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Abstract

Background: Copy number variants (CNVs), including deletions, amplifications, and other rearrangements, are
common in human and cancer genomes. Copy number data from array comparative genome hybridization (@CGH)
and next-generation DNA sequencing is widely used to measure copy number variants. Comparison of copy
number data from multiple individuals reveals recurrent variants. Typically, the interior of a recurrent CNV is
examined for genes or other loci associated with a phenotype. However, in some cases, such as gene truncations
and fusion genes, the target of variant lies at the boundary of the variant.

Results: We introduce Neighborhood Breakpoint Conservation (NBC), an algorithm for identifying rearrangement
breakpoints that are highly conserved at the same locus in multiple individuals. NBC detects recurrent breakpoints
at varying levels of resolution, including breakpoints whose location is exactly conserved and breakpoints whose
location varies within a gene. NBC also identifies pairs of recurrent breakpoints such as those that result from
fusion genes. We apply NBC to aCGH data from 36 primary prostate tumors and identify 12 novel rearrangements,
one of which is the well-known TMPRSS2-ERG fusion gene. We also apply NBC to 227 glioblastoma tumors and
predict 93 novel rearrangements which we further classify as gene truncations, germline structural variants, and
fusion genes. A number of these variants involve the protein phosphatase PTPN12 suggesting that deregulation of
PTPN12, via a variety of rearrangements, is common in glioblastoma.

Conclusions: We demonstrate that NBC is useful for detection of recurrent breakpoints resulting from copy
number variants or other structural variants, and in particular identifies recurrent breakpoints that result in gene
truncations or fusion genes. Software is available at http://http.//cs.brown.edu/people/braphael/software.html.

Background

Copy number variants (CNVs) are genomic rearrange-
ments that result in a different number of copies of a
segment of the genome, and include deletions, amplifi-
cations, and unbalanced translocations. CNVs are com-
mon in the human genome, and CNVs have been
associated with several diseases [1-3]. Similarly, CNVs
(also referred to as copy number aberrations, or CNAs)
are found in many cancer genomes [4,5]. Thus, detec-
tion of CNVs and characterization of the gene or genes
that they affect is an important task.

Array comparative genome hybridization (aCGH) [6-8]
is a widely-used experimental technique for the mea-
surement of copy number variants in genomes. aCGH
involves the hybridization of differentially fluorescently
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labeled DNA fragments from a test genome and a refer-
ence genome to a set of genomic probes derived from
the reference genome sequence. Measurements of the
test:reference fluorescence ratio at each probe identify
locations in the test genome that are present in lower,
higher, or similar copy in the reference genome, produ-
cing a copy number profile of the test genome. Copy
number profiles are typically compared across indivi-
duals to identify recurrent CNVs that are shared by mul-
tiple individuals. These recurrent CNVs may be
germline polymorphisms, or in the case of cancer sam-
ples, recurrent somatic mutations. Large cohorts of
aCGH data from cancer genomes (e.g. from The Cancer
Genome Atlas (TCGA) [9]) provide the statistical power
to identify numerous recurrent somatic CNVs. Several
methods have been introduced to identify recurrent
CNVs, including GISTIC [10], CoCoA [11], STAC [12],
and CMDS [13]. These methods (with the exception of
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CMDS) first partition each copy number profile into
regions (or segments) of equal copy number, producing
a segmentation for each individual (see [14] for a survey
of segmentation methods). Since a CNV alters the copy
number of multiple adjacent probes, segmenting the
copy number profile helps overcome experimental
errors at each probe. These segmentations are then
combined to identify aberrant intervals that are shared
by multiple individuals. An implicit assumption of this
approach is that the target of the CNV lies within the
interval; this is the case for oncogenes that lie within
amplifications or tumor suppressor genes that lie within
deletions.

Some recurrent rearrangements do not target a gene
within the aberrant interval, but rather target a gene or
locus at the boundary of the interval. A striking example
is the TMPRSS2-ERG fusion gene in prostate cancer
[15]. This fusion gene results from a 3 Mb deletion on
chromosome 21, where the two endpoints (or break-
points) of the deletion lie in the two partner genes of
the fusion. More recently, next-generation DNA sequen-
cing has shown other fusion genes that are located at
the endpoints of the CNVs (cf. figure two (b) in [16]).
These and other examples motivate the development of
methods that discover recurrent breakpoints rather than
recurrent intervals.

We introduce a novel algorithm called Neighborhood
Breakpoint Conservation (NBC) to identify recurrent
breakpoints in copy number data. NBC computes the
probability that a breakpoint occurs between each pair
of adjacent probes over all possible segmentations of a
single copy number profile and then combines these
probabilities across multiple profiles to identify recur-
rent breakpoints. The probabilistic approach contrasts
with the typical methods for aCGH analysis that com-
pute only a single segmentation of a copy number pro-
file. Consideration of a single segmentation is reasonable
for identifying recurrent aberrations because large aber-
rations will typically overlap in different individuals as
long as the segmentations reasonably approximate the
true underlying copy number level. However, identifica-
tion of recurrent breakpoints is more sensitive to the
choice of segmentation. Due to measurement errors in
individual probes, the optimal segmentation of each
individual profile may not “align” across profiles. Thus it
is necessary to consider multiple suboptimal segmenta-
tions. Moreover the probabilistic approach allows use to
account for biological variability in the location of a
breakpoint within a gene or other locus. We apply NBC
to aCGH data from 36 primary prostate tumors and
predict 12 CNVs, including one gene truncation and
one fusion gene which is the well-known TMPRSS2-
ERG fusion gene. We also apply NBC to 227 glioblas-
toma (GBM) tumors and predict 91 CNVs, including 23

Page 2 of 15

gene truncations and 33 fusion genes. Additionally, we
predict 35 germline CNVs from 107 available matched
blood samples from GBM patients. A number of the
somatic CNV predictions in GBM involve the protein
phosphatase PTPN12, suggesting that deregulation of
PTPN12 via a variety of rearrangements is common in
glioblastoma. We note that NBC is readily adapted to
analyze copy number profiles obtained from next-gen-
eration DNA sequencing data [17,18].

Methods

The Neighborhood Breakpoint Conservation (NBC)
algorithm takes, as input, aCGH data from many indivi-
duals and identifies recurrent breakpoints and pairs of
recurrent breakpoints in a subset of the individuals (Fig-
ure 1). The first step in NBC, as in most aCGH analysis,
is to segment each copy number profile into intervals of
equal copy number.

While many existing methods produce a single seg-
mentation for aCGH data [19-21], NBC uses a dynamic
programming approach [22] to compute the probability
P(X|.A) of a copy number profile X given a segmenta-
tion A. NBC then employs a stochastic backtrace to
compute the posterior probability P(.A|X). Using this
approach, one can derive the segmentation 4 with max-
imum probability, but more importantly, one can com-
pute the posterior probability of events of interest over
all possible segmentations of the data. In particular, we
compute the probability of a breakpoint between each
pair of adjacent probes, as well as the probability of a
breakpoint within a fixed interval or probes (e.g. from a
gene region).

The second step of NBC is to combine breakpoint
probabilities in each individual to determine breakpoints
that appear in multiple individuals. Similar to [11], we
use a binomial order statistic [23] to compute a p-value
for the event that k or more individuals share a break-
point between two adjacent probes. We then extend this
breakpoint score to consider pairs of breakpoints that
are shared by multiple individuals. Finally, we also
define a score for a breakpoint that may occur anywhere
within an interval of adjacent probes (e.g. a gene) that is
shared by multiple individuals. We detail each of these
two steps in the following sections.

A Probability Model for Segmentation and Breakpoint
Analysis

A probabilistic formulation of the segmentation problem
assigns a probability to each possible segmentation of X.
The probability of other events, such as a breakpoint
occurring at a particular locus, are readily computed
from this model. Probabilistic segmentation approaches
have been previously applied to CNV detection
[21,24-26], but we found that these methods either:
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Figure 1 The Neighborhood Breakpoint Conservation (NBC) algorithm. NBC consists of two steps: computing breakpoint probabilities and
recurrent breakpoint detection. Copy number ratios (CNRs) derived from aCGH data from multiple individuals are segmented using a Bayesian
change-point algorithm that computes the probability of a breakpoint between adjacent probes (in red). The breakpoint probabilities are then
combined to detect recurrent breakpoints (black rectangles). We identify recurrent breakpoints that occur between adjacent probes as well as
recurrent breakpoints that occur within a set of probes defined by a genomic interval. To detect CNVs, we identify pairs of recurrent breakpoints. )

require a finite number of copy number levels (as in the
Bayesian Hidden Markov method of [26]); focus on
probabilistic model selection rather than an explicit
probabilistic model for the segmentation itself [21]; or
do not perform well on high-resolution oligonucleotide
arrays (see Additional File 1, Figure S3 for a comparison
to [25]).

Our algorithm is based on the change-point model
described in [22]. Consider a copy number profile X =
(X1,...X,), where X; is the log, ratio of test.reference
DNA at the ith probe. We assume that the test genome
consists of an unknown number of segments K with cor-
responding copy numbers O = {#,...,0¢}. Following the
usual assumptions for aCGH data [20,21,24-26], we
assume that each X; is normally distributed with mean y;
and variance 6. The variance 6° is a hyperparameter
whose value must be set. Below we describe how we esti-
mate this value from the data. The mean y; equals 6; if
probe i lies within segment s. Further, we assume that X;
from different segments are independent. Let /; denote
the number of probes in segment j, and let k,,x denote
the maximum number of segments in the test genome.

We define the breakpoint sequence A = (Ay, ..., Ax,1),
where A, is the index of the probe at the start of the v
+ lst segment and Ag,; = n is a “dummy” breakpoint
signifying the end of the sequence (i.e. there are K+1
breakpoints representing K segments in A). Thus,

v
Av=le+1for1§v§K.
j=1

The unknowns in our model are the breakpoint
sequence A, the number of segments K, and the seg-
ment copy numbers ®. We assume a priori that © is
independent of A and K. We further assume that the
segment copy numbers 6, € © are independent and
normally distributed with mean p, and variance o
(The assumption that 6, ~ N'(uo, 0¢) gives a conjugate
prior for X; ~ N (i, 02) allowing us to compute some
probabilities analytically. See Additional File 1, Section
SA.) We assign a prior on breakpoints sequences A
such that all A with K segments are equally likely,
P(A|K) = (1’1()_1. Additionally, we assign a prior on the
number of segments K such that there is a probability
of; of a single segment (K = 1) and the remaining
values of K, 1 <K < kpyay are equally likely. Note that
these priors do not make any strong assumptions about
the data. essentially, the a priori assumption is that with
probability é
segment.

From the priors P (A|K) and P (K = k) and the values
of the hyperparameter o; yo, 0o, the joint distribution P
(X, A, O, K) can be derived (Additional File 1, Section
SA).

the data is produced from a single
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Hyperparameter Estimation

The segmentation and breakpoint analysis algorithm
relies on setting values for the hyperparameters yq (the
baseline mean), ¢ (the variance in segment copy num-
bers), and 6> (the variance in probe measurements). We
describe how to estimate these from the copy number
profile X = (X,...,.X,,). First, we set y, to be the median
of the X;. To estimate the variances 002 and 0%, we form
sliding windows of 10 probes. Let V be the median of
the sample variances of the windows, and let M be the
maximum absolute difference between the sample
means of the windows and p,. We set the measurement
variance 0> = 2V and the segment variance o = M.

To test the sensitivity of our results to our particular
estimates of the hyperparameters - in particular our esti-
mates of 0> and o - we performed two simulations that
are inspired by the simulations of [25].

Simulation #1 We generated an artificial chromo-
some with 100 probes containing a 40 probe single-copy
gain (log, ratio of 1) placed in the center. We then
introduced various amounts of gaussian noise N(0, o)
in the probe measurements, setting
0?2 =0.1,0.25,0.5,1,1.25, or 1.5. For each value of o7,
we generated 100 such chromosomes.

Simulation #2 We generated an artificial chromo-
some with 100 probes with gaussian noise N(0, 0.5) in
the probe measurements. We then introduced a 40
probe aberration at various log, ratios. 0.5, 1, 2, 3, 4, 5,
and 6. For each log, ratio, we generated 100 such
chromosomes.

A representative sample of the datasets for Simulation
#1 and Simulation #2 are shown in Additional File 1,
Figure S1 and S2.

We ran NBC on datasets from the two simulations
with different estimates for the variances o and o’
detailed below. To assess the quality of the resulting
breakpoint predictions, we consider probe locations with
Pr(breakpoint) > 0.5 to be a predicted breakpoint. We
assume that a predicted breakpoint detects a true break-
point if the predicted breakpoint location is < 2 probes
away from the true breakpoint location. We count the
number of true positive predictions (0, 1, or 2). Addi-
tionally, we count the number of false positive predic-
tions for each dataset. We average the true positives and
false positives over the 100 artificial chromosomes.

Simulation #1 has a fixed aberration log, ratio, so we
set the segment variance o3 = M? and we test three dif-
ferent values of 6% V, 2V, and 3V (Figure 2 top row).
Compared to our estimated value of 6> = 2V, the num-
ber of true positives is similar when 6> = V or 6> = 3V
and the measurement error o7 is low. As o} increases,
setting 0 = V results in more false positives compared
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to our estimate 6> = 2V, while setting 6> = 3V results in
fewer total predictions, including true positives. Thus, at
lower measurement error the results are not particularly
sensitive to the value of 62, with our estimate 6> = 2V
maintaining reasonable sensitivity and specificity and
higher measurement error.

Since Simulation #2 has fixed measurement error, we
set the measurement variance 6> = 2V and test three
different values of o : M, M2, and M> (Figure 2 bottom
row). The number of true and false positives is very
similar for all three estimates of 6. The only exception
is that when of = M3, there is a large variation in the
number of false positives over the different simulated
chromosomes. These simulations show that our hyper-
parameter estimates are reasonable, although other esti-
mation approaches are possible.

The simulations underscore that the ability to detect
the breakpoints of a segment is related to both the copy
number of the segment (governed by the segment var-
iance of) and the measurement error (governed by the
variance 6°). For example, in Simulation #1 (where ol is
fixed), as the probe variance 6> increases the average
number of false positive breakpoints increases while the
average number of true positives remains below one. To
avoid such situations, we do not segment the data and
immediately report 0 breakpoints when our estimates of
o and oy satisfy o > 30p.

Computing Breakpoint Probabilities

We compute the probability of a breakpoint between
pairs of adjacent probes by sampling breakpoint
sequences A from the distribution P (A|X) and counting
the proportion of samples that have a breakpoint
between adjacent probes. Note that the probability of a
breakpoint between adjacent probes can be analytically
computed (see [22]). We describe a sampling strategy,
since this will generalize to the computation of the
probability of breakpoints that lie within an interval or
pairs or breakpoints. For notational convenience, let

X[i:j] = (Xi,..., )(]), X(i:j] (Xi+11~~’ )(}), and X[i:j) = (Xiw-x )(j—l)
The probability of X is

Femax
P(X) = Y P(XIK = k)P(K = k), (1)
k=1
where
P(X|K = k) =
> / P(X,A = A|®,K = k)P(©)dO
Al All=k )
k
- ¥ 1/ PGinaier@e,
A All=k v=1
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for Simulation #1 and Simulation #2 over various values of variance parameters o’ (top row) and 002 (bottom row). The bars are averaged over
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Here, || A|| is the length (number of breakpoints) of
AP (X|K = k) is the probability of the data X given
that the test genome is divided into k segments, and
P(Xja,A,.1)|6) is the probability that X4, ,:a,) consists
of a single segment. The product in Equation (2)
results from the segment independence assumption.
The choice of a conjugate prior for P () allows the
integral to be analytically computed (Additional File 1,
Section SA.2). However, calculating P (X|K = k) in this
way requires summing over all possible breakpoint
sequences A and is computationally infeasible. A
dynamic program allows the efficient computation of
this term.

Dynamic program

Let P (Xj;|k) be the probability of observing Xj;,;; given
that it is generated from k different segments. We compute
this P (X1,|k) for 1 < k < kyax and 1 < < # as follows.

Base case:
P = - 2 3)
Xi11) = | P(Xpijjlk =1,6,0°)P(0)d6.
Recurrence:
Zv<j [P(X[li/)|k - l)P(X[V]]ll)] (4)
P(Xujlk) = for 1 <k<j
0 for k>j.

The final row of the dynamic programming table con-
tains P (X|K = k) for 1 < k < kpax which is used in
Equation (1) to compute P (X).

Recursive sampling

We use P (X|K = k) as well as the base case P (X[;;;|1)
and intermediate terms P (X[;,7|k) in the dynamic pro-
gram to sample exact and independent breakpoint
sequences A using a backward sampling technique [22].
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1. Draw K = k from P (K = k|X), determined by
inverting P (X|K = k) using Bayes Rule.

2. Set Ay, = 1.

3. Draw Ay, Ag.1, -, Aj recursively using the condi-
tional distributions computed by the recurrences in
Equation (4). Given A, the location of the beginning
of the gth segment, the distribution of A, is
obtained as follows.

P(Aq71 :j|X,Aq = m) =
P(X1119 — 1)P(X(iom) 1) (5)
P(Xj1:milq) '

From a set of breakpoint sequences sampled in pro-
portion to P (A|X), we determine the probability of a
breakpoint occurring between two adjacent probes by
counting the proportion of samples that contain a
breakpoint at that locus. Other probabilities derived
from these sampled breakpoint sequences are described
in subsequent sections.

Runtime analysis

The base cases P (X|;;|1) require O(n*) computations
and the dynamic program requires O(nk,,) computa-
tions; thus computing P (X|K = k) is achieved in O(n(n
+ kmay)) time. All computations necessary to sample a
breakpoint sequence A are already computed in the
dynamic program, so sampling is linear in the number
of breakpoints K drawn from P (X|K = k).

Identifying Recurrent Breakpoints

After sampling breakpoint sequences for a set of indivi-
duals, we identify recurrent breakpoints that appear in
many individuals at the same genomic locus. Let
S =1{Sy,...,Sn} be a set of copy number profiles from
m individuals, where S; = (Xj, ..., X,,) is the copy number
profile for individual j. We assume that the same array
probes are used for each individual, i.e. the ith probe in
individual S; is at the same location as the ith probe in
individual S;. We analyze recurrent breakpoints at two
levels of resolution.

» Recurrent probe breakpoints occur between the
same two array probes in a subset of individuals.

o Recurrent interval breakpoints occur within the
same interval of the genome in a subset of
individuals.

In addition to analyzing these types of recurrent
breakpoints, we also consider pairs of recurrent break-
points to identify recurrent CNVs. Note that these pairs
may indicate intrachromosomal CNVs, as in the case of
classic copy number aberrations like duplications and
deletions, or interchromosomal CNVs, as in the case of
(unbalanced) translocations.
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Recurrent probe breakpoints

For each probe, we define a score that measures the
presence of a breakpoint in a subset of individuals. We
design this score to account for the observation that
the number of breakpoints in copy-number profiles,
particularly in a set of cancer samples, is highly vari-
able. That is, in a set of cancer samples, even from the
same cancer type, there will typically be highly rear-
ranged cancer genomes with many breakpoints, and
less rearranged genomes with relatively few break-
points. This variability in the number of breakpoints is
maintained following our Bayesian segmentation
approach - despite the fact that we use the same flat
prior for each individual - because there is strong evi-
dence to support a larger number of breakpoints in
some samples. Since there is a greater chance of recur-
rent breakpoints occurring randomly in a collection of
highly rearranged genomes than a collection of less
rearranged genomes, it is advantageous to consider the
number of breakpoints in each profile when scoring
recurrent breakpoints. Because the variability of num-
ber of breakpoints across different individuals is typi-
cally not well matched by a standard distribution, one
approach is to use a permutation test that preserves
the number and probability of breakpoints in each pro-
file while permuting their location. We instead derive a
score for recurrent probe breakpoints based on a bino-
mial order statistic [11,23]. This score first normalizes
the breakpoint probability at each probe in each indivi-
dual according to the breakpoint probabilities across
all probes in individual. These normalized values are
then combined across multiple individuals to produce
a recurrent breakpoint score.

Let b; be the event that a breakpoint lies between
probes i and i + 1; P (b,|S)) is the breakpoint probability
at probe i in individual S;, and is computed by counting
the proportion of sampled breakpoint sequences A that
have a breakpoint between i and i + 1. Let p;(i) be the
fraction of probes with a higher breakpoint probability
than probe i in individual S; (the normalized rank of
probe i).

_ 1{g = P(bglSy) = P(bilS))}|
n

pi(i) ©)

Let 7z be a permutation of the individuals S such that
P, (1) < pr, (1) < ... < P, (©). For 1 < h < m, we wish
to determine the probability that s or more individuals
have a breakpoint at location i. Because of our normali-
zation of the breakpoint probabilities in each sample,
under the null hypothesis the individual scores p;(i) are
independent and uniformly distributed in [0,1]. Thus,
the probability that h or more individuals have a break-
point at location i is given by the tail of the binomial
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distribution with success probability py,(i). The p-value
for the probe location i is

p(i) =
m
min @
hmin<h<m
j=h

(’7) P (Y (1 = (D))",

where we are only interested in scoring those break-
points that are present in at least /,;, patients. Note
that because the binomial order statistic is computed
from the empirical distribution p; of breakpoint prob-
abilities in each sample, the relative magnitude of the
breakpoint probability is not used in the computation.
Despite this loss of information, we found that the bino-
mial order statistic produced reasonable results on real
data (See Results below) and was more efficient than a
permutation test.

Finally, we assume that a recurrent breakpoint is also
conserved in the direction of the copy number change:
all samples with a recurrent breakpoint are either break-
points that go from relatively low copy number to high
copy number of vice versa. A breakpoint sequence A
defined a segmentation, and we use the mean values of
each segment to determine the direction of copy num-
ber change. The copy number change is positive if the
mean of the segment to the right of the breakpoint is
higher than the mean of the segment to the left. We
test both cases for each recurrent breakpoint, doubling
the number of hypotheses we test. We control the False
Discovery Rate (FDR) using the method of Benjamini
and Hochberg [27].

Recurrent interval/gene breakpoints

We extend our approach to find recurrent breakpoints
that lie within a genomic interval W; e.g. a gene. Unlike
the recurrent probe breakpoint calculation above, where
each probe was a priori equally likely to contain a
breakpoint, intervals that contain more probes are a
priori more likely to contain a breakpoint than intervals
that contain fewer probes. To account for this, we use a
log-odds score that is defined as follows. Let b € W be
the event that one or more breakpoints lie between any
pair of adjacent probes within W. Similarly, let b ¢ W
be the event that no breakpoint lies between any adja-
cent probes within W. The log-odds score ¢;(W) that
patient S; contains a breakpoint within W is

P(Silb € W)
P(Sjlb ¢ W)

P(b € WISj) P(b ¢ W)
P(b ¢ WIS)) P(be W)’

Lj(W) = log
(8)

The conditional probabilities P(b € W |S)) and P(b ¢ =
W'|S;) describe probabilities over all possible segmenta-
tions of the copy number profile S;. P(b € W |S)) is
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determined by sampling breakpoint sequences A and
counting the number of samples that contain one or
more breakpoints in the interval W. P(b ¢ = W [S)) is
then simply 1- P(b € W [S)). The scaling factor
P(b ¢ W)
P(be W)
to place breakpoints such that none of them lie in W:

is computed by counting the number of ways

Femax
P(b¢ W)= P(K=k)P(b¢ WK = k)
k=1
- (n— W) ©)
=Y Pk =k) g
k=1

" /
(&)
PbeW)=1—-P(b¢W). (10)
Here, the last term in Equation (9) counts the number
of ways to choose k breakpoints that do not lie in W. As
in the recurrent breakpoint computation above, we use
the binomial order statistic to combine log-odds scores
across patients. First, in an analogous computation to
Equation (6) we normalize the log-odds scores using the
empirical cumulative distribution, which produces the
normalized rank of ¢(W) for all j:

18+ €(W) = (W)

11
Wi (11)

pi(W) =

Finally, using the p;(W') scores for each patient S; we
compute the p-value p(W ) using the binomial order
statistic as in Equation (7).

For the experiments below, we define the the copy
number change for an interval W to be positive if at
least 90% of the breakpoints within the interval are posi-
tive and negative if at least 90% of the breakpoints
within the interval are negative. Otherwise, we do not
call a breakpoint in W.

Pairs of recurrent interval/gene breakpoints

We identify pairs of non-overlapping recurrent interval
breakpoints using a log-odds score similar to Equation (8)
that scores two breakpoints occurring in intervals W3 and
W,. An important case we will consider is when W7 and
W, are genes. Let b € W; be the event that a breakpoint
lies between any pair of adjacent probes within W7, and
Let b’ e W, be the event that a breakpoint lies between
any pair of adjacent probes within W,. We define the
score for intervals W, and W, for a particular patient S;.

P(Silb € Wi NV € W))
(W1, W) =1 J
i(W1, W2) = log P(S|lb ¢ Wy Ul ¢ W))
| [P(berﬂb’eWQISj)
=10 X
SLP(b¢ WU ¢ W,lS)
P(b ¢ Wi UV ¢ Ws)
P(berﬂb/eWQ) '

(12)
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Each term is computed similarly to Equation (8). If
W, and W, are on different chromosomes, the events P
(be W) and P (b’e W,) are independent and Equa-
tions (9) and (10) are used to compute the scaling factor
P(b¢ Wi U ¢ W,)
P(b e W, Ny e WQ)
chromosome then the events are dependent, and the
numerator in the scaling factor is

P(b¢ Wi UV ¢ Wy) =

Fimay (13)
D P(K=k)P(b ¢ Wy Ub ¢ WylK = k),

k=1
Where

. If the intervals are on the same

Pb¢ WL UY ¢ WaK =k) =

(nf |W1I> . (n— |W2I> _ (n— Wil — \Wz|>
k k k
; .
k
The denominator in the scaling factor is then
P(be Wlﬂb, € Wz) =1 —P(b¢ WIUb, ¢ Wz)

The p-value p(W;, W5) is computed by normalizing as
in Equation (11) according to the empirical distribution
of log-odds scores over all pairs of non-overlapping
intervals and then using the binomial order statistic to
determine the final p-value. Here, we test four hypoth-
eses for each pair W; and W, by considering the four
combinations of direction of copy number change: {(+,
+), (- <), (- +), (-, -)}. Note that restricting W7 and W,
to each contain a single probe identifies pairs of recur-
rent probe breakpoints.

Predicting Structural Variants, Gene Truncations, and
Fusion Genes

Our statistics for single recurrent breakpoints (p(i) and
p(W)) and pairs of recurrent breakpoints (p(i, j) and p
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(W1, W,)) provide a flexible framework to predict parti-
cular rearrangement configurations. In this paper, we
classify predictions into structural variants, gene trunca-
tions, and fusion genes.

Structural variants

Pairs of recurrent probe breakpoints may indicate germ-
line or somatic rearrangements that have recurrent
breakpoints at the highest resolution allowed by the spa-
cing of probes. To identify these rearrangements, we
compute the pairs of recurrent probe breakpoint statistic
for every pair of probes within each chromosomal arm.
Note that this limits the structural variant predictions to
intrachromosomal rearrangements only.

Gene truncations

Recurrent breakpoints found within a single gene may
indicate a gene truncation, resulting in the loss of func-
tionality for a particular gene. To predict gene trunca-
tions, we compute the recurrent interval breakpoint
detection statistic, using the set of gene regions from
RefSeq as our intervals of interest.

Fusion genes

Pairs of recurrent interval breakpoints found within
genes suggest potential fusion genes. We compute pairs
of recurrent interval breakpoints using all pairs of gene
regions from RefSeq as our intervals of interest. Note
that not all pairs of recurrent genes suggest functional
fusion genes. For example, a rearrangement that joins
the 3’ end of one gene to the 3’ end of another gene is
typically not a functional fusion gene. Thus, we restrict
our attention to pairs of interval breakpoints with parti-
cular configurations (Figure 3).

Specifically, consider a pair of recurrent intervals G;
and G, that represent gene regions. Each gene has an
orientation, orient(G;) € {+, -} and orient(G,) € {+, -}.
Additionally, the breakpoint that lies within each recur-
rent interval has an associated direction of copy number
change, dir(Gy) € {+, -} and dir(G;) € {+, -}. We assume
that a fusion gene contains the 5’ end of one gene

(A) Average Segmentation
Higher CN
Lower CN_—\_ e

orient( G;) =+
dir(G;) =-

orient( G,) =+
dir(G,) =+
Figure 3 Fusion Gene Configurations. Fusion genes are pairs of recurrent genes that have the following configuration. (A) Each gene G; and G,

has an associated orientation, orient(G;) and orient(G,). Additionally, each recurrent breakpoint has an associated change in relative copy number,
dir(Gy) and dir(G,). (B) A fusion gene joins the ends of G; and G, such that the 5" end of one gene is joined to the 3" end of the other gene.

(B) Functional Fusion Gene

Sfusion( G,,G,) =1
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joined to the 3’ end of the other gene and thus satisfies
the following rule.

1 if orient(G1) x dir(G1) #
orient(G,) x dir(G,)
0 otherwise.

fusion(Gy, G,) = (14)

Filtering and Ranking Predictions

We apply a number of additional steps to remove and
prioritize predictions. In the case of fusion genes, if
there are many predictions remaining we rank these
predictions by the preservation of copy number across
the fusion point.

Removing single probe aberrations

Single probe aberrations are segments consisting of a
single probe. Since these are difficult to distinguish from
experimental artifacts, we remove them from further
consideration. Single probe aberrations are characterized
by two large changes in copy number in adjacent
probes, where the segments adjacent to this aberration
have a similar copy number. We identify these probes
and remove them from the analysis.

Removing known CNVs

We remove predictions that are new known CNVs. We
say that a single probe is “near” a known CNV in the
Database of Genomic Variants (DGV) [28] if it is within
10 kb of a recorded copy number variant endpoint, and
a gene region is “near” a known copy number variant if
it is within 10 kb of a recorded copy number variant
endpoint. Additionally, a pair of intrachromosomal
recurrent breakpoints are near a variant if at least one
of the breakpoints is within 10 kb of a recorded copy
number variant endpoint and the mutual overlap
between the prediction interval (defined by the pair of
breakpoints) and the variant interval is greater than 50%.
Ranking predictions

Since fusion genes (and other recurrent pairs of break-
points) are physically joined in the test genome, we
expect the copy number of either side of the breakpoint
to be the same. Thus, we rank these predictions by cal-
culating the root mean squared difference (RMS)
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between the copy number levels of probes surrounding
the breakpoint. Consider fusion gene predictions. we
know the configuration of the gene partners, but we do
not know exactly where the breakpoint lies. Thus, we
determine the copy number on each side of the fusion
as the average of the three flanking probes of the left
gene partner and the three flanking probes of the right
gene partner. If /1 patients have the breakpoint, deter-
mined by the argmax of Equation (7), cl(i) is the left-

flanking copy number of the fusion and Cf) is the right-
flanking copy number of the fusion, then the RMS dif-
ference of the pair of conserved breakpoints is

LS () _ 0y
RMS = hg(cf —q’). (15)

Results

We applied NBC to two aCGH datasets. a collection of
36 primary prostate tumors, and 227 glioblastoma
(GBM) tumors. For each dataset, we computed recur-
rent probe breakpoints, recurrent gene breakpoints,
pairs of recurrent probe breakpoints, and pairs of recur-
rent gene breakpoints.

Prostate Dataset

We applied NBC to Agilent aCGH data from a collec-
tion of 36 primary prostate tumors. Each sample con-
tained copy number ratios for 235,719 aCGH probes
that were mapped to the hgl7 human reference genome.
We examined recurrent gene breakpoints using the gene
regions from 16,162 hgl7 RefSeq genes. Table 1 reports
the number of predicted variants, and tables listing the
breakpoint coordinates and additional information are
in Additional File 2, Tables S1, S2, S3 and S4. We visua-
lize predictions by plotting the average segmentation for
each of the individuals that were involved of the final p-
value computations for recurrent breakpoints in Equa-
tion (7). The average segmentation is created by

Table 1 Predicted Recurrent Breakpoints in 36 Prostate Samples.

Breakpoint Type Rearrangement Type(s) # Predicted # in DGV # Novel

Recurrent Probes Highly Conserved Breakpoints 80 66 14

Recurrent Genes Gene Truncations 6 5 1

Pairs of Recurrent Probes Germline or Somatic 38 28 10
Structural Variants

Pairs of Recurrent Genes Intrachromosomal Fusion Genes 2 1 1

With Fusion Gene Config.* Interchromosomal Fusion Genes 2 2 0

Breakpoint types are described by the indicated rearrangement type. ‘# Predicted’ is the number of predictions that are significant with FDR < 0.01. ‘# in DGV’
counts the breakpoints near known structural variants in the Database of Genomic Variants (DGV). ‘# Novel’ is the number of predictions that are not near any

known variant in DGV.

* Novel pairs of recurrent gene breakpoints consistent with the fusion gene configuration.
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Figure 4 A Predicted Gene Truncation in Prostate Cancer. The
Complement Factor H (CFH) gene on Chromosome 1 contains a
recurrent gene breakpoint, suggesting the truncation of the 3’
region in 9 individuals.

averaging the segment copy numbers ® at each probe
for the sampled breakpoint sequences A. We predict
one novel gene truncation, which occurs in the Comple-
ment factor H (CFH) gene (Figure 4). CFH encodes a
protein that is secreted into the bloodstream and is
essential for complement system regulation, and CFH
polymorphisms are associated with macular degenera-
tion [29]. From pairs of recurrent probes, we predict 10
novel variants, the most significant of which lies in the
DEFB locus ((p-value = 1.3 x 10%?, Figure 5). DEFB
genes have been associated with the risk of prostate
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cancer [30], and this locus lies near many known CNVs,
complicating the study of nearby genes. We predict only
one fusion gene, the well-known TMPRSS2-ERG fusion
gene, which we detect in 5 patients with a p-value of 2.7
x 107'% (Figure 6). The TMPRSS2-ERG fusion gene has
an RMS difference of 0.2520.

Comparison to Segmentation Approaches

To demonstrate the importance of breakpoint uncer-
tainty in computing recurrent breakpoints, we compared
our fusion gene predictions to those obtained using a sin-
gle segmentation for each individual. We segmented copy
number profiles from each individual using Circular Bin-
ary Segmentation (CBS) [19] (Additional File 1, Section
SB). CBS returns a single segmentation (and thus a set of
breakpoints) for each individual. From these sets of
breakpoints, for each pair of genes from the same chro-
mosome, we counted the number of patients with a
breakpoint in each gene. Only two individuals had a pair
of breakpoints within TMPRSS2 and ERG from the CBS
segmentations (Additional File 1 Figure S4). Further,
there are 5 fusion gene predictions that occur in two
individuals after applying the filters described previously,
and zero predictions that occur in more than two indivi-
duals. Since no other common fusion genes in prostate
cancer are known, we assume that these remaining pre-
dictions are false positives. Thus, NBC is more sensitive
and specific in fusion gene identification.

Glioblastoma Dataset

We next applied our method to Agilent 244 K aCGH
data of glioblastoma (GBM) tumors from The Cancer
Genome Atlas [9]. Data was collected from 233 GBM
patients, including 227 tumor samples and 107 matched

Segmentations of 17 Patients
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Figure 5 A Predicted Rearrangement Highly Conserved at the Probe Level in Prostate Cancer. This amplified region on Chromosome 8
lies in the DEFB locus, and the recurrent breakpoints are conserved at the probe level in 17 individuals. Arrows indicating DEFB genes are
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Figure 6 The TMPRSS2-ERG Fusion Gene in Prostate Cancer. We identify the TMPRSS2-ERG fusion gene in 5 prostate cancer patients. The
mean segmentations for each patient (shown in blue) are computed by finding the segment parameters 6 for each segmentation A drawn
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from the posterior distribution P(A|X) and then averaging these values across all segmentations.
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blood samples. Each sample contains 227,612 aCGH
probes across the hgl8 human reference genome. Gene
regions from 16,162 hgl8 RefSeq genes were used to
determine recurrent gene breakpoints. Classification of
breakpoints in the tumor samples and filtering of the
predictions were performed as above. Additionally, to
restrict attention to somatic breakpoints we remove
from consideration any recurrent breakpoints found in
the tumor samples that also appear in the blood sam-
ples. When identifying recurrent probe breakpoints in
the blood samples, we increase the False Discovery Rate
(FDR) from 0.01 to 0.1 to more aggressively filter recur-
rent breakpoints in tumor samples. Table 2 reports the
number of predicted variants, and tables listing the
breakpoint coordinates and additional information are
in Additional File 2, Tables S5, S6, S6 and S8.

We predict 23 gene truncations from the tumor sam-
ples, three of which are shown in Figure 7. Each of these
has some support in the literature for an association
with glioblastoma or other neuronal diseases. ECOP is
co-amplified with EGFR in glioblastoma as well as other

cancers [31,32], RUNX2 is expressed in glioblastoma
cells [33], and PCDH11X is associated with late-onset
Alzheimer’s disease [34]. We also predict 33 fusion
genes from the tumor samples. One of these predictions
involving INTS2 and MED13 might arise due to a tan-
dem duplication whose breakpoints are within the two
genes (Figure 8a). Another prediction involves PPP1R9A,
which is an imprinted gene that appears in neuronal tis-
sues and has been shown to be expressed in other
embryonic tissues [35] (Figure 8b). The phosphatase
PTPNI12 appears highly rearranged in 16 GBM patients,
and it is a partner in a surprisingly large fraction (11/33)
of the fusion gene predictions (Table 3). PTPN12 is
known to dephosphorylate oncogenes c-ABL and Src;
thus deregulation of PTPN12 might contribute to tumor
survival [36]. While the 5" end of PTPN12 appears
amplified with respect to the log, copy number ratios at
the 3’ end, many fusion gene predictions consist of a
deletion of the 3’ end (i.e. Figure 9a). Additionally, some
fusion gene candidates might indicate multiple rearran-
gements, such as a translocation occurring after an

Table 2 Predicted Recurrent Breakpoints in 227 GBM Samples and 107 Blood Samples.

Breakpoint Type

Rearrangement Type(s)

# Predicted #in DGV # in Blood # Novel

Recurrent Probes in Tumor Highly Conserved Breakpoints 538 343 13 189
Recurrent Genes in Tumor Gene Truncations 92 69 23 23
Pairs of Recurrent Probe in Blood* Germline Structural Variants 88 53 N/A 35
Pairs of Recurrent Genes in Tumor w/Fusion Gene Config. **  Intrachromosomal Fusion Genes 75 45 5 7
Interchromosomal Fusion Genes 396 316 53 26

Columns are described in Table 1, except for ‘# in Blood" which indicates the number of predictions that also appear in the blood samples and are ignored as

somatic predictions.
* FDR is increased to < 0.1 for blood samples.

** Novel pairs of recurrent gene breakpoints consistent with the fusion gene configuration.
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Figure 7 Predicted Gene Truncations in GBM. These three recurrent gene breakpoints found on Chromosome 7, Chromosome X, and
Chromosome 6 respectively suggest truncations of genes associated with glioblastoma or other neuronal diseases. (A) The recurrent breakpoint

in ECOP has a large change in copy number; this gene is near EGFR and is the breakpoint location for the EGFR amplification. (B) PCDH11X
appears to arise from a short deletion within a relatively amplified region, though the deletion breakpoint varies within the PCDH11X gene
region. (C) RUNX2 contains two probe locations with recurrent probe breakpoints that each have small copy number change at approximately

4542 Mb and 45.58 Mb.
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Figure 8 Predicted Intrachromosomal Fusion Genes in GBM. (A) The INTS2-MED13 rearrangement on Chromosome 17 is identified in 9
individuals and arises from an amplification. A tandem duplication that affects the 3" end of MED13 and the 5" end of INTS2 will fuse the
promoter region of INTS2 to MED13. (B) The PPPTR9A-PSMC2 rearrangement on Chromosome 7 is identified in 6 individuals and arises from a

deletion.
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Table 3 Predicted Rearrangments involving PTPN12 in GBM.

Recurrent Gene PTPN12

Gene Genomic Location # Patients
PTPN12 chr7.77004708-77106533 16
Intrachromosomal Fusion Gene Predictions
5" End Gene 3" End Gene # Patients RMS
PTPN12 chr7.77005287-77106533 RSBN1L chr7.77163678-77246421 8 0.1081
PTPN12 chr7.77004708-77106533 LUC7L2 chr7.138695173-138757626 8 0.2605
Interchromosomal Fusion Gene Predictions
5" End Gene 3" End Gene # Patients RMS
TMEM30A chr6.76019357-76051074 PTPN12 chr7.77005287-77106533 6 0.1306
RNF150 chr4.142006174-142273412 PTPN12 chr7.77005287-77106533 5 0.1409
PTPN12 chr7.77005287-77106533 MED13 chr17.57374747-57497348 9 0.1906
CLK1 chr2.201425977-201434830 PTPN12 chr7.77005287-77106533 8 03168
Z/RANB2 chr1.71301561-71319266 PTPN12 chr7.77005287-77106533 9 0.3250
PTPN12 chr7.77005287-77106533 UBR1 chr15.41022389-41185512 9 0.3475
PTPN12 chr7.77005287-77106533 LINGO1 chr15.75692423-75711712 8 03787
PPIL3 chr2.201443923-201460583 PTPN12 chr7.77004708-77106533 6 04741

The phosphatase PTPN12 appears in 10 predicted fusion genes, and is also a predicted gene truncation for 16 patients. The predictions are ranked according to
the root mean squared difference (RMS) of the copy number on either side of the fusion point.

amplification that results in a fusion gene configuration
(Figure 9b). Due to the large number of candidate rear-
rangement partners of PTPN12, it might be the deregu-
lation of PTPN12, and not necessarily any single
rearrangement, that is important for GBM.

Discussion

NBC successfully identifies known fusion genes and
structural variants. For fusion genes, NBC’s considera-
tion of uncertainty and variability in the locations of
breakpoints provides an advantage over methods that
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Figure 9 Predicted Fusion Genes with PTPN12 as a Gene Partner. (A) The predicted intrachromosomal fusion gene PTPN12/RSBNI1L is one
of two predicted intrachromosomal fusion genes. This fusion gene arises from a deletion within an amplified region, and is only present in 8
individuals out of 16 that have some rearrangement with PTPN12. (B) The predicted interchromosomal fusion gene TMEM30A-PTPN12 is one of
8 predicted interchromsomal fusion genes. While the breakpoint in TMEM30A appears to arise due to a short amplification, a translocation
occurring after an amplification (where all of TMEM30A is amplified) may also explain this fusion gene signature.
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compare individual segmentations of copy number pro-
files. This advantage is mitigated for variants with highly
conserved breakpoints such as germline structural var-
iants that are common in a population. However, it is
possible that NBC would be helpful for complex, or
overlapping, structural variants, where recurrent break-
points might be a stronger signal than recurrent aber-
rant intervals.

NBC relies on a Bayesian change point algorithm,
which requires specifying both prior distributions and a
few hyperparameters. The weak priors that we use do
not make strong assumptions about the data. However,
hyperparameter estimation for Bayesian change point
algorithms remains a difficult problem, and is sensitive
to the particular type of data to be segmented. While
our method chooses the hyperparameters systematically
from the data rather than requiring user-defined input,
poor parameter estimation leads to excessive breakpoint
calling if there are no breakpoints to find or if the
experimental error cannot be modeled by a constant ¢°.
We presented one approach to estimate hyperpara-
meters from aCGH data, but more sophisticated meth-
ods (e.g. empirical Bayesian approaches) could be used
[37].

In this paper, we focused on applications of NBC to
aCGH data. But NBC is equally applicable to copy num-
ber profiles generated by mapping DNA sequence reads
to a reference genome [17,18]. With next generation
sequencing technologies, breakpoint resolution can be
much higher than most current aCGH methods, but the
problems of breakpoint variability and uncertainty
remain.

Conclusions

We have introduced Neighborhood Breakpoint Conser-
vation (NBC), an algorithm that identifies recurrent
breakpoints in data from multiple individuals. NBC cor-
rectly identifies a known fusion gene (TMPRSS2-ERG)
in aCGH data from 36 prostate tumors and predicts
gene truncations, structural variants, and fusion genes in
aCGH data from glioblastoma. We expect that applica-
tion of our method to additional samples will allow us
to uncover and categorize other recurrent germline and
somatic rearrangements.

Additional material

Additional File 1: The Appendix includes full derivations of the
segmentation model, comparisons to other segmentation
algorithms, and data aquisition and implementation details.

Additional File 2: Tables of all the breakpoints and pairs of
breakpoints predicted for the prostate dataset and the GBM
dataset. Note that the values reported for the prostate dataset (e.g. the
RMS difference) are log base 10, while the values reported for the GBM
dataset are log base 2.

Page 14 of 15

Acknowledgements

We thank Chip Lawrence, Bill Thompson, and Eric Ruggieri for technical
discussions, and Brendan Hickey and Hsin-Ta Wu for their contributions to
preliminary analysis of fusion genes. We also thank the anonymous
reviewers of an earlier version of the manuscript for helpful suggestions. AR
is supported by a National Science Foundation Graduate Research
Fellowship. BJR is supported by a Career Award at the Scientific Interface
from the Burroughs Wellcome Fund, DOD/CDMRP Breast Cancer Synergy
Award W81XWH-07-1-0710, and the Susan G. Komen Breast Cancer
Foundation. This work was made possible in part with funding from the
ADVANCE Program at Brown University, under NSF Grant No. 0548311.
Prostate data sample collection was funded by the National Cancer Institute
to the Baylor Prostate Cancer SPORE (P50CA058204)

Author details

1Departmem of Computer Science, Brown University, Providence, Rl, USA.
“Department of Urology, University of California at San Francisco, San
Francisco, CA, USA. *Department of Pathology, Baylor College of Medicine,
Houston, TX, USA. “Vancouver Prostate Centre, Vancouver, BC, Canada.
°Center for Computational Molecular Biology, Brown University, Providence,
RI, USA.

Authors’ contributions

PLP, MMI, and CC provided aCGH data from prostate cancer samples. AR
implemented the algorithm and performed experiments. BJR conceived of
the project and supervised the work. AR and BJR wrote the manuscript. All
authors read and approved the manuscript.

Received: 30 August 2010 Accepted: 21 April 2011
Published: 21 April 2011

References

1. Pinto D, et al Functional impact of global rare copy number variation in
autism spectrum disorders. Nature 2010, 466:368-372.

2. St Clair D: Copy number variation and schizophrenia. Schizophr Bull 2009,
35:9-12.

3. Choy KW, Setlur SR, Lee C, Lau TK: The impact of human copy number
variation on a new era of genetic testing. 8/0G 2010, 117:391-398.

4. Pinkel D, Albertson DG: Array comparative genomic hybridization and its
applications in cancer. Nat Genet 2005, 37(Suppl):S11-7.

5. Paris PL, Andaya A, Fridlyand J, Jain AN, Weinberg V, Kowbel D, Brebner JH,
Simko J, Watson JE, Volik S, Albertson DG, Pinkel D, Alers JC, van der
Kwast TH, Vissers KJ, Schroder FH, Wildhagen MF, Febbo PG, Chinnaiyan AM,
Pienta KJ, Carroll PR, Rubin MA, Collins C, van Dekken H: Whole genome
scanning identifies genotypes associated with recurrence and metastasis
in prostate tumors. Hum Mol Genet 2004, 13:1303-1313.

6. Pinkel D, Segraves R, Sudar D, Clark S, Poole |, Kowbel D, Collins C, Kuo WL,
Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG: High
resolution analysis of DNA copy number variation using comparative
genomic hybridization to microarrays. Nat Genet 1998, 20(2):207-11.

7. Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L,
Brady A, Sebat J, Troge J, West JA, Rostan S, Nguyen KC, Powers S, Ye KQ,
Olshen A, Venkatraman E, Norton L, Wigler M: Representational
oligonucleotide microarray analysis: a high-resolution method to detect
genome copy number variation. Genome Res 2003, 13(10):2291-305.

8. Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, Kincaid R, Tsang P,
Curry B, Baird K, Meltzer PS, Yakhini Z, Bruhn L, Laderman S: Comparative
genomic hybridization using oligonucleotide microarrays and total
genomic DNA. Proc Natl Acad Sci USA 2004, 101(51):17765-70.

9. MclLendon R, et al: Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature 2008,
455:1061-1068.

10.  Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D,
Vivanco |, Lee JC, Huang JH, Alexander S, Du J, Kau T, Thomas RK, Shah K,
Soto H, Perner S, Prensner J, Debiasi RM, Demichelis F, Hatton C, Rubin MA,
Garraway LA, Nelson SF, Liau L, Mischel PS, Cloughesy TF, Meyerson M,
Golub TA, Lander ES, Mellinghoff IK, Sellers WR: Assessing the significance
of chromosomal aberrations in cancer: methodology and application to
glioma. Proc Natl Acad Sci USA 2007, 104:20007-20012.

11. Ben-Dor A, Lipson D, Tsalenko A, Reimers M, Baumbusch LO, Barrett MT,
Weinstein JN, Berresen-Dale AL, Yakhini Z: Framework for Identifying


http://www.biomedcentral.com/content/supplementary/1471-2105-12-114-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-12-114-S2.XLS
http://www.ncbi.nlm.nih.gov/pubmed/20531469?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20531469?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18990708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20105165?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20105165?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15920524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15920524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15138198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15138198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15138198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9771718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9771718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9771718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12975311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12975311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12975311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15591353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15591353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15591353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18772890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18077431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18077431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18077431?dopt=Abstract

Ritz et al. BMC Bioinformatics 2011, 12:114
http://www.biomedcentral.com/1471-2105/12/114

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

Common Aberrations in DNA Copy Number Data. RECOMB 2007 2007,
LNBI(4453):122-136.

Diskin SJ, Eck T, Greshock J, Mosse YP, Naylor T, Stoeckert CJ, Weber BL,
Maris JM, Grant GR: STAC: A method for testing the significance of DNA
copy number aberrations across multiple array-CGH experiments.
Genome Res 2006, 16:1149-1158.

Zhang Q, Ding L, Larson DE, Koboldt DC, McLellan MD, Chen K, Shi X,
Kraja A, Mardis ER, Wilson RK, Borecki IB, Province MA: CMDS: a population-
based method for identifying recurrent DNA copy number aberrations
in cancer from high-resolution data. Bioinformatics 2010, 26:464-469.

Lai WR, Johnson MD, Kucherlapati R, Park PJ: Comparative analysis of
algorithms for identifying amplifications and deletions in array CGH
data. Bioinformatics 2005, 21(19):3763-70.

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW,
Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB,

Pienta KJ, Rubin MA, Chinnaiyan AM: Recurrent fusion of TMPRSS2 and
ETS transcription factor genes in prostate cancer. Science 2005,
310(5748):644-8.

Campbell PJ, Stephens PJ, Pleasance ED, O'Meara S, Li H, Santarius T,
Stebbings LA, Leroy C, Edkins S, Hardy C, Teague JW, MenZies A,
Goodhead |, Turner DJ, Clee CM, Quail MA, Cox A, Brown C, Durbin R,
Hurles ME, Edwards PA, Bignell GR, Stratton MR, Futreal PA: Identification
of somatically acquired rearrangements in cancer using genome-wide
massively parallel paired-end sequencing. Nat Genet 2008, 40:722-729.
Chiang DY, Getz G, Jaffe DB, O'Kelly MJ, Zhao X, Carter SL, Russ C,
Nusbaum C, Meyerson M, Lander ES: High-resolution mapping of copy-
number alterations with massively parallel sequencing. Nat Methods
2009, 6:99-103.

Yoon S, Xuan Z, Makarov V, Ye K, Sebat J: Sensitive and accurate
detection of copy number variants using read depth of coverage.
Genome Res 2009, 19:1586-1592.

Olshen AB, Venkatraman ES, Lucito R, Wigler M: Circular binary
segmentation for the analysis of array-based DNA copy number data.
Biostatistics 2004, 5(4):557-572.

Picard F, Robin S, Lavielle M, Vaisse C, Daudin JJ: A statistical approach for
array CGH data analysis. BMC Bioinformatics 2005, 6:27.

Zhang NR, Siegmund DO: A modified Bayes information criterion with
applications to the analysis of comparative genomic hybridization data.
Biometrics 2007, 63:22-32.

Liu JS, Lawrence CE: Bayesian inference on biopolymer models.
Bioinformatics 1999, 15:38-52.

David H, Nagaraja H: In Order Statistics.. 3 edition. Edited by: Hoboken NJ.
John Wiley; 2003.

Barry D, Hartigan JA: A Bayesian Analysis for Change Point Problems.
Journal of the American Statistical Association 1993, 88(421):309-319.
Erdman C, Emerson JW: A fast Bayesian change point analysis for the
segmentation of microarray data. Bioinformatics 2008, 24:2143-2148.
Guha S, Li Y, Neuberg D: Bayesian Hidden Markov Modeling of Array CGH
Data 2008, 103:485-497.

Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: A Practical
and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
Society. Series B (Methodological) 1995, 57:289-300.

lafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW,
Lee C: Detection of large-scale variation in the human genome. Nat
Genet 2004, 36:949-951.

Christen WG, Glynn RJ, Chew EY, Albert CM, Manson JE: Folic acid,
pyridoxine, and cyanocobalamin combination treatment and age-related
macular degeneration in women: the Women's Antioxidant and Folic
Acid Cardiovascular Study. Arch Intern Med 2009, 169:335-341.

Huse K, Taudien S, Groth M, Rosenstiel P, Szafranski K, Hiller M, Hampe J,
Junker K, Schubert J, Schreiber S, Birkenmeier G, Krawczak M, Platzer M:
Genetic variants of the copy number polymorphic beta-defensin locus
are associated with sporadic prostate cancer. Tumour Biol 2008, 29:83-92.
Eley GD, Reiter JL, Pandita A, Park S, Jenkins RB, Maihle NJ, James CD: A
chromosomal region 7p11.2 transcript map: its development and
application to the study of EGFR amplicons in glioblastoma.
Neurooncology 2002, 4:86-94.

Baras A, Yu Y, Filtz M, Kim B, Moskaluk CA: Combined genomic and gene
expression microarray profiling identifies ECOP as an upregulated gene
in squamous cell carcinomas independent of DNA amplification.
Oncogene 2009, 28:2919-2924.

Page 15 of 15

33, Vladimirova V, Waha A, Luckerath K, Pesheva P, Probstmeier R: Runx2 is
expressed in human glioma cells and mediates the expression of
galectin-3. J Neurosci Res 2008, 86:2450-2461.

34.  Carrasquillo MM, Zou F, Pankratz VS, Wilcox SL, Ma L, Walker LP,

Younkin SG, Younkin CS, Younkin LH, Bisceglio GD, Ertekin-Taner N,

Crook JE, Dickson DW, Petersen RC, Graff-Radford NR, Younkin SG: Genetic
variation in PCDH11X is associated with susceptibility to late-onset
Alzheimer's disease. Nat Genet 2009, 41:192-198.

35, Nakabayashi K, Makino S, Minagawa S, Smith AC, Bamforth JS, Stanier P,
Preece M, Parker-Katiraee L, Paton T, Oshimura M, Mill P, Yoshikawa Y,

Hui CC, Monk D, Moore GE, Scherer SW: Genomic imprinting of PPPTR9A
encoding neurabin | in skeletal muscle and extra-embryonic tissues. J
Med Genet 2004, 41:601-608.

36. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J,
Schmittgen TD, Patel T: Involvement of human micro-RNA in growth and
response to chemotherapy in human cholangiocarcinoma cell lines.
Gastroenterology 2006, 130:2113-2129.

37. Lian H, Thompson WA, Thurman R, Stamatoyannopoulos JA, Noble WS,
Lawrence CE: Automated mapping of large-scale chromatin structure in
ENCODE. Bioinformatics 2008, 24:1911-1916.

doi:10.1186/1471-2105-12-114
Cite this article as: Ritz et al: Detection of recurrent rearrangement
breakpoints from copy number data. BMC Bioinformatics 2011 12:114.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/16899652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16899652?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20031968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20031968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20031968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16081473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16254181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16254181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18438408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18438408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18438408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19043412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19043412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19657104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19657104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15475419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15475419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15705208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15705208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17447926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17447926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10068691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18667443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18667443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15286789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19237716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18515986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18515986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19525979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19525979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19525979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18438928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18438928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18438928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19136949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19136949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19136949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15286155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15286155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16762633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16762633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18591192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18591192?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	A Probability Model for Segmentation and Breakpoint Analysis
	Hyperparameter Estimation
	Computing Breakpoint Probabilities
	Dynamic program
	Recursive sampling
	Runtime analysis

	Identifying Recurrent Breakpoints
	Recurrent probe breakpoints
	Recurrent interval/gene breakpoints
	Pairs of recurrent interval/gene breakpoints

	Predicting Structural Variants, Gene Truncations, and Fusion Genes
	Structural variants
	Gene truncations
	Fusion genes

	Filtering and Ranking Predictions
	Removing single probe aberrations
	Removing known CNVs
	Ranking predictions


	Results
	Prostate Dataset
	Comparison to Segmentation Approaches

	Glioblastoma Dataset

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

