasing number. Recent improvements in this field
have been reported in Li J et al [31], Target-align [32],
MiRonTop [33], etc.
Recent studies showed various ways to represent RNA

structure with graphs (Figure 1), such as bracketed, tree,
dual graph, etc. These representations specify the con-
nectivity between RNA secondary structural elements,
such as loops, bulges, stems and junctions [34,35]. They

facilitate the detection of numerous detailed facets of
each pre-miRNA element and their combined patterns
in creating pre-miRNA secondary structure. Thus, a
parameter can be defined on the level of network con-
stituents (i.e. nodes and edges) or the network itself. In
this work, we describe a pre-miRNA secondary structure
as a two-dimensional network (graph), and then several
network parameters are defined and analyzed. Based on
these parameters, a random forest (RF) approach is used
to construct prediction model for pre-miRNA. This clas-
sifier is trained on animal pre-miRNA sequences with
<90% similarity and achieves high accuracies across
independent datasets.

Results and Discussion
Prediction performance of RF classifier
Training/testing model
Embedded in the procedure of estimating classifier per-
formance, the parameter optimization is done by grid
search. During the process of the grid search, two para-
meters, ntree (number of trees to grow) and mtry (num-
ber of variables randomly sampled as candidates at each
split) are optimized based on 10-fold cross-validation.
The original value is ntree = {500, 2000, 500} and mtry
= {0, mdim, 1} (the first number indicates the initial
value, the second indicates the final value, the third is
the step size, and the mdim is the number of features).
The best performed parameters (ntree = 1500, mtry = 8)
are selected to construct random forest prediction mod-
els. A similar method of parameter optimization was
also successful in predicting miRNA targets [36].
A RF model is constructed with training dataset and

tested by testing dataset. Our dataset contains 3928
positive samples (animal pre-miRNAs) and 8897 nega-
tive samples (pseudo hairpins and other ncRNAs). 3000
samples from each class are randomly selected for
training, and the rest are for testing. This procedure is

Figure 1 Three representations of RNA secondary structure for human precursor miRNA hsa-mir-33a.

Xiao et al. BMC Bioinformatics 2011, 12:165
http://www.biomedcentral.com/1471-2105/12/165

Page 2 of 8



repeated 100 times and the true positive rates (sensitiv-
ity) and the true negative rates (specificity) are aver-
aged to determine the performance. Our method
achieves sensitivity of 0.873 and specificity of 0.911.
Comparing with previous report, our approach is well
performed, as redundant sequences are filtered out
with a threshold of 90% identity while others only get
rid of duplicate sequences. The stricter data preproces-
sing reduces the bias of prediction results yielded by
redundant data.
ROC curves for testing datasets represent the distribu-

tion of 100 times experiments with box plot, in which
the middle bar is the median, the outer edges are the 10
and 90 percentiles, and the edges of the boxes are the
25 and 75 percentiles. Outliers are showed as circles. An
average AUC value of 0.956 is obtained with all network
parameters (Figure 2). The result further suggests that
network represented stem-loop secondary structure can
be used to construct model for effectively predicting
novel pre-miRNA.
Performance of independent dataset
In order to evaluate the practical prediction ability of
the final prediction model, two independent datasets are
used, which contains 1646 known plants and 196 virus
pre-miRNA sequences, respectively. Table 1 shows the
results on the independent datasets. Sequences with
similarity greater than 90% are excluded from original
dataset. Our model achieves high accuracies of 0.976
and 0.913, respectively. A total accuracy of 0.970 indi-
cates that our method is reliable and robust. Network

parameters can be used to identify pre-miRNA
sequences with high performance. In contrast, most
existing methods only work on the pre-miRNAs with
no multiple loops, and do not filter out the high simi-
larity sequences. The pre-miRNAs sharing high
sequence similarities induces biased evaluation of the
prediction model in this manner.

Contribution of individual parameter
In the present work, two different strategies are adopted
to measure the contribution of individual parameter to
the prediction of pre-miRNA. Because predicting the
response with “black-box” model alone cannot fully
satisfy the requirements in the current classification
tasks.
RF is a classification method that also provides feature

importance measures, with which significant features
would be distinguished and interactions among features
would also be reduced as well. Permutation importance
and conditional variable importance are adopted as cri-
teria for measuring the contribution of individual para-
meter in pre-miRNA prediction. This process is
repeated 100 times with random resampling of con-
structed models, and the scores are averaged. The con-
tribution of each network parameter is measured and
showed in Figure 3.
The average degree exhibits the greatest contribution

with an average score of 0.1010 followed by the var-
iance of betweenness (0.0734), the average Burt’s con-
straint (0.0723), and three graph motifs (0.0616). These
parameters significantly contribute to the performance
of the model and are consistent with the results from
permutation and conditional variable importance
strategies. However, the latter based on conditional
inference trees seems to produce less noise than a per-
mutation importance strategy. In addition, this analysis
suggests that girth, coreness and transitivity have a lim-
ited or no contribution to the prediction. Subsequently,
we rank the features by average score of each para-
meter, and delete one feature of the lowest score each
time and construct models with features remained.
This procedure is repeated 23 times, till only one fea-
ture is left. The average prediction results for each
model are showed in Figure 4. The complete parameter
set is tested in the classifier that achieves sensitivity of
0.873 and specificity of 0.911. Elimination of lower
scored parameters does not lead to significant change
of the model performance. When the top 4 parameters
are remained, the sensitivity is 0.859 and specificity is
0.884, decreasing by 0.014 and 0.027 respectively, com-
paring to the results from the total feature sets. These
results further confirm the above experiment, and the
top 4 parameters are of great contribution to pre-
miRNA prediction.

Figure 2 ROC curves estimate the random resampling models.
The ROC curves are overlaid by the vertical average curve and box
plots showing the vertical spread around the average.
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Comparing the practical prediction ability with previous
methods
Several pre-miRNA prediction tools were released and
each had its own merits. However, these tools suffered
from imbalance problem, that is, the negative dataset
was much larger than the positive dataset. The triplet-
SVM, MiPred and miPred all randomly chose more
balanced positive and negative dataset from the com-
plete dataset as the training data. Meanwhile, the
remaining positives and other randomly chosen nega-
tives were as the testing samples. Instead, microPred
used SMOTE (Synthetic Minority Over-sampling Tech-
nique) to address this imbalance problem. However,
SMOTE and random over-sampling methods augment
the minority class through all the samples or a random
subset of the minority class. Over-sampling makes exact
copies of the minority class, which tends to result in
over-fitting of the model. Thus, these methods increase
the size of the training set to build a classifier, which
likely yields overestimated prediction ability. In addition,
existing methods haven’t considered redundant owing to

high similarity sequence, which results in biased evalua-
tion of the prediction performance. Here, 3000 samples
are randomly selected from 3928 non-redundant animal
sequences with less than 90% similarity and 8897 nega-
tive samples (8487 pseudo pre-miRNAs and 410
ncRNAs), respectively. The remainder samples are used
for testing model. Finally, 1646 plants and 196 virus
sequences <90% similarity are used to evaluate the prac-
tical prediction ability of the final prediction model and
compare with that of the previous tools.
We perform a comparison on the independent dataset,

and the result is listed in Table 1. Triplet elements were
first proposed in triplet-SVM, which combined the local
contiguous sequence and structure information of the
stem-loop secondary structure of pre-miRNA [14]. This
feature representation could be effectually applied in
pre-miRNA identification, which was further proved and
improved by recent study [15]. The microPred presented
48 multifaceted features, including 29 conventional fea-
tures originally used in the miPred approach and 19
newly introduced RNAfold-related, Mfold-related, and

Table 1 Comparison with existing methods

Methods Complete dataset Training dataset Testing dataset Results for testing dataset Results for Independent dataset

Pos Neg Pos Neg Pos Neg SE SP Plant (Acc) Virus (Acc) Total (Acc)

Triplet-SVM 193 1168 163 168 30 1000 0.933 0.881 0.882 0.843 0.877a

microPred 691 9248 SMOTE Outer-5-fold-CV 0.900 0.973 0.841 0.939 0.853b

Our method 3928 8897 3000 3000 928 5897 0.873 0.911 0.976 0.913 0.970

Triplet-SVM is a SVM-based method with triplet elements that represent information of pre-miRNA stem-loop structure. There is an extension called MiPred.

microPred combined the new RNAfold-related, Mfold-related, and pair-related features with 29 ‘global and intrinsic’ features introduced in the miPred approach.
a 178 virus and 1232 plant sequences were used, as samples with multiple loops were filtered out by Triplet-SVM.
b 196 virus and 1389 (the length less than 300) plant sequences were submitted to microPred web server.

Figure 3 The bar charts of individual parameter contribution. The contribution of individual parameter is determined by calculating the
importance score, with larger scores indicating more relevant properties. The comparison between two strategies is represented by different
greyscales, the bar height is the score of individual feature, and the confidence interval is calculated for each parameter. E: Edge; V: Vertex; N:
Number; A: Average; Var: Variance; M: Mean.
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pair-related features [16,17]. In our approach, a novel
representation of pre-miRNA structure is proposed by
translating characteristic stem-loop structure into net-
work and generating 24 network features for random
forest classification. The independent dataset test indi-
cates that all three methods perform well, and our
model performs best.
Besides, we have also implemented our method on the

same positive and negative datasets previously used. We
train our model with the same training data as that of
the triplet-SVM, and test model performance with the
same testing data used in triplet-SVM. As a result, all
the 30 human pre-miRNAs are correctly recognized,
while 895 out of 1000 pseudo-miRNAs are defected as
negative by our method. Comparing with triplet-SVM,
this method significantly improves the performance of
prediction. Moreover, we try our approach on positive
and negative datasets originally used in microPred, yield-
ing sensitivity of 0.889 and specificity of 0.901. The
microPred was time-consuming, as a large number of
random sequences were generated for calculating statis-
tical thermodynamic features. Our method not only
yields high accuracy, but also greatly reduces the com-
putation time. This result demonstrates that our method
is robust and effective. Network parameters can be con-
sidered as a complement to feature extraction of pre-
vious work, using in comprehensive and systematic
feature analysis for pre-miRNA prediction.

Conclusions
MicroRNA investigation not only sheds new light on
RNA function, but also reveals the mechanism involved
in cell function and regulation. Current methods use

sequence, triplet structure-sequence, and thermody-
namic properties to construct prediction model of pre-
miRNA. In the present study, we design a novel repre-
sentation of pre-miRNA secondary structures for mod-
elling pre-miRNA classifier. The graph theory is
applied in analyzing RNA structure recently, and some
of the relevant biological relations can be explained.
For instance, the node betweenness is thought to mea-
sure the number of base pairs existed in the structure
and the compactness of structure to a small extent.
Likewise, the articulation point is regarded as a nucleo-
tide in a dangling end or a bridge between two separ-
able secondary structures [37]. However, further
researches of biological interpretations for graph prop-
erties are in demand. As more and more new methods
have been proposed, we are highly assured that under-
standing microRNA and complex biological processes
they influence could unlock the secrets of their
function.

Methods
Random forest
Random forest (RF) consists of many unpruned deci-
sion trees and the outputs are decided by the predic-
tions of all the individual trees for both classification
and regression. All the trees vote to determine the pre-
diction result and an OOB estimate of error rate is
implemented. As a classifier, random forest is con-
structed of ntree trees grew from different bootstrap
samples using original data, and splits each node by
the best split among randomly sampled mtry predictors
at that node. It combines bootstrap aggregating (bag-
ging) algorithm and the random feature selection to
construct a collection of decision trees with controlled
variation. Bagging is used to improve Mach Learn of
classification and regression models in terms of stabi-
lity and accuracy. It also reduces the variance and
helps to avoid overfitting [38]. However, when the
measure is based on the predictor’s performance in the
training set, there is no possibility of knowing whether
the predictor is over-fitted to the training set. Instead,
cross-validation should be used to test the performance
of predictor. The RF algorithm has been successfully
applied in situations where complicated interactions
are among many features. Based on a tree structure, it
has advantages of interpretable classification rules and
additional information to measure the importance of
features. Feature extraction is a difficult issue owing to
the complexity of interactions between different fea-
tures. However, only predicting the model response
cannot be achieved for many applications. The random
forest algorithm for classification, regression and vari-
able importance measurements is available in the ran-
domForest and the party R packages.

Figure 4 Results for deleting feature one by one. Models are
constructed on remainder variables after deleting the feature of the
lowest score each time. This process is repeated 23 times, till only
one feature is left. Sensitivity and specificity are used to measure
model performance.
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Training and Testing dataset
A total of 8531 animal pre-miRNA sequences are col-
lected from miRBase14 [13]. The redundant sequences
are filtered out with a threshold of 90% sequence iden-
tity, retaining 3928 non-redundant sequences. Then the
remainders are folded into stem-loop secondary struc-
tures by UNAfold. We consider all these 3928 non-
redundant pre-miRNA sequences as our positive dataset
whether multi-branched loops exist or not.
The 8494 human pseudo pre-miRNAs have been pre-

viously used in several works [14-17]. This dataset is
downloaded from Xue et al.’s work collected from pro-
tein coding region. More likely pseudo hairpin sequences
do not contain any annotated or un-annotated pre-
miRNA sequences. Additionally, other ncRNA samples
are considered as negative dataset from Batuwita et al.’s
work. These ncRNAs have pseudo hairpins, which resem-
ble pre-miRNA in structure much more. This dataset
was originally formed by the automatic prediction meth-
ods with the predicted pseudo-genes removed manually
and carefully [39,40]. Taking other ncRNA sequences
into consideration enriches the negative dataset by pro-
viding additional information representing their hairpin
motifs. Similarly, redundant sequences are filtered out
with a threshold of 90% sequence identity, and the
remainder sequences are folded into stem-loop structures.
Finally, we obtain 8487 pseudo pre-miRNAs and 410
ncRNAs in the negative dataset.

Independent testing dataset and evaluation index
Two cross-species datasets, plant and virus pre-miR-
NAs, are downloaded from miRBase as independent
datasets to test our classifier. After processing the ori-
ginal data, 1646 plant and 196 virus pre-miRNAs are
obtained to evaluate the practical prediction ability of
the classifier. The whole data preprocessing is parsed
with Perl.
Finally, sensitivity (SE), specificity (SP), and the total

prediction accuracy (ACC) are used to measure
the performance of this method, which are defined as
follows:

SE =
TP

TP + FN

SP =
TN

TN + FP

ACC =
TP + TN

TP + TN + FP + FN

(TP, TN, FP and FN represent true positive, true
negative, false positive, and false negative, respectively).
The sensitivity for positive prediction, the specificity for
negative prediction, the accuracy for total prediction,
and ROC plots of the true positive rate versus the false
positive rate for varying decision cut-offs, are used to
measure the model performance.

Table 2 Definition of network parameter

Parameter Description

Hub score Kleinberg’s hub.

Path length The length of a path.

Shortest path The shortest path between two vertices.

Constraint Calculates Burt’s constraint for each vertex.

Degree The number of edges connected to a vertex.

Grith The length of the shortest circle in the graph.

Modularity Modularity of a community structure of a graph.

Graph motifs The small subgraphs with a well-defined structure.

Articulation point A vertex that, if removed, will disconnect the graph.

Node betweenness The number of shortest paths that pass through a vertex.

Edge betweenness The number of shortest paths that pass through an edge.

Diameter The diameter of a graph is the length of the longest geodesic.

Cocitation coupling Two vertices are cocited if there is another vertex citing both of them.

Transitivity Measures the probability that the adjacent vertices of a vertex are connected.

Bibliographic
coupling

The bibliographic coupling of two vertices is the number of other vertices they both cite.

Closeness centrality Measures how many steps are required to access every other vertex from a given vertex.

Coreness The coreness of a vertex is k if it belongs to the k-core but not to the (k+1)-core, a subgraph where every node has k
connections.

Graph density The density of a graph is the ratio of the number of edges and the number of possible edges.
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Extraction of network parameters
Network elements, including nodes and edges, can be
defined by the network itself or a parameter which may
relate to limited or full knowledge of the network. Based
on these criteria, Child et al classified the network para-
meters into three types: local, local-global and global
(using limited or full knowledge of the network and
referring to a network element or network itself) [37].
Thus, the network represented pre-miRNA structure
offers a means to capture both local-global and global
structural properties that can be used as a novel method
in identification of miRNA. To our knowledge, the char-
acteristics of diverse biological processes or the ensem-
ble can be reflected by modelling the network.
Here, 24 network parameters are adopted to describe

stem-loop structure of pre-miRNA based on previous
work and experimental criteria [41,42] although a num-
ber of network parameters are available. Individual para-
meter definition is listed in Table 2. UNAfold tool is
used to predict pre-miRNA secondary structure repre-
sented of bracketed graph, which converts all nucleotides
to nodes and all bonds between nucleotides (both ester
and hydrogen) to edges. Moreover, the necessary sum-
mary statistics (mean and variance) are performed to
extend the present algorithm in calculating some para-
meters based on individual node or edge. For example,
for edge betweenness, the mean and the variance over all
edges in the graph are calculated. All network parameters
are calculated with the igraph R package [43].

Availability and requirements
Source code and binaries freely available for download at
http://cic.scu.edu.cn/bioinformatics/Pre-miRNA_code.zip
Operating systems: Platform independent
Programming language: Perl, R language
License: none
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