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Properties of metabolic graphs: biological
organization or representation artifacts?
Wanding Zhou1* and Luay Nakhleh2*

Abstract

Background: Standard graphs, where each edge links two nodes, have been extensively used to represent the
connectivity of metabolic networks. It is based on this representation that properties of metabolic networks, such
as hierarchical and small-world structures, have been elucidated and null models have been proposed to derive
biological organization hypotheses. However, these graphs provide a simplistic model of a metabolic network’s
connectivity map, since metabolic reactions often involve more than two reactants. In other words, this map is
better represented as a hypergraph. Consequently, a question that naturally arises in this context is whether these
properties truly reflect biological organization or are merely an artifact of the representation.

Results: In this paper, we address this question by reanalyzing topological properties of the metabolic network of
Escherichia coli under a hypergraph representation, as well as standard graph abstractions. We find that when
clustering is properly defined for hypergraphs and subsequently used to analyze metabolic networks, the scaling of
clustering, and thus the hierarchical structure hypothesis in metabolic networks, become unsupported. Moreover,
we find that incorporating the distribution of reaction sizes into the null model further weakens the support for
the scaling patterns.

Conclusions: These results combined suggest that the reported scaling of the clustering coefficients in the
metabolic graphs and its specific power coefficient may be an artifact of the graph representation, and may not be
supported when biochemical reactions are atomically treated as hyperedges. This study highlights the implications
of the way a biological system is represented and the null model employed on the elucidated properties, along
with their support, of the system.

Background
Graphs have been used extensively to model the connec-
tivity of cellular processes [1], including metabolic net-
works [2]. Once represented as a graph, a wide array of
tools can be applied to visualize and analyze the graph to
elucidate properties of the corresponding cellular net-
work [2,3]. Analyses of metabolic networks based on the
graph representation have revealed a wide range of signif-
icant properties of the network connectivity, including a
short mean path length [4], a scale-free degree distribu-
tion [5] and a bow-tie structure [6]. The statistical signifi-
cance of such findings, and whether these graph features
have been subject to adaptive evolution, are often
assessed by comparing biological networks to networks

generated under null models. In this context, null models
produce random (standard) graphs that are constrained
to satisfy one or more requirements, such as an expected
degree distribution. However, in metabolic networks, a
reaction often involves more than two reactants, render-
ing standard graphs too simplistic and consequently
requiring a certain abstraction. For example, one com-
monly used techniques for enabling a graph representa-
tion of a metabolic network’s connectivity map is to
model each reaction by a complete subgraph, where each
pair of reactants on both sides of the reaction are linked
by an edge. Analyses based on different representations
of the metabolic network of E. coli have revealed conflict-
ing patterns related to its small-worldness [5,7,8]. It is
therefore natural to ask whether these properties, that
are elucidated based on a standard graph representation
and a null model, truly reflect biological organization or
are merely an artifact of the representation.

* Correspondence: wz4@rice.edu; nakhleh@rice.edu
1Department of Bioengineering, Rice University, Houston, Texas, USA
2Department of Computer Science, Rice University, Houston, Texas, USA
Full list of author information is available at the end of the article

Zhou and Nakhleh BMC Bioinformatics 2011, 12:132
http://www.biomedcentral.com/1471-2105/12/132

© 2011 Zhou and Nakhleh; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:wz4@rice.edu
mailto:nakhleh@rice.edu
http://creativecommons.org/licenses/by/2.0


To investigate this question, we analyze metabolic net-
work connectivity maps from a hypergraph perspective.
Given that metabolic reactions may involve more than
two reactants, hypergraphs–where an edge connects any
finite number of nodes–provide a more realistic model of
the connectivity of a metabolic network. Indeed, Klamt
et al. [9] recently argued that any metabolic (standard)
graph representation fails to describe the dependence of
a metabolite on others that participate in the same reac-
tion. They illustrated that even a bipartite graph, with
metabolites and reactions being the two node types, fails
to remedy the problem [9] as links in bipartite graphs
still remain independent. Further, Lacroix et al. [2] sug-
gested that each reaction has to be taken as a whole (yet
did not specify how to analyze such data). To properly
represent reactions that involve more than two entities,
hypergraphs (see [10,11] for introductory texts on hyper-
graphs) are the natural representation of metabolic net-
works’ connectivity maps (e.g., see [9]). A generalization
of standard graphs, a hypergraph allows any subset of
two or more nodes to form an edge, called a hyperedge.
Further, to distinguish between the metabolites on differ-
ent sides of a metabolic reaction, and to allow for the
designation of the reaction direction, the set of nodes
connected by a hyperedge can be bipartitioned into the
head set and the tail set. Standard graph representation
of a metabolic network connectivity is in fact a transfor-
mation of the underlying hypergraph. The substance
model (every pair of substances/metabolites participating
in the same reaction are connected by an edge), sub-
strate-substrate model (every pair of metabolites on the
same side of a reaction are connected by an edge), and
substrate-product model (every pair of metabolites on
opposite sides of a reaction are connected by an edge),
discussed in [12], correspond to the primal, cis-primal,
and trans-primal, respectively, of the underlying hyper-
graph. These transformations on hypergraphs are for-
mally defined in the Methods section below, and are
illustrated in Figure 1.
Some work on metabolic connectivity hypergraphs

already exists. For example, Forst et al. [13] used alge-
braic operations to compare metabolic hypergraphs
across multiple species for phylogenetic reconstruction.
A directed hypergraph-based tool, Rahnuma, has been
developed recently for metabolic pathway analysis [14].
An algorithm for computing the minimal cutting set on
hypergraphs was proposed [15].
Further, it is worth pointing out that the hypergraph

property of the dependence among metabolites partici-
pating in the same reaction has already been widely,
though implicitly, captured in other modeling techniques,
such as network expansion [16], reachability analysis [17],
constraint-based modeling [18] and Petri-net modeling
[19]. For example, the stoichiometric matrix used in the

constraint-based modeling is essentially a weighted inci-
dence matrix of the underlying hypergraph (where each
column corresponds to a hyperedge). This again reflect s
the rather natural view that metabolic network connec-
tivity maps are inherently hypergraph-like. Nonetheless,
with the exception of these very few studies, most ana-
lyses of metabolic networks’ connectivity maps in the lit-
erature are based on (standard) graph representations.
This lack of adoption of hypergraphs may owe to a host
of factors. One of them is the inherent difficulty in visua-
lization [20]. Obtaining an informative hypergraph layout
is much more involved than obtaining a standard graph
layout (see [21] for a typical algorithm for drawing hyper-
graphs under the subset standard). Besides, many pro-
blems that can be solved efficiently on standard graphs
become NP-hard on hypergraphs (e.g., the problem of
finding the shortest-path in a hypergraph with hyper-
edges weighted by their cardinalities [22]). Finally, the
lack of well-defined hypergraph counterparts to the com-
mon standard graph characteristics, such as clustering
coefficients, may have made their use less appealing.
In this paper, we address the aforementioned question

by conducting three tasks on the metabolic network con-
nectivity map of Escherichia coli. First, we analyze the
scaling of degree distributions [4,7] and average local
clustering coefficients [23] on various standard graph
abstractions. While a host of topological properties can
be analyzed, we focus on these properties since they are
central to the two aforementioned hypotheses about
metabolic networks. Then, we show how these analyses
are affected when the null model incorporates the reac-
tion size (hyperedge cardinality)–a quantity that, to the
best of our knowledge, is ignored in existing studies.
Finally, we devise measures of local and global clustering
coefficients that apply directly to hypergraphs and differ
from those of Estrada and Rodríguez-Velázquez [24] in
their satisfaction of desired properties. Based on these

Figure 1 Illustration of the hypergraph transformations and
abstractions. Left: a hyperedge is turned into a complete graph
linking every pair of nodes to obtain the primal graph (I). Middle:
the cis- (II) and trans-primal (III) graphs are obtained by connecting
either nodes in the same side of the hyperedge partition or on
different sides, respectively. Right: The physical line graph
transformation (IV) can be obtained by taking the primal of the dual
of the hypergraph; that is, it is the composition of two
transformations.
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three tasks we find that a null model that incorporates
the hyperedge cardinalities changes the analysis results
significantly compared to the previously used null
models.
Further, when clustering is analyzed directly on the

hypergraph representation, the scaling property, which
has been reported in the literature, becomes poorly sup-
ported. These results combined suggest that the
reported scaling of the clustering coefficients in the
metabolic graphs and its specific power coefficient may
be an artifact of the graph structure produced by the
abstraction process and may not be supported when
biochemical reactions are atomically treated as hyper-
edges. This study highlights the implications of the sys-
tems representation and null model employed in an
analysis on the hypotheses derived for that system.
Further, these results have implications beyond meta-
bolic networks since, for example, signal transduction
networks contain many enzymatic and complexing reac-
tions that form hyperedges. The weakening of statistical
support of reported properties of biological networks
when the new null model is considered calls into ques-
tion claims that adaptive evolution is the (only) explana-
tion for the emergence of complex, or non-intuitive,
network features. More generally, this study further
emphasizes the issue that the use of proper representa-
tions and null models is fundamental to understanding
the biology underlying the abstract model.

Results and Discussion
A Binomial Distribution of Reaction Sizes and Its Effects
When transforming a hypergraph into a standard graph,
under any of the aforementioned transformations, the
information on the hyperedge cardinality is lost. The
question, then, is whether ignoring the hyperedge car-
dinality distribution affects the properties elucidated
from abstracted standard graphs. Further, if the answer
is positive, how should this information be integrated
into null models of generating random metabolic graphs
in analytical studies.
To address the first question, we begin by inspecting

the degree distributions of primal graphs generated ran-
domly in a way to account for hyperedge constraints. It
is analytically very hard to establish the degree distribu-
tion of the primal of randomly generated hypergraphs,
since the overlap between hyperedges creates dependen-
cies among the degrees of the nodes. Therefore, we
study this issue in simulations. Given a metabolic hyper-
graph H = (V, ℰ), where |ℰ| = m and the maximum car-
dinality of any hyperedge E Î ℰ is k, the primal of H has
ℓ edges, where ℓ ≤ m · k(k - 1)/2. One method for gen-
erating random (standard) graphs in this context, while
accounting for a fixed hyperedge cardinality k is to use
m as the constraint; i.e., generate a hypergraph with m

hyperedges, each of cardinality k, and compute its pri-
mal. In other words, a hyperedge of cardinality k is gen-
erated by randomly sampling (without repeats) a subset
of k nodes and connecting them by a hyperedge, and
the process is repeated m times (another method is to
generate “enough” hyperedges, each of cardinality k, in
the hypergraph to yield (approximately) ℓ edges in its
primal; see additional file 1).
In the case of the E. coli metabolic network, the

hypergraph has n = 1193 nodes and m = 1168 hyper-
edges, and its primal has ℓ = 5718 edges. For each com-
bination of n, m, ℓ and hyperedge cardinality k Î {2, 3,
4, 5}, we generated 300 random (standard) graphs based
on the above method, and plotted the median degree
distributions of these graphs, along with that of the pri-
mal of the metabolic hypergraph of E. coli. The results
are shown in Figure 2, where the four panels, from left
to right, correspond to fixed hyperedge cardinalities of k
= 2, 3, 4, 5, respectively (see additional file 1 for results
based on the other random graph generation method, as
well as the relationship between the two).
Notice that hypergraphs with different hyperedge car-

dinalities give rise to standard graphs with different
degree distributions. In general, the degree distribution
of the primal of a random undirected hypergraph with
hyperedge cardinality larger than 2 has a zig-zag shape
when the degree value is low and becomes more com-
plex as the degree value increases. This is due to the
fact that the metabolic hypergraphs we consider are
very sparse.
In a hypergraph with n nodes, the maximum number

of distinct hyperedges of cardinality k, for 2 ≤ k ≤ n, is(n
k

)
. And, if we exclude the trivial hyperedges (those that

have a single node or the entire set of nodes), the maxi-
mum number of distinct hyperedges is

n−1∑
k=2

(n
k

)
= 2n − n − 1.

In the case of the E. coli metabolic network, we have
1168 hyperedges on a set of 1193 nodes. Even if we con-
sider only standard edges (hyperedges of cardinality 2),
this hypergraph is very sparse, since the maximum num-
ber of distinct hyperedges of cardinality 2 is 1193 *
1192/2 = 711028 which is ≫ 1168. Now, consider a
node v that is included in only two hyperedges each of
which is of cardinality k. If the hypergraph is sparse, the
probability that the two hyperedges would share nodes
besides v is very low. Therefore, the primal of this
hypergraph is more likely to have node v with degree 2k
- 2 than with degree in between k to 2k - 3. In other
words, since each hyperedge contributes k - 1 to the
degree of each of its nodes in the primal, more nodes
with degrees at integer folds of k - 1 are observed if the

Zhou and Nakhleh BMC Bioinformatics 2011, 12:132
http://www.biomedcentral.com/1471-2105/12/132

Page 3 of 12



underlying hypergraph is sparse (when contributions
from different hyperedges have less chance to overlap).
Hence, it might be visually desirable to classify the
degree values into k - 1 equivalence classes by d1 ≡ d2
(mod k - 1) ("mod” denotes the modulo operation) and
connect data inside each equivalence class (dashed bold
lines in Figure 2).
Clearly, the hypergraphs of different hyperedge cardin-

alities contribute to different but overlapping ranges of
degree values. In particular, the leftmost panel of Figure
2 corresponds to the binomial degree distribution of
random Erdös-Rényi graphs [25] with 1168 edges and
probability p = 1168/711028 ≈ 0.001 of linking two ran-
domly chosen nodes by an edge. The degree distribution
of the primal of metabolic hypergraphs is a mixture of
degree distribution obtained based on different hyper-
edge cardinalities.
Indeed, in the case of metabolic hypergraphs, neither

do all the hyperedge cardinalities take one same value
nor do they follow a simple uniform distribution. Their
effect on the properties of the abstracted standard
graphs has not been studied. In Figure 3 we plot the
hyperedge cardinality distribution of the E. coli meta-
bolic hypergraph. The mean value of the distribution is
4.19 and the range is roughly from 2 to 10. A compari-
son to Poisson and binomial distributions show that the
shape is narrower than a Poisson distribution with the
same mean and is much closer to a binomial distribu-
tion with sample size of 5 (see additional file 1 for simi-
lar results obtained for other organisms).

Incorporating the Reaction Size Distribution Into a Null
Model
Based on the above results, we believe it is important for
a null model for generating random graphs in the con-
text of metabolic networks to use both the number and
cardinality distribution of hyperedges. We study a null

model where a random graph is generated from the
metabolic hypergraph by first rewiring the hypergraph
(thus, keeping the number and cardinality distribution
of hyperedges unchanged) and then abstracting the ran-
dom hypergraph (through a trans-primal transforma-
tion) into a standard graph. We compare the degree
distribution of the real metabolic graph against the new
null model and another null model that rewires the
metabolic standard graph (also through a trans-primal
transformation from the metabolic hypergraph) directly
(see Figure 4 for an illustration of the generation of the
null models on a toy hypergraph). Notice that this wir-
ing process does not guarantee that the generated ran-
dom networks are mass balanced; this is a very
important constraint, but integrating it into a random

Figure 2 The degree distributions of the primal graphs of random hypergraphs. Each of the hypergraphs has 1193 nodes and 1168
hyperedges. Columns from left to right correspond to fixed hyperedge cardinalities of 2, 3, 4, and 5, respectively. The results in each panel are
based on the 300 randomly generated hypergraphs (replica). For each well represented degree value (contained in at least 10 replica), the
median is plotted. Error bars indicate quartiles. Green dots correspond to the degree distribution of the primal graph of the (undirected)
metabolic hypergraph of E. coli. All plots are on log-log scales.

Figure 3 The hyperedge cardinality distribution of the
metabolic hypergraph of E. coli. Poisson distribution and Binomial
distribution with different sample sizes are shown in dashed lines.
Parameters of these distributions (μ for Poisson and p for binomial)
are chosen such that their means equal the actual value (419).

Zhou and Nakhleh BMC Bioinformatics 2011, 12:132
http://www.biomedcentral.com/1471-2105/12/132

Page 4 of 12



network generation procedure is beyond the scope of
this paper.
To rewire the metabolic standard graph of E. coli, we

perform 20,000 operations each of which randomly
removes an edge and links a new pair of previously
unconnected nodes. Similarly, to rewire the metabolic
hypergraph of E. coli, we perform 20,000 operations
each of which randomly removes a hyperedge, resamples
a new set of nodes of the same size (same size for the
tail set and the head set if a directed hypergraph is con-
cerned), and connects the new set with a hyperedge. In
this way, we keep the number and cardinality distribu-
tion of hyperedges unchanged along the rewiring pro-
cess. Further, we make sure that the same set of nodes
is not selected more than once, to keep all hyperedges
distinct. Finally, to obtain statistically significant results,
we generate 200 random networks, each of which is
rewired in both ways as above 20,000 times.
The degree distributions of the trans-primal of E. coli’s

metabolic network and the random networks generated
by the two rewiring procedures are shown in Figure 5.
Each data point and its error-bar indicate the median, 5-
th and 95-th percentiles, respectively. Since not all the
degrees are well represented in all 200 replicas, we plot
results only for degree values present in at least 10
replicas.
We also fit the tail of the degree distribution of the

standard graph of E. coli and the median of the rewired
graphs to p(k) = bk-a using the least squares fitting. By
inspecting the data, the fitting region for standard

graphs is manually set to [5,13] (shaded region in Figure
5). For rewired graphs, the end of the fitting region is
defined as the smallest degree at which the 95-th per-
centile is higher than the frequency at count 1 (in other
words, 95% of the replicas have more than one nodes
with this degree). The start of the fitting region is deter-
mined by finding the first pair of neighboring degrees
with slope in medians below a certain threshold (4.0) as
one moves from the end of the fitting region to degree
1. We set our fitting region as such since (1) existing
studies have focused on fitting degree distributions
excluding their heads, for detecting “scale-freeness” [26],
and (2) real-world degree distributions are always con-
strained by the fact that the frequency has to be no
smaller than the one corresponding to count 1 (since 0
is invalid on a log-log plot).
Two observations are in order based on Figure 5:

1. The tail shifts to the higher degree region in the
graphs abstracted after rewiring the metabolic hyper-
graph compared with the graphs rewired after being
abstracted from the real metabolic hypergraph.
Comparison with similar situation in undirected
hypergraphs (Figure 2) indicates contribution from
higher-order hyperedge cardinality.
2. The trans-primal of the rewired hypergraph pre-
serves the zig-zag pattern in the low-degree region
of the distribution (the head). The rewired trans-pri-
mal graphs, on the other hand, lose such shape in its

Figure 4 Comparison of the two null models on a toy
hypergraph. The hypergraph-graph abstraction follows the trans-
primal procedure. Left: Traditional way of the null model generation
by first abstracting the hypergraph and then rewiring. Right: New
way of null model generation, maintaining the reaction size
distribution, by first rewiring the hypergraph and then abstracting it.
Note that the rewiring process does not necessarily preserve the
overlapping reactants (e.g., reactant D in the toy hypergraph).

Figure 5 Comparison of the degree distributions of the
metabolic standard graph of E. coli against two different null
models. The degree distributions are derived based on three
versions of the metabolic hypergraph of E. coli: The trans-primal of
the hypergraph (0), the rewired trans-primal of the hypergraph (1),
and the trans-primal of the rewired hypergraph (2). Least-squares
fitting of the tail of (0) and the medians of (1) and (2) to p(k) = bk-a

yields values of a = 3.26 for (0), a = 5.59 for (1), and a = 5.82 for
(2). For degree 100 = 1, the point for (0) coincides with that for (1).
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“head”. This indicates that the zig-zag pattern in the
low degree region of the original degree distribution
is due to abstracting the hypergraph with a certain
hyperedge cardinality distribution into a standard
graph.

These two observations are in agreement with the
statement of Wagner and Fell [5] that “k-regular ran-
dom graphs would be particularly poor statistical models
of metabolic networks.” However, our observations chal-
lenge the use of such a random model for a statistical
definition of ‘key metabolites’. In particular, the trans-
primal graphs of repeatedly rewired hypergraphs have a
degree distribution whose tail is power-law (just like
metabolic networks) and whose head is a zig-zag shape
(again, just like metabolic networks). This raises the
possibility that while adaptive forces may have shaped
the cellular metabolism, neutral evolution forces (muta-
tion, recombination, and random genetic drift) may
have defined a large part of the network connectivity.
This is in agreement with the observations of Lynch
[27] and Wagner [28].

The scaling of clustering coefficient
It has been proposed that metabolic graphs are hierarch-
ical (e.g., [29]), which can be characterized by the scal-
ing of the average clustering coefficient C(k) of nodes
with certain degree k, against k. For example, Ravasz
et al. found that C(k) ∝ k -1 for a variety of metabolic
networks, including that of E. coli [29]. Further, they
hypothesized that such a hierarchical structure corre-
sponds to functional organization of the metabolic sys-
tem. The question we investigate is whether the scaling
of clustering of the average clustering coefficient is sta-
tistically supported when using a null model that incor-
porates the reaction size (hyperedge cardinality)
distribution.
In Figure 6, we show average clustering coefficient as

a function of node degrees, C(k), for four types of
graphs:

(I) The primal of the E. coli hypergraph (1193 nodes
and 5719 edges).
(II) Erdös-Rényi random graphs with 1193 nodes
and 5719 randomly chosen edges.
(III) Random graphs generated by 100,000 rewiring
operations applied to the graph in (I), where in each
rewiring operation, a pair of non-adjacent edges are
selected, and the neighbors of an endpoint of one
edge are swapped with the neighbors of an endpoint
of the other edge. This procedure generates random
graphs with the same degree distribution as that of
the graph in (I).

(IV) The primal of hypergraphs generated by
100,000 rewiring operations applied to the E. coli
metabolic hypergraph (the same method used in the
previous section).

Very similar patterns were observed when taking cis-
primals of directed hypergraphs. Slight difference in
trans-primals of directed hypergraphs is due to the
break of the clique structure in randomization (see
notes in additional file 1).
For an Erdös-Rényi random graph with 1193 nodes and

5710 edges, a small value of C(k) is expected as the con-
nectivity is very sparse, this is shown in Figure 6(II). How-
ever, if we exclude nodes whose clustering coefficient is 0,
C(k) scales almost exactly the same with the smallest non-
zero C values that a node with a particular degree k can
take (blue dashed line in Figure 6). This smallest non-zero
clustering coefficient equals the reciprocal of the total
number of connections among the k neighbors of the
node we consider, which is 2/(k2 - k), and thus scales with
a = 2 when k is large (that is, 2/(k2 - k) ≈ bk-2 for large k).
In other words, for a sparse Erdös-Rényi graph, the scaling
of C with a = 2 is very likely.
If we rewire the primal of E. coli’s hypergraph in such

a way that we preserve the degree distribution, then we
obtain graphs whose tail of clustering coefficient distri-
bution scales with an a = 1.06, as shown in Figure 6
(III). This, to a certain degree, weakens the statistical
significance of the scaling observed in Figure 6(I). How-
ever, when we employ the null model like that of the
previous section (see Figure 4), where the hyperedge
cardinality distribution is preserved, we observe that not
only do the clustering coefficients scale, but that the
scaling has an almost identical value of a; see Figure 6
(IV). This finding challenges the statement that hier-
archical connectivity of metabolic networks corresponds
to functional organization. Or, even if such a correspon-
dence still exists, our finding here does not support the
hypothesis that such structure is selected for, since ran-
dom graphs generated based on the new null model
exhibit similar scaling properties.
We also studied the clustering coefficient on reaction

graphs obtained through PLGT (see Figure 1). Contrary
to the previous observation that the average clustering
coefficient CT(k) scales as CT(k) ∝ k0.08 [30], CT(k) does
not show clear scaling in this study (see Figure 7).
Further, in this case we find that the clustering coeffi-

cients are greatly affected by the presence of metabolites
that participate in a large number of reactions, or the
so-called “currency metabolites”, such as water. With
water removed from the original hypergraph, the entire
rightmost vertical strip in the PLGT’s clustering coeffi-
cients disappears (red dots in Figure 7) (Effects of the

Zhou and Nakhleh BMC Bioinformatics 2011, 12:132
http://www.biomedcentral.com/1471-2105/12/132

Page 6 of 12



removal of other “currency metabolites” are also studied,
see additional file 1). This is because a node with degree
k becomes a hyperedge with cardinality k in the dual
hypergraph, giving rise to k(k - 1)/2 connections in its
primal which is the final PLGT product. This has two
complications. First, through PLGT, the graph becomes
denser. The average degree, or twice the number of
edges per node, increased from 9.6 to 228.0. Second, the
difference in the contribution to the connection from
nodes of different degrees increases significantly, from k
to k(k - 1)/2. The node with the largest degree (water) is
at least partially responsible for most of the connections
in the PLGT result.
The results of C(k) against k on the PLGT graphs are

different from the ones on randomized graphs, whether
the graph abstracted is rewired directly or the underly-
ing hypergraph is rewired and abstraction is made there-
after (see additional file 1). However, if the dual

hypergraph (of which the PLGT is the primal) is rewired
while keeping the number of reactions in which each
metabolite participates, the results of C(k) against k on
the standard graph abstracted thereafter is similar to the
one observed on the PLGT of the E. coli hypergraph
(right panel of Figure 7). Once again, this result stresses
the implications of the used null model, and how this
affects the significance of values computed on biological
networks.
The question, then, is: why is this scaling of clustering

coefficients? Or, why is this hierarchical structure of
graphs abstracted from hypergraphs? We believe that
this is simply an artifact of the way standard graphs are
abstracted from metabolic hypergraphs. For example,
the primal of an undirected hypergraph connects all the
reactants in the same reaction, thereby forming cliques
in the abstracted standard graph. These cliques contri-
bute the same number of 2-paths and triangles in com-
puting the clustering coefficient of a reactant. Since the
number and size of such cliques remain unchanged as a
hypergraph is rewired, their contribution remains the
same as well. The similarity between the scaling of C(k)
in metabolic standard graphs and ones abstracted from
randomized hypergraphs indicates that cliques thus
formed probably dominate the value of clustering coeffi-
cients and thus their scaling in the context of the real-
world metabolic networks. In other words, the scaling of
C(k) is kept largely by the hyperedge cardinality distri-
bution which is intrinsic to the structure of biochemical
reactions but not to how the metabolic hypergraph is
organized using these reactions.
In order to figure out whether the scaling of clustering

coefficients is due to the inherent “hierarchy” of the meta-
bolic graph, or is just a consequence of the graph abstrac-
tion process and the hyperedge cardinality distribution, we
computed the hypergraph clustering coefficient using a

Figure 6 Scaling of average clustering coefficients C(k). (I) The primal of E. coli’s metabolic hypergraph. (II) Erdös-Rényi random graphs. The
cyan dots are C(k) calculated excluding nodes with C = 0. (III) Random graphs with same degree distribution as (I); (IV) primal of rewired
versions of E. coli’s metabolic hypergraph (see text for more details). For II, III, and IV, the results are based on 100 replica, where the red dots
denote the medians of the 100 replica. The red lines are least-squares fitting to C(k) against k using power law. Power coefficients of the fitting
are labeled. In each panel, the dashed blue curve corresponds to the points [k, gk], where gk is the smallest C value that a node with degree k
can take.

Figure 7 The scaling of averaged clustering coefficients in the
reaction graph obtained via PLGT. Left panel: The green dots are
the average clustering coefficients of the PLGT of E. coli’s
hypergraph. The red dots are the same, but with the water
molecule excluded. Right panel: The red dots are the average
clustering coefficients of the rewired hypergraph, which is
generated by first taking the dual of E. coli’s metabolic hypergraph
and then rewiring it (1 × 106 times, to guarantee convergence).
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new measure we devised to apply directly to hypergraphs
(see Methods). Results are shown in Figure 8 for E. coli’s
hypergraph (left panel) and its dual (right panel). The
result of clustering coefficient computed using the mea-
sure of [24] are similar (see additional file 1). The hyper-
graph average clustering coefficients show very weak
scaling. The individual clustering coefficients are more
scattered around. The value of a (0.09) is much smaller
than what is observed on the standard graph (0.84, Figure
6(I)) and the value of 1.1 as reported in [30]. As for the
dual hypergraph (right panel of Figure 8), we find that the
clustering coefficients of the dual hypergraph, from which
the line transformed reaction graph is abstracted, shows
better scaling but with an a of a larger magnitude. Still,
the actual values of the clustering coefficients are very
scattered and show no scaling.
To summarize, we believe topological characteristics

of metabolic networks, such as scale-free degree distri-
butions and scaling of clustering coefficients, are not
necessarily a ground for invoking natural selection or
making connections to functional organizations. Instead,
these properties may lose statistical significance when a
null model taking into account of the reaction sizes is
used, and may even disappear when computations are
done on the appropriate representation of metabolic
networks.

Conclusion
In this article, we investigated the impact of choosing a
null model that incorporates the hypergraph property of
the metabolic system such as the reaction size distribu-
tion to the networks’ connectivity analyses. By reanalyz-
ing the degree distribution and clustering coefficient we
found that the reported scaling of the clustering coeffi-
cients in the metabolic graphs and its specific power
coefficient may be an artifact of the hypergraph abstrac-
tion, and is not supported when biochemical reactions
are atomically treated as hyperedges. Also we found that

by taking into the reaction size distribution, a null
model can explain some of the details in the shape of
the degree distribution that have not been explained
otherwise, further highlighting the necessity of using
appropriate null models in exploring adaptive evolution,
along with the analysis of their support in biological
systems.

Methods
Data
We assembled the metabolic hypergraph of Escherichia
coli using the KEGG database [31]. The presence of a
reaction was inferred based on whether there is a gene
that is annotated to generate any enzyme that catalyzes
the reaction. Reaction formulas, enzyme identities and
gene annotations were downloaded from KEGG. We
recognize that the metabolic networks thus constructed
may not provide a complete coverage of the entire meta-
bolic system in E. coli. However, this is a common way of
constructing metabolic networks in existing studies.
Further, since our study is aimed at the differences in
properties elucidated from different representations of
the same system, a complete coverage, while desirable, is
not a necessary prerequisite. The undirected hypergraph
representation is obtained by putting all the metabolites
in each reaction into a single hyperedge. The directed
hypergraph representation is obtained by further separat-
ing the metabolites on opposite sides of the reaction into
the tail and head sets, respectively. Reaction direction is
not considered in this study. Finally, we derived standard
graph representations based on transformation opera-
tions on hypergraphs that amount to commonly adopted
representations in existing studies. In particular, we con-
sidered the substance model, the substrate-substrate
model and the substrate-product model, which corre-
spond to the primal, cis-primal and trans-primal of a
hypergraph, respectively. Further, we considered reaction
graphs, where nodes correspond to reactions, and two
nodes are connected if their reactions share any reac-
tants; this corresponds to the PLGT of a hypergraph. The
hypergraph data and the original reaction lists are avail-
able from the author’s website: http://www.cs.rice.edu/
~wz4/metabolic_hypergraph.tgz.

Metabolic Hypergraphs
An undirected hypergraph H is an ordered pair (V, ℰ),
where V is the set of nodes and ℰ is the set of hyper-
edges. Each hyperedge E Î ℰ connects, or corresponds
to, a subset V’ ⊆ V, where |V’| ≥ 2. Hypergraphs are a
natural model of the connectivity of metabolic networks.
For example, to model the metabolic reaction A + B ⇌
C + D as an undirected hypergraph, we take V = {A, B,
C, D}, and ℰ = {E}, where E = V. To distinguish between
the two sets of metabolites on opposite sides of a
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Figure 8 The scaling of hypergraph clustering coefficient. The
green dots are the local clustering coefficients. The red dots are
averaged value of the local clustering ceofficients for each degree.
Left panel: E. coli’s hypergraph. Right panel: The dual of E. coli’s
hypergraph.
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reaction, a hyperedge E can be further bipartitioned into
two subsets Et, the tail set, and Eh, the head set. In this
case, we write E as the ordered pair (Et, Eh), and the
direction of the edge is, by convention, from the tail set
to the head set. Using this notation of directed hyper-
edges, a directed hypergraph is defined. For example, the
hyperedge corresponding to the irreversible reaction
A + B ® C + D is the ordered pair E = ({A, B}, {C, D}).
The degree d(v) of a node v Î V in a hypergraph is

defined as the cardinality of the set {E Î ℰ | v Î E}.
The neighborhood of a node v, denoted by N(v), in a
hypergraph is defined as the node v itself together with
the set of all nodes connected to it by a hyperedge.
More formally,

N(v) ={v} ∪ {u ∈ V|{u, v} ⊂− E

for some E ∈ E}.
(1)

The neighborhood of a set of nodes, U, is defined as
the union of the neighborhoods of all nodes in U, or⋂

v∈U N(v). Further, we denote by ℳ(v) the set of

hyperedges of which v is an element, that is, ℳ(v) = {E
Î ℰ | v Î E}.

From Hypergraphs to Standard Graphs
A variety of transformations can be applied to a hyper-
graph to obtain standard graph representations. We
now define transformations that are applicable (and
have been applied) in the context of representing meta-
bolic networks. Let H = (V, ℰ) be a hypergraph. The pri-
mal of H is a (standard) graph Gp = (V, Ep), where every
two nodes in V that are connected by a hyperedge in H
are connected by an edge in G. In other words,

Ep = {{u, v}|{u, v} ⊆ E for some E ∈ E}.
The primal of a metabolic hypergraph is also called

the substance model [12], since every pair of substances
(metabolites) participating in the same reaction are con-
nected by an edge (i.e., form a clique). For directed
hypergraphs, primal graphs can be defined in two ways.
The cis-primal is obtained by connecting with an edge
every pair of nodes within the same partition of the
hyperedge (both nodes from the head set or both from
the tail set). In other words, the cis-primal of H is a
graph Gcp = (V, Ecp), where

Ecp = {{u, v}|{u, v} ⊆ Et or { u, v} ⊆ Eh
for some (Et,Eh) ∈ E}

.
(2)

This corresponds to the substrate-substrate model
[12], where metabolites on the same side of a reaction
are connected. The trans-primal is obtained by connect-
ing with an edge every pair of nodes that belong to two

different parts of a hyperedge (one from head set and
the other from the tail set). In other words, the trans-
primal of H is a graph Gtp = (V, Etp), where

Etp = {{u, v}|u ∈ Et and v ∈ Eh
for some (Et,Eh) ∈ E}

.
(3)

This corresponds to the substrate-product model
[12], where metabolites on opposite sides of a reaction
are connected. Figure 1 illustrates these three transfor-
mations (See additional file 1 for an illustration on a
real and small metabolic model, the catabolism of
tagaturonate).
Every undirected hypergraph can be completely

described by a binary matrix M, called the incidence
matrix, where columns correspond to hyperedges and
rows to nodes. An entry M[i, j] = 1 denotes that node i
is an element of hyperedge j while an entry M[i, j] = 0
denotes otherwise (Notice that a stoichiometric matrix
is a weighted incidence matrix of a metabolic network’s
connectivity map.). A binary matrix is a valid incidence
matrix if and only if every row and column contains at
least one 1. Thus, the transpose of the incidence matrix
of any hypergraph is also a valid incidence matrix. The
transpose of the incidence matrix of a hypergraph H
corresponds to the dual hypergraph H’. The common
practice of creating a reaction graph by connecting two
reactions if they share a reactant [12] (also known as
the physical line graph transformation [30], or PLGT for
short hereafter) amounts to first computing the dual of
the original metabolic hypergraph, and then taking the
primal of the resulting hypergraph (see Figure 1).
Finally, common set operations, such as union and inter-

section, can also be introduced into the hypergraph trans-
formation. One of the widely, yet implicitly, used case is the
generation of enzyme/gene hypergraphs from the underly-
ing reaction hypergraph [2]. Each hyperedge in the trans-
formed hypergraph is the union of all hyperedges
corresponding to reactions that are catalyzed by some par-
ticular enzymes/genes. This process is equivalent to resam-
pling a number of subsets of the set of all hyperedges. Note
that unlike reaction hyperedges, these hyperedges may sub-
stantially overlap or even coincide with each other (when
multiple enzymes/genes catalyze a same set of reactions).

Clustering Coefficients on Hypergraphs
A commonly used statistic for elucidating properties of
metabolic networks, such as modularity [29] and small-
worldness [32], is the clustering coefficient. Among the
various existing definitions of the clustering coefficient,
the local clustering coefficient by Watts and Strogatz
[32] and the global clustering coefficient by Barrat and
Weigt [33] are the most widely used.
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According to [32], the local clustering coefficient, Clocal,
for any given node v (with d(v) ≥ 1) in an undirected
(standard) graph is defined as the fraction of the number
of edges linking pairs of v’s neighbors over the number of

all such possible edges (which equals
(
d(v)
2

)
). For a node

with d(v) = 0, we have Clocal(v) = 0. Intuitively, Clocal mea-
sures, for a node v, the probability that a randomly cho-
sen pair of its neighbors would be seen connected.
According to [33], for an undirected graph with at

least one 2-path (three distinct nodes connected via two
edges), the global clustering coefficient Cglobal is defined
as the fraction of the number of 2-paths with linked end
points (i.e., triangles) over the number of all possible 2-
paths. Intuitively, Cglobal measures the probability of hav-
ing an edge (u, w), given that edges (u, v) and (v, w)
exist, with u, v, w being three distinct nodes.
For a proper extension of Clocal and Cglobal to the

domain of hypergraphs (denoted by HClocal and HCglobal,
respectively), the following intuitive properties may be
desirable, in addition to reflecting the extent of cluster-
ing in a hypergraph:

P1 The values of HClocal and HCglobal fall in the
range [0, 1].
P2 HClocal and HCglobal should reduce to Clocal and
Cglobal, respectively, when every hyperedge connects
exactly two nodes (i.e., the hypergraph is a standard
graph).
P3 HClocal(v) should reflect the extent of connectivity
among neighbors of v due to hyperedges other than
ones connecting v with those neighbors.

The rationale behind property P1 is to retain the
probabilistic interpretation of the clustering coefficient
statistic, as well as to enable comparing two different
hypergraphs under the statistic. The rationale behind
property P2 is to allow treating hypergraphs and stan-
dard graphs (which are a special case of hypergraphs) in
a uniform manner. Property P3 reflects the fact that
neighbors of a node can also be neighbors simply since
all three belong to the same hyperedge–a case that
should be treated carefully to reflect a proper notion of
clustering.
Based on these properties, we define HClocal(v) and

HCglobal(H) as follows for a hypergraph H = (V, ℰ) and v
Î V:

HClocal(v) =⎧⎪⎪⎨
⎪⎪⎩

1

(
|M(v)|

2
)

∑
Ei, Ej
∈M(v)

EO(Ei,Ej) if d(v) > 1

0 if d(v) = 1

(4)

HCglobal(H) =⎧⎨
⎩

1
|I|

∑
{Ei,Ej}∈I

EO(Ei,Ej) if I �= ∅
0 if I = ∅

(5)

where, ℐ = {{Ei, Ej} ⊂ ℰ | Ei ∩ Ej ≠ ∅ ⋀ Ei ≠ Ej}, and
the extra overlap of two intersecting hyperedges Ei and
Ej is defined as:

EO(Ei,Ej) =
|N(Dij) ∩ Dji| + |N(Dji) ∩ Dij|

|Dij| + |Dji| . (6)

where Dij = Ei - Ej. For two hyperedges E’ and E” such
that E’ = E”, we define EO(E’, E”) = 0. Figure 9 provides
examples of the values of EO and HClocal under a variety
of scenarios. For HCglobal, the numerator is the sum of
extra overlap between any pairs of hyperedges that con-
tain v, and the denominator is the number of all possi-
ble pairs of such hyperedges.
From the definition of EO, we observe the following:

1. EO(E’, E”) Î 0[1] for every pair of hyperedges E’
and E”.
2. For two non-identical, intersecting hyperedges, Ei
and Ej, each of cardinality 2, EO(Ei, Ej) = 1 when
their non-shared elements are linked by a third
hyperedge, and EO(Ei, Ej) = 0 otherwise.
3. For any two sets E, E’ ⊆ V, where E’ ⊆ E, EO(E,
E’) = 0.

It follows from these observations that HClocal and
HCglobal satisfy the three aforementioned properties P1–
P3.
Note that we are not the first to define clustering

coefficient measures for hypergraphs. Estrada and Rodrí-
guez-Velázquez [24] defined their (global) clustering
coefficient for hypergraphs, denoted ERV hereafter, as

6 × the number of hyper-triangles
the number of 2-paths

(7)

where a hyper-triangle is a set of three nodes and
three hyperedges that connect them, and a 2-path is a
sequence {u, E1, v, E2, w}, where u, v, w are three dis-
tinct nodes, E1, E2 are two distinct hyperedges, {u, v} ⊆
E1 and {v, w} ⊆ E2. The numerator is essentially the
number of the closed-walks of length 3 without reusing
hyperedges or revisiting nodes except at the end points
[24].
To analyze how the two measures of global clustering

coefficients compare, we conducted a simple test, where
we generated random hypergraphs with increasing con-
nectivity and applied the measures to them. More pre-
cisely, we generated a random graph by starting with 30

Zhou and Nakhleh BMC Bioinformatics 2011, 12:132
http://www.biomedcentral.com/1471-2105/12/132

Page 10 of 12



disconnected nodes, and then, for each subset of m nodes,
we connected them by a hyperedge with probability p.
Finally, we applied the two measures to the generated
graph. In our experiment, we used m = 2, 3, 4, 5 and var-
ied p between 0 and 1, and for each combination of values
of m and p, we repeated the experiment 15 times, plotting
the median of the 15 runs in Figure 10.
Three observations are in order. First, the two mea-

sures yield identical results in the case of standard
graphs (where m = 2), since they both reduce to the
standard global clustering coefficient statistic on stan-
dard graphs when all hyperedges have cardinality 2. Sec-
ond, the two measures begin to deviate as our measure
approaches 1. In particular, the ERV measure is not
bounded from above (see additional file 1 for a discus-
sion), and goes beyond 1 quickly for hyperedge cardinal-
ity higher than 2. This makes hard the interpretation of
values computed by the ERV measure, since they cannot
be treated in a probabilistic manner. Further, the ERV
measure would not allow for comparing two hyper-
graphs in terms of their clustering coefficients since the
values are not bounded. Last but not least, in both defi-
nitions of the hypergraph clustering coefficient, the
hypergraphs with higher hyperedge cardinalities
approach 1 much faster in their global clustering coeffi-
cient. The reason for this is that the total number
hyperedges of a given hyperedge cardinality (which

equals (|V|
|E| )) grows exponentially with the hyperedge

Figure 9 Illustration of the Extra Overlap and the Local Clustering Coefficient for hypergraphs. EO(Ei, Ej) denotes the extra overlap between
hyperedge Ei and Ej, and HC(P) denotes the local hypergraph clustering coefficient for the node P.

Figure 10 Comparison of the two global hypergraph clustering
coefficient measures on random hypergraphs. The x-axis shows
the probability p with which a hyperedge with a fixed cardinality is
added, and the y-axis shows the value of the global clustering
coefficient. Each hypergraph has 30 nodes. Solid and dashed lines
correspond to our measure (Eq. 5) and the ERV measure (Eq. 7).
Red, blue, green and magenta colors correspond to hyperedge
cardinalities 2, 3, 4, and 5, respectively. A completely connected
hypergraph has p = 1. Note that for |E| = 2 (red) the two
coefficients agree and both degenerate into the standard graph
clustering coefficient [33]. Each data point shows the median of 15
replica and the error bar shows the upper and lower quartiles.
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cardinality value |E|. Therefore, the density p = |E |/(|V|
|E| )

is diminished by the same factor if the number of hyper-
edges |ℰ| is kept fixed. This further illustrates the fact
that hyperedge cardinality plays a significant role in the
clustering coefficient computed on hypergraph and
beyond. Similar patterns were observed for the local
clustering coefficients measures (see additional file 1).

Additional material

Additional file 1: Additional Information. The file contains additional
information on methods for null model generation, reaction size
distribution for four more organisms, other abstraction methods as well
as their illustration on a concrete metabolic pathway, discussion on
currency metabolites and on other clustering coefficients defined on
hypergraphs.
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