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Abstract

re-sequencing projects.

Background: Over the past few years, new massively parallel DNA sequencing technologies have emerged. These
platforms generate massive amounts of data per run, greatly reducing the cost of DNA sequencing. However,
these techniques also raise important computational difficulties mostly due to the huge volume of data produced,
but also because of some of their specific characteristics such as read length and sequencing errors. Among the
most critical problems is that of efficiently and accurately mapping reads to a reference genome in the context of

Results: We present an efficient method for the local alignment of pyrosequencing reads produced by the GS FLX
(454) system against a reference sequence. Our approach explores the characteristics of the data in these re-
sequencing applications and uses state of the art indexing techniques combined with a flexible seed-based
approach, leading to a fast and accurate algorithm which needs very little user parameterization. An evaluation
performed using real and simulated data shows that our proposed method outperforms a number of mainstream
tools on the quantity and quality of successful alignments, as well as on the execution time.

Conclusions: The proposed methodology was implemented in a software tool called TAPyR-Tool for the
Alignment of Pyrosequencing Reads—which is publicly available from http://www.tapyr.net.

Background

Sequencing by capillary electrophoresis, known as the
Sanger method [1], has been employed in many histori-
cally significant large-scale sequencing projects and is
regarded as the gold standard in terms of both read
length and sequencing accuracy [2]. Several Massively
Parallel DNA Sequencing (MPDS) technologies have
recently emerged, including the Roche/454 GS FLX Sys-
tem, the Illumina/Solexa Genome Analyser, and the AB
SOLID System, which are able to generate a few orders
of magnitude more bases per instrument run, being
considerably less expensive than the Sanger method
[2,3]. These technologies are enabling researchers and
practitioners to efficiently sequence genomes, leading to
very significant advances in biology and medicine. How-
ever, the huge volume of data produced by MPDS tech-
nologies creates important computational challenges [4].
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Moreover, the different platform-specific data character-
istics require different algorithmic approaches. For
instance, some applications may use the 454 Titanium
platform to produce reads 400 bases long, some other
studies may employ a SOLiD system set to produce
short reads of 35 bases, and yet other projects may use
the Illumina system to produce 2 x 75 bases paired-end
reads. Given their large variety, it would be rather diffi-
cult for a single algorithm to handle all kinds of data
optimally.

When sequencing a new organism, one is usually
faced with the problem of assembling the sequence frag-
ments (reads) together from scratch. However, when a
sufficiently close sequence is already known, one may
choose to use it as a reference and proceed by first map-
ping the reads to this reference and then determining
the new sequence by extracting the consensus from the
mapping results. The former strategy is called de novo
sequencing, while the latter is known as re-sequencing.
Several tools have recently been developed for generat-
ing assemblies from short reads, e.g [5,6]. Similarly, sev-
eral methods have been proposed to address the
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problem of efficiently mapping MPDS reads to a refer-
ence sequence, like [7-12], to cite a few. As referred
before, the sheer volume of data generated by MPDS
technologies (to the order of hundreds of gigabases per
run), and the need to align reads to large reference gen-
omes limit the applicability of standard techniques.
Indeed, in a typical application, we may have to align
hundreds of millions of reads to a reference genome
that can be as large as few gigabases, a job that cannot
be efficiently achieved through standard dynamic pro-
gramming procedures.

One way to speed up the read alignment task is to
resort to approximate indexing techniques. A first gen-
eration of aligners was based on hash tables of k-mers.
Some of them, like SSAHA?2 [13], build tables of k-mers
of the target sequence, whilst others, like Newbler [14],
index the reads, thus presumably requiring re-indexing
for each new run. Recent developments in the field of
compressed approximate indexes have led to a new
family of alignment algorithms such as Segemehl [10],
which uses an enhanced suffix array (see Implementa-
tion), and BWA-SW [11], which uses a FM-index (see
Implementation) to accelerate Smith-Waterman align-
ments. Yet the number of aligners that support GS FLX
pyrosequencing data is, as of today, relatively scarce
compared to other technologies, most notably Illumina.
Moreover, some of these tools find their origins in the
days before the advent of the new sequencing technolo-
gies and only later were adapted to cope with new kinds
of data [13], and some others target multiple kinds of
data [10] being not optimized for pyrosequencing data.
Given this state of affairs, we argue that there is still
room for improvement in the realm of publicly available
aligners specifically designed for high-throughput pyro-
sequencing data.

In this paper we present a new method for the align-
ment of pyrosequencing reads, like those produced by
the 454 GS FLX platform. By focusing on this specific
technology, our procedure manages to explore its data
characteristics to achieve improved performance over
other mainstream methods. Like many of those meth-
ods, ours also builds an index of the target (reference)
sequence to accelerate the alignment. It then employs a
multiple seed heuristic to anchor the best candidate
alignments. Contrary to other seed-based alignment
tools, our strategy adds more flexibility by dispensing
with the need of determining the number and length of
the seeds beforehand. Our heuristic relies on some
assumptions that can be reasonably expected to hold
true for re-sequencing projects based on pyrosequencing
data, namely, that the optimal alignments are mostly
composed of relatively large chunks of exact matches
interspersed by small, possibly gapped, divergent
regions. A banded dynamic programming is used to

Page 2 of 9

finish up the candidate multiple seed alignments consid-
ering user-specified error constraints. A detailed
description of the algorithm and data structures is given
in the “Implementation” section. In the “Results and
Discussion” section, we present a comparison between
our method and a set of tools of widespread use for the
local alignment of pyrosequencing reads. We base our
discussion on results obtained with both real and simu-
lated data.

Implementation

Compressed indexes

The main data structure for sequence pattern matching
is an index. Indexes reduce the time for matching a pat-
tern because they restrict the search to the positions
where it may occur instead of scanning the whole text.
One of the most, if not the most, popular index struc-
tures is the suffix tree (ST), which is obtained by identi-
tying common prefixes of the different suffixes of the
represented text to nodes of a tree (see Figure 1(a) for
an example). In such a structure, a pattern can be
searched following edges with matching labels down
from the root. Each leaf of the suffix tree represents a
suffix of the text and, more generally, each node repre-
sents the subset of suffixes corresponding to the leaves
of the subtree rooted at that node. The downside of
indexes is that they need to be constructed a priori and
have a bad reputation of using too much space. Despite
providing for fast searching algorithms, suffix trees are
particularly known for this bad characteristic. A popular
alternative to suffix trees are suffix arrays (SA), that
require asymptotically the same space, O(n) computer
words for a text of size #, but with a smaller proportion-
ality factor. Suffix arrays are obtained by ordering the
suffixes of a text lexicographically. A correspondence
can be established between nodes of the suffix tree and
contiguous intervals of the suffix array. An example of a
suffix array is shown in Figure 1(b). Detailed descrip-
tions of string matching and indexes, including the ones
mentioned here, are widely available [15].

Recent research on indexes has focused on the fact
that pointer representations require O(n log n) bits
whereas the original text (the target genome, in our
case) requires only # log o bits, where o is the alphabet
size, e.g. 4 for DNA and 20 for proteins. In an effort to
reduce this gap, new indexes have been designed which
became collectively known as compressed indexes [16]
due to the fact that they rely heavily on data compres-
sion techniques. In spite of their reduced space, com-
pressed indexes can be made to allow for an even
broader range of operations than classical indexes, like
generalized branching, that combines blocks of letters
instead of just one letter at a time [17]. Our method
uses an implementation of the FMIndex [18] optimized
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Figure 1 Indexes for the text abbbab. (a) Suffix tree for the text abbbab, with the leaves numbered according to lexicographic order of the
suffixes they represent. (b) The corresponding suffix array indicating the starting position of the sorted suffixes. (c) The equivalent BWT obtained
by rotating and then sorting the text. Notice that the BWT is actually composed of only the last letter of the sorted rotations. Interestingly, this
representation permits reconstructing the original text, and is also much more amenable to compression because it typically contains sequences
of repeated characters. Notice, in addition, that every subtree of the suffix tree corresponds to an interval of the suffix array and, equivalently, of

the BWT. In this example, the dashed boxes indicate the subtree/intervals corresponding to the suffixes that start with the common prefix b.

for the DNA alphabet. The FMIndex is a compressed
index based on the Burrows-Wheeler transform (BWT)
[19] requiring only O(n log o) bits of memory space.
The BWT of a text ¢ is obtained by appending an extra
symbol $ to ¢, and then sorting all cyclic permutations
(rotations) of t$ according to the lexicographic order,
with $ being the lowest symbol. Thus a BWT of a text
is essentially equivalent to its suffix array. In fact, they
are related through the formula BWT[i] = ¢[SA[{] - 1],
fori=1,...,]|t|. An example of a BWT is given in
Figure 1(c).

The seed-based search approach

Due to the relatively large size of the GS FLX reads, it is
not practical to use a plain index-based exact matching
algorithm. Some sort of backtracking strategy could be
used to allow for errors but, since the number of possi-
ble comparisons increases exponentially with their num-
ber, this becomes rapidly inefficient. Instead, we propose
a seed-based search heuristic that explores the charac-
teristics of the pyrosequencing data and of the bona fide
alignments that are likely to arise in the context of re-
sequencing applications. Since the error rates are usually
low [20], and the prevalent type of pyrosequencing
errors are small indels, with mismatches being much
less common, we conjecture that the optimal alignments
are expected to be formed of large chunks of exact
matches interspersed by divergent gapped regions.

Moreover, since the read lengths are of a few hundred
bases, we can expect the exact match regions to be large
enough so we can use segments of them, called seeds, as
a backbone to pin down the position of the alignment
on the reference sequence, or at least reduce the
amount of candidate positions to a manageable number
of possibilities that can be tested individually. In this
case, the optimal alignments can be obtained by expand-
ing the candidate multiple seed matches into alignments
of the whole read by filling up the remaining regions
and selecting those with best overall scores.

Our strategy for choosing the seeds consists in
approximately partitioning the read into maximal exact
match blocks in a greedy fashion. More precisely, let r =
ry ... ,, be the read. The procedure starts at the first
position of the read and uses the index to find the lar-
gest prefix of the read with exact occurrences in the
reference sequence, say r[1 ... [] = r; ... . In practice we
obtain the equivalent of an interval of the BWT which
contains the positions of the reference sequence g at
which 7[1 ... [] occurs. Obviously, by maximality, r[1 ... /
+ 1] does not occur in g. This happens because none of
the occurrences of r[1 ... [] is followed by r;,; or, put
another way, because there is a mismatch between r;,;
and the letter following each occurrence of r[1 ... [] (or
because it occurs at the very end of g). If r;,; # 1, then
we set r[1 ... [] as the first seed and proceed as above to
find the next seed starting from position [/ + 2. If,
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however, we have r;,; = r;, this means that the differ-
ence occurred in the middle of a homopolymer (contig-
uous subsequence of identical bases), most likely due to
an insertion sequencing error. In this case, we set 7[1 ...
[] as the first seed as before, but advance the cursor to
the start of the next homopolymer, i.e. to the smallest /’
>l s.t. rp # rp - 1. We repeat this process until the end of
the read is reached.

Once we have the set of seeds and their individual
positions in the reference sequence, we need to identify
subsets of occurrences of distinct seeds that are in
accordance with their original order and spacing in the
read, which can then serve as a support for the final
alignments. More formally, let g be the reference
sequence, and r be a read. Let also sy, . . ., s; be k sub-
strings of r such that r = s1a15:45 ... dy.1S1a, where, for i
=1,...,k s; denote the seeds and a; denote the sub-
strings in between them. For eachi =1, ...,k let o; >
0 be the number of exact occurrences of s; in g. We
then have o = []¥ 0; ways to choose a set containing
one occurrence for each of the k substrings. Let p = (p1,

., pr) be one of such o tuples of distinct seed occur-
rences. If, for i = 1, ..., k-1, we have p; < p;,; and |a;|
€, piv1 - i + |si]) |ai| + €; for some given €; > 0, then
we say that these occurrences are coherent. Hence, a
coherent set of seed occurrences is composed of posi-
tions which respect the relative order of the correspond-
ing seeds in the read and such that, for any two
consecutive seeds, the distance between their occur-
rences lies within a restricted interval around the actual
distance between those seeds in the read. For the sake
of flexibility, we do not restrict ourselves to coherent
sets containing occurrences of all the seeds. We also
take partial sets containing occurrences of only some of
those seeds as good candidates for further expansion.

The set of seeds (sq, . . ., sx) and their occurrence
positions in g can be obtained with the index in linear
time. However, the number of combinations of occur-
rences of different seeds can be rather large, especially if
some of them are short. This makes it impractical to
test all possibilities for coherence. Nonetheless, most of
these combinations will typically be non-coherent, and if
we care to previously sort the set of occurrences of each
seed, we can efficiently search for coherent combina-
tions using, again, a greedy strategy, simply by scanning
the seed matches in g from left to right, partitioning
them into maximal non-overlapping sets of consecutive
coherent matches. Although this might seem a rough
approach at first glance, in fact this strategy has shown
to be adequate because of the relatively large size of the
seeds and small separation between them, which makes
it difficult for occurrences of two consecutive seeds to
be interspersed with an occurrence of a third one.
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Once the potential read occurrences indicated by
coherent multiple-seed matches are found, the algorithm
runs a banded Needleman-Wunsch dynamic program-
ming procedure with Gotoh’s modifications to align the
non-seed segments of the read to their counterparts in
the genome. That is, if we have a coherent set of occur-
rences of the seeds s;;, . . ., s;, , s.t. the read decom-
poses into r = bgsj1b18j5 by by18j, by, and the reference
sequence into g = ¢pS;1C18j2 Co ... Cq 15j4C4 then we align
each pair (b;, ¢;), for i =0, . .., g. Of course, for both
ends, (by, co) and (b,, c,), we perform semi-global align-
ments. The largest candidate coherent multiple seed
matches are extended this way and accepted as a read
occurrence if either the overall alignment identity stays
above a given threshold percentage ¢ or, alternatively, if
the sum of the errors in-between the seeds and at the
extremes of the read do not exceed a pre-established
number e. The algorithm can be chosen to report all the
accepted occurrences or only the one(s) with the least
errors. The strategy described above is illustrated in Fig-
ure 2.

Synthetic data generation

In order to evaluate the algorithms in a controlled set-
ting, we generated artificial data sets with a procedure
inspired by empirical studies on GS FLX data [20,21],
and designed to yield reads with characteristics similar
to real data. In our procedure, n random contiguous
subsequences are extracted from a given ‘source’
sequence g. The lengths of these initial subsequences
are drawn from a normal distribution with mean y; and
standard deviation o), also provided as input. Next,
these subsequences are modified to simulate sequencing
errors as follows. In the GS FLX high-throughput pyro-
sequencing procedure, the template molecules are
sequenced one maximal homopolymer at a time (for-
mally, a homopolymer can consist of a single base), as
opposed to one base at a time in the traditional Sanger
method. Hence, the most common type of error in pyr-
osequencing consist in the misinterpretation of the
intensity of the signal that determines the length of the
homopolymer being read, leading to an insertion or
deletion of identical consecutive bases in the read, rela-
tive to the actual template sequence. Miscalled base
errors (substitutions) also occur but they are compara-
tively much less frequent. Sequence quality is known to
be non-uniform along the read, being lower at the
extremes, particularly towards the 3’ end. Also, errors
tend to affect long homopolymers more than short
ones. However, for the sake of simplification, we con-
sider that errors are uniformly distributed along the
read and that the prevalence and size of indels are not
affected by the length of the homopolymers. More
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Figure 2 Sketch and example of the TAPyR procedure. (a) Sketch of the seed strategy employed by TAPyR. In this schema, three seeds are
chosen, and seven matches of these seeds are found on the reference genome, three for the first seed, two for the second, and two for the
third. These occurrences are ordered in the genome and scanned from left to right. Multiple seed matches are formed by extending current
partial matches with the next occurrence if the coherence criteria are met. Otherwise, the current multiple match is stored as a potential
candidate and a new one is started. In this example, we finish with five potential candidates for extension indicated by the dashed boxes. The
largest candidate(s), i.e. the multiple seed occurrence that span most bases, are chosen for extension. In this case, that should be (u%, u%) (b) A
more concrete example, in which we have a sequence of length 15, which was originally read from position 101 of the genome, with one
insertion at position 5 and one substitution at position 9. The algorithm starts searching from the beginning of the read in the index, but cannot
continue beyond the fourth a character. At this point, we have the first seed s; = aaaa, which occurs at position 101 in the genome. The next
character of the read is skipped, and the search continues from position 6, which is the beginning of the second seed. Seed s, = ccct happens
to have an accidental occurrence at the position 201, which is not related to the actual read position in the genome. Again, we skip the next
(mismatched) character of the read and restart at position 11. This time the search reaches the end of the read, and yields the last seed s3 =
gggtt, occurring at position 110. These three occurrences are now sorted according to their position in the genome, and it turns out that the
occurrences of s; and s3 form a coherent multiple seed occurrence of combined length 9. The other candidate would be composed of the
occurrence s, alone which is not chosen for expansion since it is smaller. The space between the two seeds is then filled using dynamic
programming, and the correct mapped position (101) is returned along with the final alignment.
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precisely, the procedure takes in three parameters pg,p,
Pins and pge; which correspond to the probabilities of
having a substitution, an insertion or a deletion in any
given homopolymer, regardless of its length and position
in the read. Moreover, these events are considered to be
mutually exclusive, that is, we assume that for any
homopolymer being sequenced, there can either be a
substitution error with probability pgp,, an insertion
with probability pi,s, a deletion with probability pge or it
can be correctly sequenced with probability 1 - (pgu, +
Pins + Pdel)- Whenever a mismatch takes place, the mis-
called base is randomly chosen according to substitution
probabilities indicated in a matrix m, given as input.
Each row/column of m corresponds to a nucleotide and
the element m(a, b] indicates the probability for a to be
miscalled as (replaced by) b. As for indels, the lengths of
the gaps are drawn from Zipfian distributions, which are
discrete power-law distributions with mass function
flky, o) = k_V/Zj‘ilj_V x k77, fork=1,...,w. In our
case, o is a positive integer parameter that corresponds
to a maximum allowed gap size, and y > 0 controls the
shape of the distribution: the greater its value the higher
the prevalence of small gaps. We use specific exponent
parameters, ¥, and V4o, for insertion and deletion
operations, respectively.

Results and Discussion

We evaluated TAPyR against other mainstream mapping
tools which are also able to deal with high-throughput

Table 1 Real data sets
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pyrosequencing reads, namely BWA-SW [11], SSAHA2
[13], Segemehl [10], GASSST [12], and Newbler [14].
Our analyses were performed with real and simulated
data sets, with the objective of assessing the efficiency
and accuracy of the aforementioned tools in the context
of re-sequencing projects.

Results on real data

The biological data sets we used, summarized in Table
1, encompass a reasonable variety of organism types,
including two bacteria (Streptococcus pneumoniae and
Escherichia coli), one protozoan (Plasmodium falci-
parum), one nematode (Caenorhabditis elegans), one
insect (Drosophila pseudoobscura), and one human
chromosome. They also cover re-sequencing applica-
tions with reads from individuals of the same species
(human), different and mutated strains of the same spe-
cies (bacteria and worm), and different (sub-)species
(ty).

In this experiment, we wanted to analyze the ability of
the algorithms to produce high coverage mappings,
which directly relates to the proportion of reads that
can be successfully mapped. High coverage is essential
to the successful completion of a re-sequencing project,
with about 20-25x coverage being required for optimal
results with the GS FLX technology [22]. Attaining such
high levels depends naturally on the amount of available
data, but equally on the capacity of the alignment tool
to map the reads correctly, especially in the presence of

Reference genome Source Reference SRA accession and species Total Average read
genome size reads length
S. pneumoniae =2.2 Mbp © SRR0O01327 S. pneumoniae CDC1873-00 646,724 253
ATCC 700669 [GenBank: FM211187] © SRR0O01328 S. pneumoniae SP195
© SRR001329 S. pneumoniae CDC0288-04
E. coli 0127:H6 E2348/69 [GenBank:  =4.96 Mbp O SRRO00868 E. coli K-12 588,397 263
FM180568.1] © SRRO00870 E. coli K-12
© SRR031369 E. coli ETEC WS3080A
© SRR031370 E. coli ETEC TW03576
P. falciparum 3D7 PlasmoDB rel 7.0 =23.3 Mbp © SRR006911 P. falciparum 3D7 203,196 223
© SRR006912 P. falciparum 3D7
© SRR006913 P. falciparum 3D7
o SRR006914 P. falciparum 3D7
© SRR006915 P. falciparum 3D7
C. elegans =103 Mbp © SRR022943 C. elegans Lynch MA41 mutation-accumulation 3,214,353 103
WormDB rel. line derived from N2.
WS210
D. pseudoobscura FlyBase rel. 2.14 =150 Mbp © SRR003807 D. pseudoobscura Flagstaff 1993 834,659 239
0 SRR014458 D. pseudoobscura bogotana ER (white)
© SRR014459 D. pseudoobscura bogotana ER (white)
© SRRO14460 D. miranda strain Mather 1993
H. sapiens Chr. 15 ENSEMBL ver. =100 Mbp © SRR014420 Human individual NA15510 3,204 212

GRCh37

© SRR014421 Human individual NA15510

© SRR0O14422 Human individual NA15510
© SRR014423 Human individual NA15510
© SRR014424 Human individual NA15510
© SRR0O14425 Human individual NA15510

Biological data sets used for the evaluation of the algorithms. The read data sets were downloaded from the Sequence Read Archive (SRA) public repository.
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Table 2 Experimental results with real data
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S. pneumoniae E. coli P. falciparum

time % reads bp/err time % reads bp/err time % reads bp/err
BWA-SW 19m 92.86 40 16m 654 22 8m 95.98 56
SSAHA2 6m 92.86 41 5m 654 23 68m 9845 57
Newbler 1Tm 9295 47 1Tm 65.55 24 12m 97.72 60
Segemehl 18Tm 90.77 61 110m 62.95 32 90m 98.14 62
GASSST om 89.96 63 4m 62.71 32 3m 62.80 72
TAPYR 85 2m 8837 70 13m 59.98 35 48s 95.30 66
TAPYR 50 3m 9333 40 20m 66.80 20 51s 9891 53

C. elegans D. pseudoobscura H. sapiens

time % reads bp/err time % reads bp/err time % reads bp/err
BWA-SW 5Tm 61.05 19 58m 95.80 19 6s 98.25 58
SSAHA2 513m 7040 18 92m 97.30 18 165 99.44 54
Newbler 45m 69.07 19 119m 96.86 23 m 98.72 78
Segemehl 249m 68.10 23 339m 90.98 28 52s 96.41 89
GASSST om 5850 27 22m 82.80 30 m 8361 93
TAPyR 85 3Tm 55.59 35 m 8591 30 1s 95.13 96
TAPYR 50 3Tm 73.30 15 7m 97.05 19 2s 99.63 60

Results of the experiments performed with real biological data. These tests were run on a Linux server with 16 Gb of RAM. TAPyR was tested under two
configurations, requiring alignments with at least 50% and 85% identity, designated by TAPyR 50 and TAPyR 85, respectively. The other tools were run with their
default options for 454 data, except for the following modifications. SSAHA2 and Segemehl were set to report only the best alignment for each read. For
GASSST, we set the minimum identity to 85% (option -p 85) to match Segemehl. Newbler was set not to generate large files (option -nobig) and to load the
index into the main memory (option -m). Reported times refer to the total number of CPU-seconds that the process used directly, as given by the Linux
command time -f “%U”. The average base-pairs-per-error rates ("bp/err" columns) are computed based on the best reported alignment of each read only.

inevitable sequencing errors and natural variation. The
other aspect we wanted to assess was the efficiency of
the algorithms in terms of computation time. Efficiency
is a critical aspect for any algorithm in modern high-
throughput data processing pipelines, given the rapid
increase in the volume of data being produced.

The results of our tests are shown in Table 2. In that
comparison, we included two lines corresponding to
TAPyR being set to report alignments with at least 50%
(TAPyR 50) and 85% (TAPyR 85) identity. These illustra-
tive values match the default options of other tools: 85%
for Segemehl, and 50% for SSAHA2. As can be seen, in
almost all direct comparison scenarios, TAPyR has
shown to be several times faster than the other tools. As
for the number of successfully aligned reads (the “%
reads” columns), we notice first that the other algorithms
display quite similar figures, with no tool consistently
aligning more reads that the others. With the minimum
identity threshold set to 85% (TAPyR 85), our method
aligns a smaller quantity of reads. However, if we investi-
gate the number of errors (gaps and mismatches) of the
reported alignments by computing the ratio between the
number of base-pair matches and the number errors (the
“bp/err” columns), we see that TAPyR is using a more
conservative heuristic which tends to produce alignments
of a higher identity level at the expense of dropping a
slightly larger number of reads. Indeed, if we lower mini-
mum identity requirement to 50% (TAPyR 50), then our

tool aligns more reads than all the others in all data sets
at comparable average error rates, and with a minimal
time overhead.

Results on synthetic data

We also performed tests using simulated data produced
according to the procedure described in the Methods
section. We generated three data sets of N = 300,000 syn-
thetic reads from the 250 Mbp sequence of the human
chromosome 1 [GenBank: NC_000001.10]. These data
sets are supposed to mimic the data obtained in a typical
run of the GS FLX instrument at different sequencing
error levels. Hence, the first data set, hereafter referred to
as HS1, was generated with the read generator para-
meters set as y; = 250, 0; = 50, Pins = Pdel = Psub = 0.01, @
= 10, ¥ins = Ydel = 3, and equiprobable substitution rates
Mla, b] = 1/3, for a = b. In this setting, we have a 1%
chance of each of the three kinds of error when reading a
homopolymer. For the second data set, HS2, we
increased the error levels of each kind to 5% by setting
Pins = Pdel = Psub = 0.05, and for the third data set, we
added a considerable amount of noise by setting p;,s =
Pdel = Psub = 0.10 (only 70% of chance for each homopo-
lymer to be sequenced correctly). The purpose of this
experiment was mainly to test accuracy of the procedures
by computing the fraction of reads mapped back to their
original positions, as well as to assess the robustness of
the heuristic to different error levels.
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Table 3 Experimental results with synthetic data
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Table 4 Memory requirements for real data

HS1 HS2 HS3 S. pneumoniae E. coli P. falciparum
time % time % time % index RAM index RAM index RAM

accuracy accuracy accuracy (Mb) (Mb) (Mb) (Mb) (Mb) (Mb)

BWA-SW  1358s 99.32 1269s 98.81 1212s 94.10 BWA-SW 3 27 7 29 34 59
SSAHA2  5044s 99.86 4328s 99.86 4121s 99.18 SSAHA2 517 788 521 773 552 717
Newbler — 1192s 99.99 60665 95.53 7260s 8325 Newbler n/a 600 n/a 900 n/a 500
Segemehl 3824s 99.99 6823s 99.95 62995 98.81 Segemehl 31 302 68 328 315 447
GASSST 855s 9947 79%4s 99.27 693s 97.35 GASSST n/a 2381 n/a 2479 n/a 2539
TAPYR 50  63s 99.99 113s 99.78 239s 98.20 TAPYR 50 4 7 8 18 39 64

Results of the experiments performed with synthetic data. The data sets were C. elegans D. pseudoobscura H. sapiens

generated as described in the text. The tests were run under the same index RAM index RAM index RAM
e st that were successul aigned (0 thel onginal postions 1 the (Mb) (Mb) (M) (Mb) (Mb) (Mb)
reference sequence. BWA-SW 144 149 210 208 118 103
SSAHA2 679 1559 755 1209 648 680

The results of the tests are shown in Table 3. We  Newbler n/a 5100 n/a 2300 n/a 500
notice that all algorithms give quite accurate results in ~ Segemehl 1388 2439 2025 2643 1134 1299
all the tested conditions. In any case, TAPyR behaved  GASSST n/a 5657 n/a 6967 n/a 4752
among the best in terms of accuracy, mapping virtually =~ TAPYR50 168 270 244 394 137 220

all reads correctly, showing thus resilience to noise up
the tested levels. Moreover, as in the previous experi-
ments, our method has confirmed to be fastest by a
comfortable margin.

Memory usage

We also measured the memory requirements of the
evaluated tools in the tests with real data discussed
above. The figures presented in Table 4 show the sizes
of the index files on disk, when they exist, and the peak
usage of main memory for the different data sets. As it
can be seen, BWA displayed the smallest requirements
in absolute terms, followed closely by TAPyR. The other
tools, especially those based on k-mer tables, demand
substantially more memory. As expected, TAPyR’s index
files scale linearly with the size of the indexed genomes
(by a multiplicative factor of = 1.6). Apart from the
index, which is loaded into main memory, TAPyR uses
only a small additional amount of space (mainly for the
dynamic programming part), so that the total amount of
required RAM also scales linearly with the indexed gen-
ome (by a factor of = 2.5). These modest and predict-
able requirements make TAPyR suitable for large
genomes with moderately-sized machines.

Conclusions

The combination of state of the art indexing techniques
and a seed-based search approach led to the develop-
ment of a new read mapping method for high-through-
put pyrosequencing data. By using an effective heuristic
which explores the characteristics of this particular kind
of data in the context of typical re-sequencing applica-
tions, our method manages to achieve convincing per-
formance in terms of speed and in terms of the number
and precision of aligned reads, as demonstrated by our

Memory requirements for the real biological data sets of Table 1. Shown are
the index file size (when applicable) and peak main memory usage as
measured by the tool tstime

http://bitbucket.org/gsauthof/tstime, except for Newbler, whose overall
memory demand was estimated through the Linux htop tool.

tests with real and simulated data. In fact, our proposed
solution has displayed class-leading CPU-time perfor-
mance and excellent use of input reads in comparison
to other mainstream tools. An added-value of our pro-
cedure comes from the fact that it requires almost no
external parameterization. As a matter of fact, the main
user options are end-of-the-chain cutoff parameters that
concern the quality of the reported alignments in terms
of minimal identity or maximal number of errors, hav-
ing no consequence on the accuracy of the heuristic and
only marginal impact on the overall execution time.
Memory requirements are also on par with the best in
this category of tools, being not only small in absolute
terms but, more importantly, linearly proportional to
the size of the input reference sequence by a small fac-
tor. Based on these results, we propose that TAPyR con-
stitutes an advantageous alternative for re-sequencing
projects based on pyrosequencing data.

Availability and requirements
Project name: TAPyR-Tool for the Alignment of Pyro-
sequencing Reads

Project home page: http://www.tapyr.net

Operating system(s): multiple (requires a C compiler
only)

Programming language: C

Other requirements: none (see Results section for an
idea of memory usage)

License: GNU GPL

Restrictions to use by non-academics: none additional
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