
SOFTWARE Open Access

Ultra-fast sequence clustering from similarity
networks with SiLiX
Vincent Miele*, Simon Penel and Laurent Duret

Abstract

Background: The number of gene sequences that are available for comparative genomics approaches is
increasing extremely quickly. A current challenge is to be able to handle this huge amount of sequences in order
to build families of homologous sequences in a reasonable time.

Results: We present the software package SiLiX that implements a novel method which reconsiders single
linkage clustering with a graph theoretical approach. A parallel version of the algorithms is also presented. As a
demonstration of the ability of our software, we clustered more than 3 millions sequences from about 2 billion
BLAST hits in 7 minutes, with a high clustering quality, both in terms of sensitivity and specificity.

Conclusions: Comparing state-of-the-art software, SiLiX presents the best up-to-date capabilities to face the
problem of clustering large collections of sequences. SiLiX is freely available at http://lbbe.univ-lyon1.fr/SiLiX.

Background
Proteins can be naturally classified into families of
homologous sequences that derive from a common
ancestor. The comparison of homologous sequences and
the analysis of their phylogenetic relationships provide
very useful information regarding the structure, function
and evolution of genes. Thanks to the progress of
sequencing projects, this comparative approach can now
be applied at the whole genome scale in many different
taxa, and several databases have been developed to pro-
vide a simple access to collections of multiple sequence
alignments and phylogenetic trees [1-9]. The building of
such phylogenomic databases involves three steps that
require important computing resources: 1) compare all
proteins to each other to detect sequence similarities, 2)
cluster homologous sequences into families (that we will
call the clustering step) and 3) compute multiple
sequence alignments and phylogenetic trees for each
family. With the recent progress of sequencing technol-
ogies, there is an urgent need to prepare for the deluge
and hence to develop methods able to deal with a huge
quantity of sequences. In this paper, we present a new
approach for the clustering of homologous sequences,
based on single transitive links (single linkage) with

alignment coverage constraints and implemented in a
software package (called SiLiX for SIngle LInkage Clus-
tering of Sequences). We model the dataset as a similar-
ity network where sequences are vertices and similarities
are edges [10]. To overcome memory limitations we fol-
low an online framework [11] in which we visit the
edges one at a time to update the families dynamically.
This approach enables also an incremental procedure
where sequences and similarities are added into the
dataset so that it would not be necessary to rebuild the
families from scratch. Finally, we adopt a divide-and-
conquer strategy to deal with the quantity of data [12]
and design a parallel algorithm whose theoretical com-
plexity is addressed in this paper.
We evaluated the computational performances and

scalability of this method on a very large dataset of
more than 3 millions sequences from the HOGENOM
phylogenomic database [9]. Our approach presents sev-
eral advantages over other clustering algorithms: it is
extremely fast, it requires only limited memory and can
be run on a parallel architecture - which is essential for
ensuring its scalability to large datasets. SiLiX outper-
forms other existing software programs both in terms of
speed and memory requirements. Moreover, it allows a
satisfying quality of clustering. We discuss the interest
of SiLiX for the clustering of homologous sequences* Correspondence: vincent.miele@univ-lyon1.fr

Laboratoire Biométrie et Biologie Evolutive, Université de Lyon, Université
Lyon 1, CNRS, INRIA, UMR5558; Villeurbanne, France

Miele et al. BMC Bioinformatics 2011, 12:116
http://www.biomedcentral.com/1471-2105/12/116

© 2011 Miele et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://lbbe.univ-lyon1.fr/SiLiX
mailto:vincent.miele@univ-lyon1.fr
http://creativecommons.org/licenses/by/2.0

in huge datasets, possibly in combination with other
clustering methods.

Implementation
Modelling
Single linkage and filtering with alignment coverage
constraints
The principle of the single-linkage clustering is that if
sequence A is considered homologous to sequence B,
and B homologous to C, then A, B and C are grouped
into the same family, whatever the level of similarity
between A and C. The choice of the sequence similarity
criteria that is used to infer homology is therefore an
essential parameter of the single-linkage clustering
approach. Different criteria can be used, separately or in
combination (percentage of identity, alignment score or
E-value, alignment coverage i.e. percentage of the length
of the sequence that is effectively aligned). Then, if a
pair of sequences (A, B) does not satisfy the criteria, the
pair is not considered for the clustering. The choice of
these criteria depends on the goal of the clustering.
The method presented in this paper was motivated by

the development of databases of homologous genes
(such as HOGENOM or HOVERGEN [9]). The goal of
these databases is to allow the study of the evolution of
entire proteins considered as a unit, in contrast to data-
bases such as PFAM [13] or PRODOM [14] that aim at
studying the domain architecture of proteins. Hence, in
HOGENOM, proteins are classified in the same family
only if they are homologous over their entire length - or
almost. In practice, protein sequences are compared
against each other with BLASTP [15]. For each pairwise
alignment, the list of High-scoring Segment Pairs
(HSPs) is analyzed to exclude HSPs that are not compa-
tible with a global alignment (for details, see [9]). Then,
proteins are classified in the same family if the remain-
ing HSPs cover at least a given percentage of coverage of
the longest protein with a percentage of identity greater
or equal to a given threshold (see Figure 1). Therefore
the first step of the clustering process consists in analyz-
ing pairwise sequence alignments resulting from the all-
against-all comparisons (typically a set of alignments
obtained with BLAST [15]) in order to obtain a binary
information: keeping or excluding pairs whether they
meet or not these sequence similarity criteria. This step
(that we will refer to as the filtering step) can be time
consuming, but can be easily distributed (see below).
Sequence families are the connected components of the
similarity network
Here we consider the second step: given a list of pairs of
similar sequences previously positively filtered, group
the sequences into families. We define an undirected
graph G = (V, E) with the set of vertices V representing
sequences and the sets of edges E representing

similarities between these sequences. We define n = |V |
and m = |E |. Naturally, finding sequence families con-
sists in computing the connected components of G. In
this paper, we want to address the case of large n and m
and we therefore develop a parsimonious approach in
terms of memory use. We want to examine the edges
online [11,16] and avoid storing them into a connectivity
matrix. Therefore the classical Depth-first search algo-
rithm [17] is not adapted. By analogy with external-
memory graph algorithms [18], our approach consists in
dynamically reducing the connected components into
trees. When an edge is examined, we need to execute
two operations: find the tree containing each of the two
vertices and union these trees by merging their vertices
into a new tree. Consequently, the connected compo-
nent problem consists in (1) iteratively build a collection
of trees representing the connected components of the
graph G and (2) transform each resulting tree into a star
tree which root is the representative (or leader) of the
family. The final formulation of the problem is therefore
building a spanning star forest G* = (V, E*).

Using a memory-efficient structure
The connected components of G actually form a parti-
tion of V into non-overlapping subsets of vertices that
we call disjoint-sets. Initially each vertex is a set by itself.
We need to store the information of the partition and
be able to update it dynamically. For this purpose, we
use the disjoint-sets data structure [19,20] which is well
suited when the graph is discovered edge by edge. This
structure allows efficient implementation of the find and
union operations by representing each set as a tree.
Practically, the forest composed by all the trees is imple-
mented as an array parent of size n. Each element i of a
tree has a parent parent(i) such that parent(r) = r if r is

Figure 1 Single linkage clustering with alignment coverage
constraints. The four proteins (A, B, C, D) contain some
homologous domains (represented by colored boxes). To avoid the
clustering in the same family of proteins that do not share any
homology (e.g. A and D), pairwise sequence alignments are
considered for the clustering only if they cover a minimum
threshold of the length of each of the two proteins. This threshold
has to be high enough to exclude cases like the alignment (B, C),
which would lead to the clustering of A and D.

Miele et al. BMC Bioinformatics 2011, 12:116
http://www.biomedcentral.com/1471-2105/12/116

Page 2 of 9

the root of the tree. Moreover, it is straightforward and
practical to transform each tree into a star tree such
that the parent information is a common label for the
vertices in a connected component. This will allow to
directly retrieve each sequence family by reading the
parent information.
Online procedure for a set of similarities
To build G* from a set of sequence similarities, we
develop a two steps procedure. First, we adopt the algo-
rithm called Union-Find by Rank with path compression
[19,20]. It consists in updating trees of minimal height
while discovering the edges of the graph G online. For
this purpose, the rank of a vertex is basically defined as
its height in the tree. Each edge (i, j) is processed as
explained in Algorithm 1 (see also Figure 2). It is basi-
cally based on the FIND function that associates the
root of the tree containing a vertex of interest and the
PATHCOMPRESSION function which connects the
vertices in a path to the root of a tree. The time com-
plexity was proved to be in our case almost O(m) [20].
Secondly, we use PATHCOMPRESSION for each vertex
in O(n) time. This procedure requires the storage of n
parent and n rank values such that the memory require-
ments are O(n).

Algorithm 1 ADDEDGE(i, j) by UNION- FIND
Function: FIND (i): returns the root of the tree con-

taining i
Function: PATHCOMPRESSION(i, r): parent of ver-

tices in the path from i to the root of the tree contain-
ing i are set to r

1: r1 ¬ FIND(i); r2 ¬ FIND(j)
2: k ¬ arg maxl = 1, 2 (rank(rl))
3: if rank(r1) == rank(r2) and r1 ≠ r2 then
4: rank(rk)++
5: end if
6: PATHCOMPRESSION(i, rk)
7: PATHCOMPRESSION(j, rk)

Parallelization for multiple sets of similarities
We take advantage of the possibility of exploring series
of sets of sequence similarities with a client-server paral-
lel architecture. We assume that it is usually affordable
to split a large set into q sets. For the sake of clarity, we
consider here a group of q processors, which is a rea-
sonable hypothesis in practice. We note that it would
also be recommended to have sets of comparable sizes.
We adopt a divide-and-conquer strategy where different
processors use the previous sequential algorithm to

Edge parent Tree representation

(4,3) 1 2 3 3 5 6 7

(7,4) 1 2 3 3 5 6 3

(2,1) 1 1 3 3 5 6 3

(6,5) 1 1 3 3 5 5 3

(5,4) 1 1 3 3 3 5 3

(5,1) 3 1 3 3 3 5 3

(7,6) 3 1 3 3 3 3 3

Figure 2 An example of the steps involved in the algorithm called Union-Find by rank with path compression [19,20]. Edges (first
column, in red) are examined online. The disjoint-sets data structure, represented by trees (third column) and implemented using the parent
array (second column), is consequently modified. The two vertices of the current edge of interest are colored in red.

Miele et al. BMC Bioinformatics 2011, 12:116
http://www.biomedcentral.com/1471-2105/12/116

Page 3 of 9

independently obtain a collection of spanning star for-
ests G∗

1 . . .G
∗
q where G∗

k = (V,E∗
k) such that E∗

k ⊂ E.
These subsolutions are successively merged to obtain
the final solution G* [12]. We first design an algorithm
to merge two of these forests in O(n) time (see Algo-
rithm 2). It is also based on the disjoint-sets data struc-
ture since, for each vertex i, it basically consists in
adding in one forest a formal edge between i and the
root of the tree containing i in the other forest. Then
we build a parallel formulation of our approach [21,22]
where G∗

1 . . .G
∗
q are obtained with step (1) of the

sequential algorithm and iteratively merged (see Algo-
rithm 3). The parallel time complexity can be estimated
as O(m/q + nq). We notice that the merge procedure is
many orders of magnitude faster than the processing of
a single set of similarities. For this reason, we decide not
to distribute over the processors the merge procedures
that will be consequently performed by the server pro-
cessor in the order of the G∗

k availability.
Algorithm 2 MERGE(G∗

1,G
∗
2)

Function: FIND(i): returns the root of the tree con-
taining i

1: for all i such that FIND(i) ≠ i in G∗
2do

2: r ¬ FIND(i) in G∗
2

3: ADDEDGE(r, i) in G∗
1

4: end for

Algorithm 3 Parallel SiLiX

1: each processor r builds G∗
r with the sequential

algorithm
2: if r > 1 client then
3: MPI_SEND(G∗

r) to server processor 1
4: else
5: for k in 2,...p do
6: MPI_RECEIVE(G∗

k) among G∗
2, . . . ,G

∗
q in their

order of availability
7: MERGE(G∗

1,G
∗
k)

8: end for
9: for all i in G∗

1do
10: PATHCOMPRESSION(i, Find(i))
11: end for
12: end if

Dealing with partial sequences
Filtering
Because genome sequences are often not 100% complete
and hence some genes may overlap with gaps in the
genome assembly, it is important to be able to treat
some partial protein sequences (as opposed to complete
sequences). These partial sequences cannot be classified
using the same criteria as the complete ones and are

therefore treated separately. In a first step, gene families
are built using only complete protein sequences as
explained previously. In a second step, partial sequences
are added to this classification, using different alignment
length thresholds (for details about parameters, see [9]).
It is important to note that, if there are several families
that meet these alignment coverage criteria, a partial
sequence is included in the one with which it shows the
strongest similarity score.
Modelling
To allow the treatment of partial sequences, we pro-
pose a modified version of our approach. We redefine
the previously mentioned graph G = (Vc, Ec) and we
define the undirected graph H = G ∪ (Vp, Ep) with two
sets of vertices Vc and Vp, the complete and partial
sequences respectively, and the set of edges Ep between
complete and partial sequences, each edge in Ep being
weighted by the similarity score. We also impose that
edges between partial sequences are not allowed. In
this case, nc = |Vc|, np = |Vp|, n = nc + np, mc = |Ec|,
mp = |Ep| and m = mc + mp. At this point, we note
that sequence families correspond to the connected
components of a subgraph of H obtained by only con-
serving the edge of maximum weight for each vertex
in Vp: this will guarantee that each partial sequence is
connected to only one complete sequence and prevent
partial sequences to link two connected components.
As described previously, the problem consists in build-
ing a novel graph H∗ = G∗ ∪ (Vp,E∗

p) that has the fol-
lowing properties:

• H* is a spanning star forest,
• H* is called a semi-bipartite graph, i.e. a graph that
can be partitioned into two exclusive and compre-
hensive parts (Vc and Vp) with internal edges (con-
necting vertices of the same part) only existing
within one of the two parts (E∗

e)[23]. The particular-
ity is here that edges between the two parts are
weighted,
• ∀v Î Vp, deg(v) = 1.

Online procedure and parallelization
First, it is necessary to insert an additional step between
the two steps of the above-mentioned online procedure:
build a subset of Ep by selecting for each vertex the
edge of maximal weight, in O(mp) time. Then we extend
the step (2) to all the vertices in Vp for a time complex-
ity in O(n). This procedure runs in O(n) space since it
requires the storage of n parent values. For the paralle-
lized algorithm, we modify the merging of two forests
presented in Algorithm 2 to consider vertices of Vp and
once again select edges of maximal weight, such that
the overall parallel complexity can be estimated to be in
O(m/q+ nq).

Miele et al. BMC Bioinformatics 2011, 12:116
http://www.biomedcentral.com/1471-2105/12/116

Page 4 of 9

The SiLiX software package
All the presented algorithms are implemented into the
SiLiX software package which is written in ANSI C++
and uses MPI (Message Passing Interface) and elements
of the well-established Boost library http://www.boost.
org. SiLiX can take two kinds of input. First, the user
can provide the result file of an all-against-all BLAST
search (genomic or protein sequences) in tabular format
(option -outfmt 6 in BLAST). In that case, SiLiX per-
forms the filtering step by analyzing BLAST hits to
search for pairs of sequences that fulfill similarity cri-
teria (alignment coverage, sequence identity) set by the
user to build families. In this mode, partial sequences
can be treated separately, as described above. Second, if
the user prefers to use other types of criteria for the fil-
tering, SiLiX can simply take as input a list of pairs of
sequences IDs and perform the clustering step. Compi-
lation and installation are compliant with the GNU
standard procedure. The package is freely available on
the SiLiX webpage http://lbbe.univ-lyon1.fr/SiLiX.
Online documentation and man pages are also available.
SiLiX is licensed under the General Public License
http://www.gnu.org/licenses/licenses.html.

Results and Discussion
SiLiX is faster and more memory efficient than other
methods
To test SiLiX and compare it to state-of-the-art pro-
grams, we extracted protein sequences from the
HOGENOM database (Release 5, [9]). The current
release of HOGENOM contains 3,666,568 protein
sequences (76% bacteria, 3% archae and 20% eukarya).
We selected 3,159,593 non-redundant sequences includ-
ing about 1% partial sequences. Sequences were com-
pared against each others with BLASTP [15] with an E-
value threshold set to 10-4. The BLAST output file con-
tained 1,905,335,339 pairwise alignments. Then we
selected three previously published programs, for which
the source code is publicly available: hcluster_sg [24]
and MC-UPGMA [25] that are based on hierarchical

clustering, and MCL [26] that relies on graph-based
heuristics.
The clustering of the protein dataset with SiLiX was

very fast (about 2 hours) and required only limited
memory capacity (0.4 GB). SiLiX outperformed the 3
other methods, both in terms of speed and RAM usage
(see Table 1). The program hcluster_sg took 40 times
more time than SiLiX to perform the clustering (about
4 days), and required a very large amount of RAM
memory (99 GB). With larger sequence datasets (which
are already present in databases), the RAM requirements
of hcluster_sg will certainly exceed computer memory
resources presently available. MCL also required a large
amount of memory (78 GB) and was very slow (we
stopped it after 10 days of calculation, before it finished
the clustering). MC-UPGMA is almost as efficient as
SiLiX in terms of RAM usage, but requires ample disk
space to hold intermediate files (49 GB of HDD). The
main problem with MC-UPGMA is that it is too slow
on such a large dataset. MC-UPGMA uses an iterative
procedure to cluster sequences. On our dataset, the first
20 iterations took 2 days. The authors of MC-UPGMA
tested their method on a smaller dataset and they indi-
cate in their article that 200 iterations were necessary to
reach convergence (see [25]). We therefore extrapolated
that MC-UPGMA would take more than 20 days on our
dataset, and hence we decided to stop it before it fin-
ished the clustering. Note also that to optimize the per-
formance of MC-UPGMA, the authors recommend
using very permissive similarity threshold (E-value =
100, see [25]), which is unaffordable given the number
of sequences in our dataset. In conclusion, SiLiX pre-
sents the best efficacy to tackle the challenge of huge
dataset analysis with CPU and memory requirements
equivalent to those of a laptop computer. Note that
SiLiX may also be used in combination with other
methods. To test this strategy, we first ran SiLiX with
permissive similarity thresholds (sequence identity 25%
and alignment coverage 80%), and then we used hclus-
ter_sg to subdivide families of more than 100 sequences.

Table 1 CPU time and memory requirements for SiLiX and three state-of-the-art programs on the dataset of
similarity pairs extracted from the HOGENOM database [9]

method CPU (min) RAM (GB)

SiLiX 138 0.4

SiLiX + hcluster_sg(100) [24] 552 23

hcluster_sg [24] 5604 99

MC-UPGMA [25] >27000(1) 0.5

MCL [26] >15000(2) 78
(1) estimated time (20 rounds took 2711 min., and 200 rounds were required in [25])

(2) manually stopped

hcluster_sg(100) corresponds to the use of hcluster_sg on the largest families (more than 100 sequences) retrieved by SiLiX with permissive similarity thresholds
(sequence identity 25% and alignment coverage 80%). SiLiX and MC-UPGMA run on a quadri-quadcore Xeon 2.66 GHz with 24 GB RAM, hcluster_sg and MCL
on a octo-quadcore Opteron 2.3 GHz with 64 GB RAM.

Miele et al. BMC Bioinformatics 2011, 12:116
http://www.biomedcentral.com/1471-2105/12/116

Page 5 of 9

http://www.boost.org
http://www.boost.org
http://lbbe.univ-lyon1.fr/SiLiX
http://www.gnu.org/licenses/licenses.html

This combined procedure still runs in a reasonable total
CPU time (about 9 hours, i.e. 10 times faster than hclus-
ter_sg alone, see Table 1) and also divides by 4 the RAM
usage. Furthermore the second step of this combined
procedure can easily be distributed on several
computers.

SiLiX is scalable in practice
As the number of available sequences increases dramati-
cally and the number of similarities is quadratic with
this number of sequences, the CPU time required for
the clustering is expected to increase very rapidly. To
ensure the scalability of our method, we designed a par-
allel implementation of SiLiX with a low number of
inter-processors communications to take advantage of
multiple kinds of parallel hardware architectures. This
algorithm delocalizes the processing of the sequence
similarity dataset, including the filtering step, and
merges the results in a last step (see Methods). We
designed a divide-and-conquer approach that requires
only q - 1 communications where q is the number of
processors, with a procedure for merging partial results
from two processors that is considerably faster than the
independent computations on each processor. For these
reasons, we observe practical performances consistent
with the theoretical complexity such that the run time
decrease is inversely-proportional to the number of pro-
cessors (see Figure 3).

Clustering quality
Although the speed and memory requirements are impor-
tant parameters for the choice of clustering method, the
most important criterion is of course the quality of the
results. Single linkage clustering is known to be proble-
matic because spurious similarities can lead to the cluster-
ing of non-homologous sequences. Even with stringent
sequence similarity criteria, single linkage clustering can
lead to erroneous clustering, because of the so-called pro-
blem of “domain chaining” [27], as illustrated in Figure 1.
To avoid this problem, SiLiX performs single linkage
clustering with alignment coverage constraints, i.e. pairs of
similar sequences are considered for the clustering only if
they meet two criteria: i) the alignment should cover at
least a given percentage of the longest sequence; ii)
sequence similarity within the alignment should exceed a
given threshold. To assess the quality of SiLiX clustering,
we used 2 different strategies. First, we compared cluster-
ing results to the classification of protein families reported
in the InterPro database [28]. Second we assessed the per-
formance of SiLiX on a set of 13 families of orthologous
genes encoded by mitochondrial genomes in 1821
metazoan species.
Evaluation of SiLiX performances with Interpro
We evaluated the performance of SiLiX on the
HOGENOM dataset, using the procedure proposed by
Loewenstein and colleagues [25]: we extracted the most
frequent correspondence between SiLiX families and
protein (not domain) families from InterPro (Release 22,
[28]) containing more than 10 sequences, and then we
calculated the specificity and sensitivity of SiLiX classi-
fication with respect to the InterPro family. We also
computed the Jaccard score (see [25]), which is a stan-
dard metric of the trade-off between specificity and sensi-
tivity. To evaluate the impact of sequence similarity
criteria, we ran SiLiX with different thresholds for
alignment coverage and percentage of identity. The per-
formance of SiLiX were compared to those obtained
with hcluster_sg, used alone or in combination with
SiLiX. (NB: the 2 other methods, MC-UPGMA and
MCL, could not be evaluated because of their excessive
running time). As expected, increasing the alignment
coverage and/or the sequence identity thresholds leads to
increase specificity (Figure 4a), but decreases sensitivity
(Figure 4b). The best trade-off between specificity and
sensitivity was obtained for thresholds of 80% for align-
ment coverage and 35% for sequence identity (Figure 4c).
With these parameters, the Jaccard score of SiLiX is
slightly better than that of hcluster_sg (Table 2). Interest-
ingly, the use of hcluster_sg in combination with SiLiX
(with permissive threshold) leads to a better Jaccard
score than hcluster_sg alone. Thus the use of SiLiX in
combination with other methods can strongly decrease
computing time without any loss in clustering quality.

Figure 3 CPU time of the parallelized version of SiLiX(plain)
according to the number of processors on the dataset of
similarity pairs extracted from the HOGENOM database [9],
compared with theoretical values (dashed). Run on a cluster of 2
octo-bicore Opteron 2.8 Ghz and 2 octo-quadcore Opteron 2.3 GHz.

Miele et al. BMC Bioinformatics 2011, 12:116
http://www.biomedcentral.com/1471-2105/12/116

Page 6 of 9

Evaluation of SiLiX performances with metazoan
mitochondrial gene families
We used InterPro to evaluate clustering performances
because this database is widely recognized for its quality
and it has already been used for that purpose [25]. This
strategy may however not be optimal because the build-
ing of the InterPro database also relies on arbitrary
sequence similarity criteria. Hence, some cases that were
considered as false positives in the above evaluations
might in fact correspond to true homologues (i.e. specifi-
city would be underestimated). Ideally, to evaluate clus-
tering quality, one would need a set of homologous gene
families known a priori, i.e. identified without using

sequence similarity criteria. The mitochondrial genome
of metazoan taxa can provide such an ideal test set.
Indeed, in animals the mitochondrial genome contains
13 protein-coding genes. These proteins show different
levels of sequence conservation across taxa, but the gene
content is extremely conserved: except in very rare cases,
all metazoan mitochondrial genomes contain these 13
genes [29,30]. This very strong conservation of synteny
allows the identification of orthologous genes, even with
very low levels of sequence similarity. We extracted from
RefSeq (Release 41, [31]) a set of complete mitochondrial
genomes from 1821 different species. The 13 mitochon-
drial proteins are present in all taxa, except ATP8 that is
missing in the genome of 6 species. These mitochondrial
proteins were then added to the HOGENOM dataset.
Sequence comparisons were performed with BLASTP
(using parameters indicated above), and the clustering
was performed with SiLiX on the entire dataset, using
thresholds of 80% for alignment coverage and 35% for
sequence identity. For each of the 13 gene families, the
majority of sequences were grouped in a single SiLiX
family. The sensitivity, measured as the number of
known proteins that are included in this first SiLiX
family, is generally very high: it is higher than 94% for 11
out of the 13 gene families, and even higher than 99% for
9 of them (Table 3). The ND6 family was split into 3
main SiLiX families corresponding respectively to deu-
terostomia, protostomia and other metazoa (porifera, pla-
cozoa and cnidaria), and containing overall 95% of all
known ND6 proteins. The ATP8 protein is very short
(about 50 amino-acids) and evolves rapidly. The largest
SiLiX family contains only 53% of all known ATP8, and
the three largest SiLiX families contain 77% of known
sequences, whereas 14% of known ATP8 were not
included in any SiLiX family - in most cases because
they did not have any BLAST hit with a E-value below
10-4. Thus, on this test set the sensitivity is generally very
good, except for rapidly evolving sequences. To evaluate
the specificity, we manually investigated all SiLiX
families containing at least one protein of our mitochon-
drial set. We did not identify a single case where one
mitochondrial protein was clustered with non-related
proteins. Thus, even though the clustering was per-
formed with the entire HOGENOM dataset (which con-
tained more than 3 million different proteins), we did not
detect any false positive clustering. This indicates that
single linkage clustering with alignment coverage con-
straints is robust to spurious similarity matches.

Conclusion
Different methods have been proposed for the clustering
of proteins into families of homologous sequences
[1,8,9,24-26,32]. These methods differ both in terms of
the quality of the clustering, and in terms of the

50% 80%

sp
ec

ifi
ci
ty

0
1

50% 80%
coverage

se
ns

iti
vi
ty

0
1

50% 80%

identity
25%
35%
45%

Ja
cc
ar
d

0
1

Figure 4 Clustering performance evaluation based on InterPro
classification. a) specificity, b) sensitivity and c) Jaccard coefficient
of SiLiX, used on similarity pairs extracted from the HOGENOM
database, with different values of threshold on the percentage of
sequence identity and alignment coverage.

Table 2 Comparison of clustering performances of SiLiX
and hcluster_sg (used alone or in combination with
SiLiX)

method (%identity) Jac. Spec. Sens.

SiLiX (0.25) 0.69 0.73 0.95

SiLiX (0.35) 0.78 0.88 0.89

SiLiX (0.45) 0.74 0.94 0.78

SiLiX (0.25) + hcluster_sg(100) 0.77 0.85 0.92

hcluster_sg 0.76 0.84 0.91

Specificity, sensitivity and Jaccard coefficient were estimated by comparison
with InterPro classification. The best quality metrics are indicated in bold.
SiLiX was used with an alignment coverage threshold set to 80% and with
various sequence identity thresholds. hcluster_sg was used on the entire
dataset or only on the largest families (more than 100 sequences) retrieved by
SiLiX with a permissive sequence identity thresholds of 25% (hcluster_sg
(100)).

Miele et al. BMC Bioinformatics 2011, 12:116
http://www.biomedcentral.com/1471-2105/12/116

Page 7 of 9

computing resources required to perform the clustering.
The single-linkage clustering approach is used in differ-
ent phylogenomic databases such as EnsemblCompara
[8] or HOGENOM [9]. Here we propose a new imple-
mentation of the single linkage clustering method with
alignment coverage constraints, SiLiX, which is extre-
mely efficient, both in terms of computing time and
memory requirements. Moreover, this method can be
cost-effectively run on parallel architectures, and hence
is easily scalable. Thus, in terms of the computing
resource requirements, this method is much more effi-
cient than other available methods for the treatment of
huge sequence datasets. In terms of clustering quality,
SiLiX performs as well as hcluster_sg, the only other
available clustering program that could be run in rea-
sonable time on such a large sequence dataset. Given its
speed, SiLiX may also efficiently be used as a first clus-
tering step, before running other algorithms.

Availability and requirements
• Project name: SiLiX
• Project home page: http://lbbe.univ-lyon1.fr/SiLiX
• Operating system(s): All Unix-like operating sys-
tems such as Linux and Mac OS X.
• Programming language: C++
• Other requirements: MPI, the Boost:program
options class, and optionally CppUnit and the Boost:
unordered_map class.
• License: GNU GPL.

Acknowledgements and Funding
The authors would like to thank Bastien Boussau, Daniel Kahn, Vincent
Lacroix, Marie-France Sagot, Franck Picard and Eric Tannier for helpful
discussions and comments, Bruno Spataro for the computing facilities and

Yanniv Loewenstein, Jan Baumbach and Antje Krause for their answers
about the availability and use of their programs. This work has been
supported by the French Agence Nationale de la Recherche under grant
NeMo ANR-08-BLAN-0304-01.

Authors’ contributions
VM developed the method and the software package. SP provided datasets
and carried out the validation of the approach. LD initiated the work and
participated in its coordination. All authors wrote the manuscript and gave
final approval.

Received: 28 October 2010 Accepted: 22 April 2011
Published: 22 April 2011

References
1. Petryszak R, Kretschmann E, Wieser D, Apweiler R: The predictive power of

the CluSTr database. Bioinformatics 2005, 21:3604-3609.
2. Meinel T, Krause A, Luz H, Vingron M, Staub E: The SYSTERS Protein Family

Database in 2005. Nucleic Acids Res 2005, 33:226-229.
3. Dehal PS, Boore JL: A phylogenomic gene cluster resource: the

Phylogenetically Inferred Groups (PhIGs) database. BMC Bioinformatics
2006, 7.

4. Li H, Coghlan A, Ruan J, Coin LJ, Heriche JK, Osmotherly L, Li R, Liu T,
Zhang Z, Bolund L, Wong GK, Zheng W, Dehal P, Wang J, Durbin R:
TreeFam: a curated database of phylogenetic trees of animal gene
families. Nucleic Acids Res 2006, 34:572-580.

5. Hartmann S, Lu D, Phillips J, Vision TJ: Phytome: a platform for plant
comparative genomics. Nucleic Acids Res 2006, 34:724-730.

6. Tian Y, Dickerman AW: GeneTrees: a phylogenomics resource for
prokaryotes. Nucleic Acids Res 2007, 35:328-331.

7. Wall PK, Leebens-Mack J, Muller KF, Field D, Altman NS, dePamphilis CW:
PlantTribes: a gene and gene family resource for comparative genomics
in plants. Nucleic Acids Res 2008, 36:970-976.

8. Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E:
EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic
trees in vertebrates. Genome Res 2009, 19:327-335.

9. Penel S, Arigon AM, Dufayard JF, Sertier AS, Daubin V, Duret L, Gouy M,
Perriere G: Databases of homologous gene families for comparative
genomics. BMC Bioinformatics 2009, 10(Suppl 6):S3.

10. Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC: Using sequence similarity
networks for visualization of relationships across diverse protein
superfamilies. PLoS ONE 2009, 4:e4345.

11. Fiat A, Woeginger JG, (Eds): In Online Algorithms, The State of the Art.
Volume 1442. Lecture Notes in Computer Science, Springer; 1998.

Table 3 Evaluation of SiLiX performances on mitochondrial genes of metazoan taxa

Gene Nb. Seq. Nb. SiLiXfamilies Nb. Seq. 1st fam. (%) Nb. Seq. 2nd fam. (%) Nb. Seq. 3rd fam. (%) Nb. Singletons (%)

ATP8 1815 26 959 (52.8) 294 (16.2) 144 (7.9) 258 (14.2)

ATP6 1821 2 1814 (99.6) 2 (0.1) - 5 (0.3)

COX1 1821 1 1820 (99.9) - - 1 (0.1)

COX2 1821 1 1818 (99.8) - - 3 (0.2)

COX3 1821 1 1821 (100) - - -

CYTB 1821 1 1820 (99.9) - - 1 (0.1)

ND1 1821 1 1821 (100) - - -

ND2 1821 11 1714 (94.1) 53 (2.9) 3 (0.2) 34 (1.9)

ND3 1821 2 1813 (99.6) 2 (0.1) - 6 (0.3)

ND4 1821 2 1812 (99.5) 2 (0.1) - 7 (0.4)

ND4L 1821 7 1758 (96.5) 4 (0.2) 3 (0.2) 47 (2.6)

ND5 1821 2 1815 (99.7) 2 (0.1) - 4 (0.2)

ND6 1821 16 1366 (75.0) 313 (17.2) 55 (3.0) 45 (2.5)

Protein-coding genes were extracted from complete mitochondrial genomes of 1821 different metazoan species, and clustered using SiLiX (see text). For each
of the 13 genes, we indicate the number of sequences present in the dataset, the number of families (containing at least 2 sequences) identified by SiLiX that
contained these sequences, and the number and percentage of sequences included in the 3 largest SiLiX families (when they exist), as well as the number and
percentage of singletons (SiLiX families containing one single sequence).

Miele et al. BMC Bioinformatics 2011, 12:116
http://www.biomedcentral.com/1471-2105/12/116

Page 8 of 9

http://lbbe.univ-lyon1.fr/SiLiX
http://www.ncbi.nlm.nih.gov/pubmed/15961444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18096613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18096613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19029536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19029536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19958513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19958513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19190775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19190775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19190775?dopt=Abstract

12. Das SK, Narsingh D: Divide- and- conquer-based optimal parallel
algorithms for some graph problems on EREW PRAM model. IEEE
transactions on circuits and systems 1988, 35(3):312-322.

13. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL,
Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR,
Bateman A: The Pfam protein families database. Nucleic Acids Res 2010,
38:D211-222.

14. Servant F, Bru C, Carrere S, Courcelle E, Gouzy J, Peyruc D, Kahn D:
ProDom: automated clustering of homologous domains. Brief
Bioinformatics 2002, 3:246-251.

15. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389-3402.

16. Vishwanathan S: Randomized online graph coloring. Journal of algorithms
1992, 13:657-669.

17. Tarjan R: Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1972, 1(2):146-160.

18. Katriel I, Meyer U: Elementary Graph Algorithms in External Memory.
Algorithms for Memory Hierarchies 2002, 62-84.

19. Tarjan RE: Efficiency of a Good But Not Linear Set Union Algorithm.
Journal of the ACM 1975, 22(2):215-225.

20. Alsuwaiyel MH: Algorithms: Design Techniques and Analysis World Scientific
Publishing Company; 1998.

21. Krishnamurthy A, Lumetta SS, Culler DE, Yelick K: Connected Components
on Distributed Memory Machines. Parallel Algorithms, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 1997.

22. Han Y, Wagner RA: An efficient and fast parallel-connected component
algorithm. Journal of the ACM 1990, 37(3):626-642.

23. Bramoulle Y, Lopez-Pintado D, Goyal S, Vega-Redondo F: Network
formation and anti-coordination games. International Journal of Game
Theory 2004, 33(1):1-19.

24. Ruan J, Li H, Chen Z, Coghlan A, Coin LJ, Guo Y, Heriche JK, Hu Y,
Kristiansen K, Li R, Liu T, Moses A, Qin J, Vang S, Vilella AJ, Ureta-Vidal A,
Bolund L, Wang J, Durbin R: TreeFam: 2008 Update. Nucleic Acids Res 2008,
36:D735-740.

25. Loewenstein Y, Portugaly E, Fromer M, Linial M: Efficient algorithms for
accurate hierarchical clustering of huge datasets: tackling the entire
protein space. Bioinformatics 2008, 24:i41-49.

26. Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Res 2002, 30:1575-1584.

27. Joseph JM, Durand D: Family classification without domain chaining.
Bioinformatics 2009, 25:45-53.

28. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P,
Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N,
Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M,
Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D,
Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD,
Valentin F, Wilson D, Wu CH, Yeats C: InterPro: the integrative protein
signature database. Nucleic Acids Res 2009, 37:D211-215.

29. Boore JL: Animal mitochondrial genomes. Nucleic Acids Res 1999,
27:1767-1780.

30. Signorovitch AY, Buss LW, Dellaporta SL: Comparative genomics of large
mitochondria in placozoans. PLoS Genet 2007, 3:e13.

31. Pruitt KD, Tatusova T, Klimke W, Maglott DR: NCBI Reference Sequences:
current status, policy and new initiatives. Nucleic Acids Res 2009, 37:
D32-36.

32. Wittkop T, Baumbach J, Lobo FP, Rahmann S: Large scale clustering of
protein sequences with FORCE -A layout based heuristic for weighted
cluster editing. BMC Bioinformatics 2007, 8:396.

doi:10.1186/1471-2105-12-116
Cite this article as: Miele et al.: Ultra-fast sequence clustering from
similarity networks with SiLiX. BMC Bioinformatics 2011 12:116.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Miele et al. BMC Bioinformatics 2011, 12:116
http://www.biomedcentral.com/1471-2105/12/116

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/19920124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12230033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18056084?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18586742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18586742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18586742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11917018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11917018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10101183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17222063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17222063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17941985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17941985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17941985?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Modelling
	Single linkage and filtering with alignment coverage constraints
	Sequence families are the connected components of the similarity network

	Using a memory-efficient structure
	Online procedure for a set of similarities
	Parallelization for multiple sets of similarities

	Dealing with partial sequences
	Filtering
	Modelling
	Online procedure and parallelization

	The SiLiX software package

	Results and Discussion
	SiLiX is faster and more memory efficient than other methods
	SiLiX is scalable in practice
	Clustering quality
	Evaluation of SiLiX performances with Interpro
	Evaluation of SiLiX performances with metazoan mitochondrial gene families

	Conclusion
	Availability and requirements
	Acknowledgements and Funding
	Authors' contributions
	References

