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Abstract

Background: Microarray technology has become a widely used tool in the biological sciences. Over the past
decade, the number of users has grown exponentially, and with the number of applications and secondary data
analyses rapidly increasing, we expect this rate to continue. Various initiatives such as the External RNA Control
Consortium (ERCC) and the MicroArray Quality Control (MAQC) project have explored ways to provide standards
for the technology. For microarrays to become generally accepted as a reliable technology, statistical methods for
assessing quality will be an indispensable component; however, there remains a lack of consensus in both defining
and measuring microarray quality.

Results: We begin by providing a precise definition of microarray quality and reviewing existing Affymetrix
GeneChip quality metrics in light of this definition. We show that the best-performing metrics require multiple
arrays to be assessed simultaneously. While such multi-array quality metrics are adequate for bench science, as
microarrays begin to be used in clinical settings, single-array quality metrics will be indispensable. To this end, we
define a single-array version of one of the best multi-array quality metrics and show that this metric performs as
well as the best multi-array metrics. We then use this new quality metric to assess the quality of microarry data
available via the Gene Expression Omnibus (GEO) using more than 22,000 Affymetrix HGU133a and HGU133plus2
arrays from 809 studies.

Conclusions: We find that approximately 10 percent of these publicly available arrays are of poor quality.
Moreover, the quality of microarray measurements varies greatly from hybridization to hybridization, study to study,
and lab to lab, with some experiments producing unusable data. Many of the concepts described here are
applicable to other high-throughput technologies.

Background
Microarray technology has become a widely used tool in
the biological sciences. Over the past decade, the num-
ber of users has grown exponentially, and with the num-
ber of applications and secondary data analyses rapidly
increasing, we expect this rate to continue. Various
initiatives such as the External RNA Control Consor-
tium (ERCC) [1] and the MicroArray Quality Control
(MAQC) projects [2,3] have explored ways to provide
standards for the technology. For microarrays to become
generally accepted as a reliable technology, statistical
methods for assessing quality will be an indispensable
component; however, there remains a lack of consensus
in both defining and measuring microarray quality.

Defining quality in the context of a microarray experi-
ment is not an easy task. The American Society for Qual-
ity (ASQ) defines quality as a subjective term for which
each person has his or her own definition. In technical
usage, quality can have two meanings: a product or ser-
vice free of deficiencies, or the characteristics of a pro-
duct or service that bear on its ability to satisfy stated or
implied needs [4]. Many other definitions of quality exist
but a common theme of most is the dependence of qual-
ity on the needs of the consumer. So what do users of
gene expression microarrays want? The most common
applications appear to be: finding differentially expressed
genes between two conditions, clustering genes or sam-
ples, and predicting sample types or outcomes.
In our attempt to measure quality we quantify the

effect of removing bad quality data on the biological
results reported in a publication, which we refer to as
bottom-line results. One should note that bottom-line
results depend on the application. Furthermore, various
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levels of the data can be considered for removal; we can
consider removing: one data point from a feature on
one array, all data points from a feature across all arrays,
all data from an array hybridization, all data arising from
an RNA sample, all data arising from an entire batch of
arrays, all data arising from an entire experiment/study,
or, in a cross-study meta-analysis [5,6], all data pro-
duced from a particular lab. Thus, defining quality in
the context of microarray experiments is indeed a diffi-
cult task. To provide a useful review, in this paper we
focus our attention on the removal of all data from a
poor quality array hybridization and the subsequent
improvement in bottom-line results. Because most
results from microarray studies combine data from var-
ious hybridizations, even one bad array can easily taint
final results.
Recently, two factors have greatly increased the

demand for reliable assessment of microarray quality:
microarrays are beginning to be used in clinical settings
to aid in diagnosis [7] and researchers are conducting
meta-analyses and developing bioinformatic tools to
mine the plethora of microarray data made publicly
available through GEO and ArrayExpress [8-12]. In the
former case, it is crucial to know whether the data being
used to guide patient care is of usable quality. In the lat-
ter case, poor quality arrays might taint the results of a
large meta-analysis or cause a bioinformatic tool to pro-
vide erroneous information.
In this paper, we focus on Affymetrix GeneChip

microarrays, but many of the methods and recommen-
dations presented can be extended to other microarray
platforms and other high-throughput technologies for
which there exists enough publicly available data. In
the Methods Section, we begin by revisiting a widely
used statistical model and discussing its implications
regarding array quality. We then propose a formal
definition of array quality and use this definition to
assess the performance of current quality metrics. We
find that single-array metrics typically perform poorly,
while multi-array metrics perform well. While multi-
array metrics are useful in traditional laboratory
experiments, many modern uses of microarrays - such
as clinical use, large meta-analyses, etc. - would benefit
from single-array quality metrics. To address this, we
propose a novel single-array quality metric based on
one of the best multi-array quality metrics. We
demonstrate that this single-array metric performs
nearly identically to the multi-array metric on which it
is based, except in a specific situation where the multi-
array metric fails. Finally, because publicly available
microarray data is often used to develop and test new
algorithms and bioinformatic tools, we use our newly
developed metric to assess the quality of publicly avail-
able Affymetrix microarray data.

Methods
To better understand what we are measuring and what
we actually observe, we use a relatively simple statistical
model. This model has been proposed by various
authors [13-15]:

Ii,j = Kj × θi,j × φi × εi,j +Oi,j.

Here Ii,j represents the observed intensity for feature i
for sample j. Kj is an sample/array effect which accounts
for the need for normalization, θi,j represents a quantity
proportional to the amount of RNA hybridized to the
array (the quantity of interest), ji quantifies the probe
effect, ε represents measurement error and Oi,j represent
the components of the intensity due to non-specific
binding and optical noise. For simplicity, we assume we
can correct for the background components, Oi,j, and
that Kj, θi,j, and ji are not zero. Under these assump-
tions we can simplify to a linear additive model; this
model is extensively used as part of the Robust Multi-
array Analysis (RMA) preprocessing algorithm [16]:

Yi,j = log(Kj) + log(θi,j) + log(φi) + log(εi,j). (1)

This parametrization reveals two important facts for
quality assessment. First, a feature intensity being larger
on one array when compared to another does not imply
the level of expression is also larger because K may dif-
fer. Using the notation above we write Yi1 >Yi,2 does not
imply θi,1 >θi,2. Veterans of microarray data analysis
know this very well and always perform normalization
before making direct comparisons. Second, two feature
intensities on the same array are not comparable
because of the probe effect ji. In other words, Y1,j >Y2,j

does not imply θ1,j >θ2,j. This fact, although not expli-
citly explained in most papers, is the principal reason
why most publications using microarray experiments
base findings on relative or differential expression. Using
the notation above and assuming we have normalized
and removed the K, we can write:

Yi,2 − Yi,1 = [log(θi,2) + log(φi) + log(εi,2)] − [log(θi,1) + log(φi) + log(εi,1)]

= log(θi,2/θi,1) + δi

where δi is measurement error. In this case the probe-
effect cancels out and the observed log ratio is a useful
estimate of the true log ratio of expression levels.

Quantifying Quality
We start by defining some notation. Let A = A1, ..., AN

represent the data from N arrays. Denote with f the data
manipulations that are performed on A to produce a set
of results represented by R, i.e. let f(A) = R. Let Q repre-
sent a quantification of the accuracy and precision of R.
We define a successful quality assessment procedure as
one that prompts us to ignore data from array j, that is
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Δj = Q(A-j) - Q(A) > 0. Here A-j represents the data set
with the data from array j excluded and Δj the improve-
ment from removing the jth array. A specific example of
the above notation is the following: A represents the
data from 8 arrays (4 experimental samples compared to
4 control samples), f represents the action of computing
the t-statistic for each gene and from this value comput-
ing an FDR q-value, R is the list of genes for which q <
0.05, and Q is the percentage of true and false positives
on our list. Notice that removing an array of bad quality
can result in improved accuracy and precision, but
removing a good quality array can worsen the results
because we lose power by considering less data. It is
important to keep in mind that overzealous quality
metrics can actually worsen results.
In general, Q is not computable. If we had a way to

know true and false positives we would not need to run
the experiment. However, for the purpose of assessing
quality metrics, we need experiments with enough a-
priori knowledge that we can define Q. It is very impor-
tant to note that Q must be defined prior to observing
R, e.g. it is not appropriate to define true positives based
on the q-values obtained from R.

Review of Existing Quality Assessments
Various summary statistics or quality metrics have been
suggested for Affymetrix GeneChip arrays. Affymetrix’s
software offers 8 quality metrics; Bolstad et al. proposed
two additional metrics [17]. A description of these
methods follows.
Affymetrix Quality Metrics
Affymetrix provides various quality metrics as part of
their MAS5.0 analysis software. Of these, the three
most commonly used metrics are: average background,
scale factor, and percent present. Other metrics pro-
vided by Affymetrix assess the quality of the RNA
hybridized to the array rather than array quality itself.
Average background is computed as the 2nd percentile
of the feature intensities in a given region of the array.
It is intended to measure optical background. Affyme-
trix considers average background values between 20
and 100 as typical for a good quality array. The scale
factor is the median feature intensity on an array. Affy-
metrix normalizes arrays by scaling them based on
these values. Within an experiment, arrays are expected
to have scale factors within 3-fold of each other; arrays
whose scale factors are outside this range are consid-
ered to have poor quality. The percent present is the
percentage of genes called present by Affymetrix’s
detection algorithm [18]. These percentages should be
similar between replicate samples, and arrays with
extremely low values should be considered poor quality.
We refer the reader to [18] for a more detailed descrip-
tion of these metrics.

Multi-array Quality Metrics
The first quality metric proposed by Bolstad et al. [17] is
the relative log expression (RLE). These values are cal-
culated by subtracting the median gene expression esti-
mate across arrays from each gene expression estimate,

θ̂i,j. Therefore, the RLE for gene i on array j is:

RLE(θ̂i,j) = θ̂i,j − medianj(θ̂i,j).

For a given array, a median RLE not near zero indi-
cates that the number of up-regulated genes does not
approximately equal the number of down-regulated
genes, and a large RLE IQR indicates that most genes
are differentially expressed. If these indications are not
biologically plausible, the array is likely of poor quality.
The second quality metric proposed by Bolstad et al.

[17] is the normalized unscaled standard error (NUSE).
For a given gene, j, the NUSE provides a measure of the
precision of its expression estimate on a given array, i,
relative to other arrays in the batch. Specifically, it is
defined as:

NUSE(θ̂i,j) =
SE(θ̂i,j)

mediani[SE(θ̂i,j)]

Problematic arrays result in higher SEs than the med-
ian SE; therefore, arrays are suspected to be of poor
quality if either the median NUSE is above one or they
have a large IQR.
RLE and NUSE values can be displayed in boxplots

and summarized with the median and interquartile
range (IQR). Both RLE and NUSE values for any given
array depend on the other arrays in the batch; therefore,
values from different batches are not directly compar-
able. Also it is important to note that NUSE values
depend on fitting Model 1, also known as the RMA
model, but RLE values do not.

Single-array Version of NUSE
A weakness of the approaches proposed by Affymetrix is
that the probe-effect, described above, is not taken into
consideration. A large proportion of the variation seen
across feature intensities can be predicted by the probe-
effect implying that the identification of outliers becomes
easier when considering this effect. The alternative quality
metrics proposed by Bolstad et al. do take the probe-effect
into account; however, to estimate and adjust for probe-
effects, the user is required to analyze multiple arrays
simultaneously. Such multi-array methods borrow infor-
mation across arrays which were hybridized under similar
conditions allowing the probe-effects to be estimated.
While they often provide far better performance, multi-
array methods cannot be used in situations where a single
array needs to be analyzed. An additional limitation of the
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methods proposed by Bolstad et al. is that they provide a
relative measure of microarray quality not an absolute
one. That is, RLE and NUSE values are only able to deter-
mine if an array’s quality is better or worse than the typical
array being analyzed in that experiment or batch. The
methods proposed by Affymetrix are single-array and do
not suffer from these limitations.
In order to obtain a single-array absolute measure of

microarray quality, we propose a modification of the
NUSE metric. We call this new metric a Global NUSE
or GNUSE because the quality of an individual microar-
ray is assessed relative to a balanced sample of all pub-
licly available microarray data on a given platform. As
such, it provides a global view of microarray quality.
Specifically, we compute the median SE vector from a
large biologically diverse data set and use this vector to
normalize SE values from new arrays. We define a glo-
bal normalized unscaled standard error (GNUSE) for a
given gene, j, on array, i, as:

GNUSE(θ̂i,j) =
SE(θ̂i,j)

mediani[SE(θ̂i,j)]

where i = 1, ..., I denotes all the arrays in the larger
data set. In this paper I = 1, 000, as we used the same
1,000 samples used to create the reference distribution
for the current implementation of the frozen Robust
Multi-array Analysis (fRMA) preprocessing algorithm
[19]. By preprocessing arrays with fRMA, the values for

SE(θ̂i,j) are directly comparable across arrays and
batches. However, it should be noted that the median
SE vector is platform-specific.
Similar to NUSE values, GNUSE values can be dis-

played using boxplots and summarized using the median
and IQR with a median GNUSE greater than one or a
large IQR indicative of poor quality.

Results and Discussion
Assessment of Quality Metrics
We first evaluate the quality metrics proposed by Affy-
metrix and Bolstad et al. based on their ability to pro-
vide good bottom-line results for each of the 3 primary
applications of gene expression microarrays - differential
expression, clustering, and sample type prediction. We
show that the metrics proposed by Bolstad et al. are
often able to detect poor quality arrays while the Affy-
metrix metrics typically fail to do so. Because in the first
three assessments the NUSE and GNUSE values are
nearly identical, we omit the GNUSE. In the fourth
example, we provide a situation where the GNUSE pro-
vides more informative results.
Differential Expression
As our first example we use the data from Affymetrix’s
HGU95 spike-in study. In this experiment 16 transcripts

were spiked in to background RNA in such a way that 59
arrays were replicated except for these 16 transcripts. We
selected a subset of 8 arrays for which 2 sets of 4 arrays
had identical spike-in concentrations - this is our array
data A. We then performed a t-test comparing one group
of 4 arrays to the other and obtained false discovery rates
(FDRs) - this is the data manipulation f. For various FDR
cut-offs we formed lists of candidate genes - our result R.
A perfect list will only contain the 16 spiked-in tran-
scripts, so we are able to calculate a quantification of
accuracy and precision, Q. We repeated the analysis, this
time removing each array one at a time. Based on each of
these procedures, we plotted an ROC curve (Figure 1).
For one particular array (in red), its removal noticeably
improved results - a large Δj. The q-values for the true
positives further demonstrate the positive effect of
removing this array (Table 1). Finally, a residual image
shows the array in question has a very strong spatial
effect (Additional file 1, Figure S1). Now the question is:
which quality metric detects this array as problematic?
The Affymetrix quality metrics suggest that the array has
similar quality to others (Additional file 1, Figure S2);
this is to be expected because Affymetrix presumably
used their quality metrics to screen these arrays. How-
ever, the NUSE and RLE metrics correctly detect the
array in questions as having poor quality.
Clustering
For the second example we constructed a data set com-
posed of two replicate arrays for 79 different tissues (A).
We then pretended that we did not know the tissues
and clustered all the samples using hierarchical cluster-
ing with Euclidean distance (Additional file 1, Figure S3)

Figure 1 Area under the ROC curve is increased by removing a
poor quality array. ROC curves for detection of the 16 spiked-in
transcripts using all 8 arrays (black line) and with each array
removed (gray lines). The red ROC curve corresponds to removing
array 4. Removing array 4 results in the largest increase in the area
under the ROC curve suggesting that array 4 may be of poor
quality.
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- this is f. Because we in fact know the tissues we can
define Q as the average distance between replicates. The
typical distance between replicates is 30 (Figure 2), but
one pair of replicate tissues (Cardiac Myocytes) stands

out as clearly problematic (distance >90). This suggests
that one (or both) of the Cardiac Myocytes arrays has
poor quality. The only metric that detects one of these
arrays as problematic is the NUSE metric (Additional
file 1, Figure S4). In these data we also noticed an addi-
tional sub-cluster (Additional file 1, Figure S3); these
arrays are identified by the RLE metric as clearly proble-
matic (Additional file 1, Figure S4). The NUSE and per-
cent present metrics are also able to detect these arrays
as being somewhat problematic. The poor quality Car-
diac Myocytes array, detected by NUSE, has a strong
spatial effect (Additional file 1, Figure S5). Residual
images also show that the sub-cluster of arrays have dif-
ferent expression patterns in specific regions of the
array (data not shown). This must be an artifact; a likely
explanation is that Affymetrix organizes the probes in
rows by sequence properties and sample preparation
somehow favored certain probe sequences in the sub-
cluster of arrays.
Prediction
The final test of a quality metric is whether removing
poor quality arrays results in improved inference. To
assess this, we considered predicting a clinical para-
meter, pathologic complete response (0 if residual dis-
ease; 1 otherwise), based on microarray data provided
by MD Anderson to the MAQC-II project [3,20].
These data were divided into training and validation

sets as part of the original study design. The only modi-
fication we made to these designations was to include
14 arrays that were flagged as poor quality by the origi-
nal study participants. This resulted in 96 training sam-
ples and 51 test samples (A).

Table 1 Q-values for True Positives

Original 1 2 3 4 5 6 7 8

546_at <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01

36311_at <0.01 0.02 0.02 0.03 <0.01 <0.01 0.02 0.04 0.01

36889_at <0.01 <0.01 0.03 0.03 <0.01 0.02 0.06 0.04 0.02

1091_at <0.01 0.02 0.02 0.03 <0.01 0.01 0.02 0.02 0.01

39058_at <0.01 0.02 0.02 0.03 <0.01 0.01 0.02 0.04 0.02

1024_at <0.01 0.05 0.05 0.04 <0.01 0.02 0.1 0.1 0.02

37777_at 0.02 0.07 0.17 0.09 <0.01 0.1 0.31 0.42 0.04

684_at 0.02 0.08 0.13 0.09 <0.01 0.1 0.11 0.13 0.06

33818_at 0.08 0.11 0.24 0.49 <0.01 0.85 0.84 0.85 0.75

407_at 0.39 0.58 0.64 0.67 0.14 0.85 0.84 0.64 0.76

36202)_at 0.52 0.58 0.64 0.67 <0.01 0.85 0.84 0.85 0.76

1597_at 0.75 0.58 0.64 0.67 0.73 0.85 0.84 0.85 0.76

38734_at 0.75 0.58 0.64 0.67 0.46 0.85 0.84 0.85 0.76

36085_at 0.75 0.58 0.64 0.67 0.46 0.85 0.84 0.85 0.76

40322_at 0.75 0.58 0.64 0.67 0.46 0.85 0.84 0.85 0.76

1708_at 0.75 0.58 0.64 0.67 0.61 0.85 0.84 0.85 0.76

The q-values for each of the 16 spiked in probesets using all 8 arrays (Column 1) and with each of the 8 arrays removed (Columns 2-9). A q-value < 0.01 denotes
a probeset correctly identified as differentially expressed. Removing the poor quality array (4) decreases the q-values, while removing the other good quality
arrays increases the q-values.

Figure 2 Distances between replicate tissues. Histogram of the
Euclidean distance between the gene expression values for paired
tissue samples. We expect these distances to be fairly small because
we assume that, for the most part, the same genes are expressed in
samples from the same tissue. In fact, this does appear to be the
case - the typical distance between replicate samples is 30.
However, one pair of replicate tissues (Cardiac Myocytes) has a
distance larger than 90, suggesting one of the samples may be of
poor quality.
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To investigate the effect of microarray quality on pre-
diction, we fit a model to the training data using all 96
samples and made predictions on the test samples (f).
We then removed the lowest quality array, refit the
model, and made a new set of predictions. We repeated
this procedure 50 times, each time removing one addi-
tional array and assessing the prediction by Matthews
Correlation Coefficient (Q). For our prediction algo-
rithm, we chose one of the most widely used algorithms
- Prediction Analysis for Microarrays (PAM) [21]. This
procedure was done for each of the quality metrics
described above.
In general, we observed an improvement in prediction

when removing the arrays with the poorest quality
(Figure 3). However, some metrics did substantially bet-
ter than others at detecting arrays that negatively affect
prediction. In particular, the RLE and Percent Present
appeared to perform best, followed by NUSE.
GNUSE vs. NUSE
Because most published experiments are composed of
primarily good quality arrays, the GNUSE and NUSE
values are often fairly similar. For example, we repeated
the prediction analysis above using the GNUSE. Recall
that out of the 96 training samples we expect most to
be of good quality. The prediction improvement seen
using GNUSE is nearly identical to that seen using
NUSE (see Figure 3).

However, the GNUSE offers two advantages over the
NUSE. First, GNUSE values can be obtained from a sin-
gle array. Second, since the NUSE measures quality rela-
tive to other arrays in a batch, if most arrays in a batch
are of poor quality, the denominator will be inflated and
all arrays may appear to be of acceptable quality. The
GNUSE is not susceptible to such errors because its
denominator is computed based on a large fixed sample
of arrays. This difference can be seen in boxplots of the
NUSE and GNUSE values for a published data set com-
prised of a sizable number of poor quality arrays (Addi-
tional file 1, Figure S6). Notice that many of the arrays
look acceptable based on the NUSE, whereas most
appear to be of poor quality based on the GNUSE.

Assessment of Publicly Available Data
Having developed a single-array quality metric (GNUSE)
that performs at least as well as the best multi-array
quality metrics, we turn our attention to assessing the
quality of publicly available microarray data.
GEO Quality
To assess the overall quality of publicly available micro-
array data, we computed GNUSE values for all Affyme-
trix HGU133a and HGU133plus2 MIAME-compliant
arrays available from the Gene Expression Omnibus
(GEO) [22] in December, 2009. In total, we assessed
11,299 Affymetrix HGU133a microarrays from 338
experiments and 11,029 Affymetrix HGU133plus2
microarrays from 471 experiments for a total of 22,328
arrays from 809 studies. While most GNUSE values are
close to one (indicating acceptable quality), the long
right tails demonstrate that their are some probesets on
some arrays that are of very poor quality (Figure 4). In
fact, many of these poor quality probesets come from
the same arrays (Figure 5).
Based on the MAQC data described above, we

observed that removing arrays whose GNUSE median
exceeded 1.25 improved prediction. One can interpret
this threshold as filtering arrays whose precision is on
average 25% worse than the typical array. Based on this
threshold, roughly 12.1% of HGU133a arrays and 7.6%
of HGU133plus2 arrays are of poor quality. The distri-
bution of GNUSE medians along with this threshold
further supports the GNUSE median threshold as pro-
viding reasonable separation between the majority of
arrays with acceptable quality and those with poor qual-
ity (Figure 5).
Sources of Poor Quality
We now turn our attention to the potential causes of
poor microarray quality. First, we examined 4,456
microarrays from 120 studies consisting of arrays pub-
licly available through ArrayExpress [23] or GEO for
which the lab in which the array was hybridized could
be ascertained. We focused on two potential sources of
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Figure 3 Removing poor quality arrays improves prediction.
Plot of Matthews Correlation Coefficient for a clinical parameter,
pathologic complete response, versus the number of lowest quality
arrays removed for each quality metric. The prediction algorithm
used was PAM. Prediction improved when removing the arrays with
the poorest quality; however, some metrics did substantially better
than others at detecting arrays that negatively affect prediction. RLE
and Percent Present appeared to perform best, followed by NUSE
and GNUSE. Average background showed no improvement when
removing less than 30 arrays.

McCall et al. BMC Bioinformatics 2011, 12:137
http://www.biomedcentral.com/1471-2105/12/137

Page 6 of 10



poor microarray quality - the type of sample analyzed or
the laboratory in which the sample was analyzed. To
investigate these sources, we fit the following random
effects ANOVA model:

log2[median(GNUSE)i,,j,k] = μ + Sj + Lk + εi,j,k

with,

Sj ∼ N(0, σ 2
S )
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Figure 4 Distribution of GNUSE values. Histograms of GNUSE values from (A) 11299 HGU133a arrays from 338 studies and (B) 11029
HGU133plus2 arrays from 471 studies. Most GNUSE values are of acceptable quality (close to one), but the long right tail suggests some very
poor quality probesets.
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Figure 5 Distribution of median GNUSE values. Histograms of median GNUSE values from (A) 11299 HGU133a arrays or (B) 11029
HGU133plus2 arrays. The red vertical line represents the threshold of 1.25 - arrays with a median GNUSE greater than this threshold are
considered poor quality. In both cases, this threshold appears to separate the majority of good quality arrays from the long right tail of poor
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Lk ∼ N(0, σ 2
L )

where μ is the overall average GNUSE median across
all i samples, j sample types, and k labs. Sj is the random
effect for sample type j, Lk is the random effect for lab k,
and εi,j,k represents measurement error. We can assess
the variability in GNUSE medians by comparing the
estimated variance of sample type effects, σ̂ 2

S , and the
estimated variance of lab effects, σ̂ 2

L . The estimated var-
iance between labs is more than 4 times greater than
the estimated variance between sample types (0.0162 vs
0.0035), suggesting that the lab in which an array was
hybridized accounts for more of the variability in micro-
array data quality than the tissue that was hybridized to
the array. Figure 6 shows the individual lab and tissue
effects as well as their estimated variances.
Furthermore, we fit a one-way ANOVA model of the

GNUSE medians (log-transformed) on lab separately for
two tissue types analyzed by many labs - bone marrow
and brain. Table 2 shows that most lab effects within
each tissue are statistically significant (p-value < 0.05)
and practically significant, with estimated lab effects of
up to 23%.
Poor Quality Studies
Finally, we report the overall quality of the 809 MIAME-
compliant microarray studies available via GEO in
December 2009. For each study, we report the number

of arrays, the average GNUSE median, and the propor-
tion of poor quality arrays (GNUSE median > 1.25) in
Additional file 2. The first result of interest is that array
quality does not appear to be correlated with study size
(correlation coefficient = 0.055).
There are 87 studies that are composed of at least half

poor quality arrays. Some of these extremely poor qual-
ity studies can be explained by further examination of
the experimental design - for example, GSE2703,
GSE6814, and GSE907 hybridized Macaca mulatta RNA
to HGU133a arrays designed to measure human gene
expression. However, this only explains a handful of
these poor quality studies.

Conclusions
We have described microarray quality in general and
provided the mathematical formalism that permits us to
quantify the quality of a microarray hybridization. Using
this formalism, we have demonstrated how to assess
quality based on the 3 most common microarray appli-
cations and used these applications to describe the
strengths and weaknesses of the most common quality
metrics used to assess Affymetrix GeneChip microar-
rays. Specifically, we found that the methods proposed
by Bolstad et al. are often able to detect poor quality
arrays while the methods proposed by Affymetrix are
not. However, the methods of Bolstad et al. are inher-
ently multi-array, so we propose a single-array modifica-
tion of the NUSE metric, called the GNUSE. We show
that the GNUSE metric differs substantially from the
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Figure 6 Lab accounts for more variability in quality than
tissue type. Resulting from fitting Model 2. The individual random
effects for lab and tissue are plotted and the estimated variance for
each effect is reported. These estimates suggest that the lab in
which an array was hybridized accounts for more of the variability
in microarray data quality than the tissue that was hybridized to the
array.

Table 2 ANOVA model effects across labs

Bone Marrow Quality difference Sample size

Lab 1 -0.046* 35

Lab 2 0.168* 112

Lab 3 0.175* 20

Lab 4 0.064* 27

Lab 5 -0.111* 14

Lab 6 -0.053* 12

Lab 7 0.044* 43

Lab 8 -0.145* 19

F-statistic p-value <.001

Brain Quality difference Sample size

Lab 1 -0.054* 201

Lab 2 0.016 24

Lab 3 0.029* 31

Lab 4 0.229* 42

Lab 5 -0.053* 199

Lab 6 -0.042* 82

F-statistic p-value <.001

ANOVA model effects for GNUSE median across labs, for two tissue types -
bone marrow and brain. There is a statistically significant difference in quality
between labs in both tissue types (F-test p-values < 0.001). A * denotes a
statistically significant lab effect.
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NUSE metric only when the experiment is composed
primarily of poor quality arrays.
We then use the GNUSE quality metric to assess the

quality of publicly available microarray data. We found
that roughly 10% of publicly available Affymetrix
HGU133a and HGU133plus2 arrays are of poor quality.
We also found that these poor quality arrays are not
evenly distributed among labs or studies - that is, some
labs are more likely to provide poor quality arrays than
others, and some studies are compromised of mostly
poor quality arrays.
While the most likely cause of high GNUSE values is

poor array quality, it is conceivable that a study using a
non-standard hybridization protocol or investigating a
particularly unusual tissue type might appear to have
poor quality. An example of the latter situation is the
hybridization of non-human RNA to human microar-
rays. A potential example of the former situation may
be the data used to create the BioGPS webtools [11].
The 158 arrays used in the creation of these webtools
(GSE1133) showed consistently high GNUSE values -
63.9% of the arrays had a median GNUSE above 1.25
and 96.8% of the arrays had a median GNUSE greater
than 1. It is difficult to determine whether these arrays
are of nearly uniformly poor quality or simply differ
from typical arrays in some manner. Nevertheless, com-
bining these arrays with arrays from any other experi-
ment would certainly not be advisable.
The greatest strength of the GNUSE metric, the ability

to assess the quality of a single array relative to overall
microarray quality, is also its primary limitation - it
requires a sizable number of arrays from different labs
and different tissues to assess overall microarray quality.
However, with the rapid increase in microarray experi-
ments, this limitation is quickly diminishing, and the
advantages of the GNUSE metric are growing. While
there have been previous attempts at providing array
quality metrics coupled with publicly available data sets
[24,25] and at assessing the effect of quality on differen-
tial expression [26], these attempts used metrics that
could only assess the quality of an array relative to
other arrays in the batch or the quality of a batch of
arrays relative to other batches of arrays. The incorpora-
tion of the GNUSE metric in such efforts would allow
one to truly assess the quality of publicly available data.
The results presented here are based on the two most

widely used Affymetrix microarray platforms. As more
data becomes available on newer platforms, we look for-
ward to implementing fRMA and the GNUSE on those
platforms. We currently have a preliminary implementa-
tion of fRMA on the Human Exon ST 1.0 array. Based
on 874 publicly available arrays, roughly 4.5% of arrays
have a median GNUSE greater than the quality thresh-
old of 1.25 (Additional file 1, Figure S7). This may

indicate that newer arrays are of better quality or that
the quality threshold needs to be reassessed when mea-
suring exon-level rather than gene-level expression.
While the results presented here focus primarily on

Affymetrix GeneChip microarrays, many of the ideas
can be generalized to other platforms and manufac-
turers. Specifically, we recommend defining quality in a
quantitative manner that focuses on the bottom-line
results from common genomic applications.
Furthermore, assessing the quality of one sample in

the context of the wealth of public data is a powerful
technique for developing quality metrics in high-
throughput studies. We believe that the ideas and form-
alism described here can form the basis for future qual-
ity assessments of other microarray platforms and even
other genomic technologies.
The GNUSE algorithm is available as part of the frma

R package on Bioconductor [27].

Additional material

Additional file 1: Supplementary Figures. Figures S1-S7.

Additional file 2: GNUSE by Study. Table containing the overall quality
of the 809 MIAME-compliant microarray studies available via GEO in
December 2009. For each study, we report the number of arrays, the
average GNUSE median, and the proportion of poor quality arrays
(GNUSE median > 1.25).
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