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Abstract

Background: The prediction of the structure of large RNAs remains a particular challenge in bioinformatics, due to
the computational complexity and low levels of accuracy of state-of-the-art algorithms. The pfold model couples a
stochastic context-free grammar to phylogenetic analysis for a high accuracy in predictions, but the time
complexity of the algorithm and underflow errors have prevented its use for long alignments. Here we present
PPfold, a multithreaded version of pfold, which is capable of predicting the structure of large RNA alignments
accurately on practical timescales.

Results: We have distributed both the phylogenetic calculations and the inside-outside algorithm in PPfold,
resulting in a significant reduction of runtime on multicore machines. We have addressed the floating-point
underflow problems of pfold by implementing an extended-exponent datatype, enabling PPfold to be used for
large-scale RNA structure predictions. We have also improved the user interface and portability: alongside
standalone executable and Java source code of the program, PPfold is also available as a free plugin to the CLC
Workbenches. We have evaluated the accuracy of PPfold using BRaliBase I tests, and demonstrated its practical use
by predicting the secondary structure of an alignment of 24 complete HIV-1 genomes in 65 minutes on an 8-core
machine and identifying several known structural elements in the prediction.

Conclusions: PPfold is the first parallelized comparative RNA structure prediction algorithm to date. Based on the
pfold model, PPfold is capable of fast, high-quality predictions of large RNA secondary structures, such as the
genomes of RNA viruses or long genomic transcripts. The techniques used in the parallelization of this algorithm
may be of general applicability to other bioinformatics algorithms.

Background
Recent years have seen an explosion in the amount of
biological data available from large-scale genome
sequencing projects, but this increase has not been met
by a corresponding increase in single-core computer
power to bioinformatically analyze this data. It is there-
fore predicted that the scientific community will face
serious computational problems in the coming years in
their efforts to interpret genomic data. The prediction
of RNA secondary structure remains a particularly chal-
lenging problem, in a large part due to its computational
complexity: even without pseudoknot prediction, the
execution time of state-of-the-art algorithms scales as O

(L3) or worse with the length of the sequence, L. One
way to address this problem is by exploiting heuristics
to reduce complexity, but this happens at the cost of
accuracy in predictions, which is particularly detrimental
in the case of already inaccurate algorithms. Another
possibility is to apply emerging multithreading para-
digms to more accurate algorithms, and obtain the pre-
cise results in a fraction of the time.
RNA secondary structure prediction algorithms are

typically based on either thermodynamic or stochastic
context-free grammar (SCFG) models, and are imple-
mented using dynamic programming. A recent review
[1] gives an overview over existing tools. Previous
attempts to parallelize RNA structure prediction algo-
rithms have included thermodynamic prediction [2-5]
and the SCFG-based profiling of RNAs [6], as well as
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massively parallel genetic algorithms [7] and hardware-
accelerated folding on FPGA chips [8] and GPUs [9].
Despite improved runtimes, the accuracy of these algo-
rithms remains low, due to models that may not be
appropriate for very long sequences.
Here we focus on pfold [10,11], which couples a phy-

logenetic model to a SCFG to accurately predict the
consensus structure of RNA alignments in O(L3) time
[12] (Figure 1). Due to the combined approach, the
pfold model is theoretically capable of obtaining high-
quality predictions of large and biologically significant
RNA structures, such as the genomes of RNA viruses.
However, it has not been possible in practice to use
pfold for such predictions: it is single-threaded, so it can
take days to fold a long alignment, and it fails to predict
large structures correctly due to floating-point under-
flow errors [12].
In this study, we address both of these issues, and cre-

ate PPfold, an improved and multithreaded version of
pfold. To our knowledge, PPfold is the first example of a
multithreaded comparative RNA secondary structure
prediction algorithm. We demonstrate its practical use
by predicting the secondary structure of an alignment of
24 HIV-1 genomes.

Results and Discussion
Algorithm
PPfold uses the same combined evolutionary and SCFG
model as pfold [10,11]. A summary of this model is pro-
vided in the Methods section. Here we focus strictly on
the parts of PPfold that present improvements on pfold.
Multithreading the phylogenetic calculations
After estimating the phylogenetic tree, the pfold algo-
rithm calculates column- and column-pair likelihoods,
based on post-order traversal through the tree. We have
only distributed the calculation of column-pair likeli-
hoods, as this is the most time-consuming part with a
time complexity of O(L2), where L is the length of the
alignment. It is desirable to distribute the calculations as
evenly as possible, so all processing units have an equal
workload. As all column-pairs are treated independently,
a natural division for multithreading arises by grouping
a number of column pairs together in such a way that
there are as many groups with equal numbers of column
pairs as processing units. However, a unique mapping
from the number of groups, n, to the size of each group,
s, does not exist.
Column-pair likelihoods are symmetric, so in total

there are L2

2n
column pairs to calculate. For simplicity,

we chose to distribute these on the basis of the first
iterator column: to each group, we incrementally assign
as many first iterator columns (and all their pairing col-
umns) as possible, such that the total number of column
pairs in all groups up to group number k > 0 does not
exceed

sk = k ·
(
L2

2n
− L2

2
(mod n)

)

This provides an approximately even distribution of
workload to the processing units, and we observe a cor-
responding reduction in running time on multicore
machines. (Figure 2)
Multithreading the inside-outside algorithm
The inside-outside algorithm fills two lower triangular
matrices of dimension L for each nonterminal symbol of
the grammar, through dynamic programming. The
Knudsen-Hein grammar contains 3 nonterminal vari-
ables, so in total there are 6 such matrices to be filled.
The algorithm exhibits heavy dependencies, making its
distribution into independent “jobs” nontrivial. In
PPfold, we have chosen an asynchronous wavefront
computational approach that exploits the geometry of
the algorithm.
We divide the triangle into equal-sized parallelogram-

shaped “sectors” (Figure 3). We will refer to the number
of sectors in the first row of the triangle by N. The
dependency of the sectors on each other in the inside
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Figure 1 Comparison of RNA secondary structure prediction
algorithms. The receiver operating characteristic (ROC) plots
obtained from an independent study [12] simultaneously display
both sensitivity and selectivity for various RNA secondary structure
prediction algorithms, including pfold, iterated loop matching (ILE)
and RNalifold. Accuracies of the minimum free energy (MFE)
methods (MFold, RNAFold and SFold) are shown to provide a base-
line. Points on the line X = Y are as sensitive as they are selective,
points below this line indicates a greater selectivity, points above
indicate greater sensitivity. Points in the top right corner are “perfect”
predictions. Where the variance is sufficiently small, these have been
indicated with a closed curve. Pfold compares very favourably to
other algorithms for short sequences, but for long sequences
underflow errors cause both the sensitivity and the specificity to drop
to zero. Figure adapted with permission from [12].
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and outside parts of the algorithm is illustrated by
Figure 4; the values for all nonterminals in each sector
can be evaluated once all dependencies are completed.
A “job” thus entails the evaluation of either the inside
or the outside variables corresponding to a sector for all

nonterminal variables in the grammar. The workload in
jobs is not equally distributed, as illustrated by Figure 5.
By design, jobs are self-sufficient objects created only

when their dependencies are completed: they contain all
data necessary for the calculation of the values in the
corresponding sector in order to also allow distribution
to a non-shared memory framework. Asynchronous
implementation makes it possible to execute jobs imme-
diately after the necessary dependencies are completed,
rather than waiting for all jobs in the same row to com-
plete. (Additional File 1) This is ideal for a setting
where executor units have different capabilities, such as
a grid of personal computers.
It is important to note that multithreading is not pos-

sible for all parts of the algorithm: for example, the job
at the top of the triangular matrix has to be executed by
one processing unit without any simultaneous calcula-
tions. Therefore it is ideal to choose N >>u, where u is
the number of available processing units. In the limit N
® ∞, the theoretical execution time on u processing

units is reduced to
1
u
of the execution time on one pro-

cessing unit, and this is also what we observe in prac-
tice. (Figure 6) We note that this method of divisions is
generally applicable to any bifurcating SCFG, and thus
may be used for the parallelization of other algorithms
also.
Memory use is optimized with a large number of divi-

sions, where only the lower triangular matrices are
stored. However, the space complexity of the algorithm
remains O(L2), and roughly 6 GB of memory are needed
to fold a 10000 nucleotide-long alignment.
Multithreading expectation maximization
In contrast to many SCFG-based RNA secondary struc-
ture prediction programs, pfold returns the structure
with the maximum number of expected correctly pre-
dicted nested structural elements, instead of the maxi-
mum likelihood estimate. To find this structure, it is
necessary to calculate a matrix of expectation values for
every fraction of the alignment, similarly to the inside
algorithm. The details of this are described in the Meth-
ods section. As these calculations also contain bifurca-
tions, they are distributed analogously to the inside
algorithm.
Underflow
Floating-point underflow arises commonly in dynamic
programming for the folding of long RNAs, due to the
multiplication of several thousands of low probabilities
with each other. It has effectively prevented the correct
folding of large RNA alignments with pfold, as the
values of the inside-outside variables decrease both with
the length of alignment the number of sequences in it.
A common solution is to calculate with log-probabilities,
implementing addition as a “log sum” function with a

Figure 2 Reduction in runtime for the phylogenetic part of the
algorithm. The execution time of the phylogenetic part of the
algorithm is reduced proportionally to the number of cores. We
used 40 divisions for the folding of 30 × 3000 nt, on a Intel(R) Xeon
(R) E5420 CPU, 8 cores, 2.50 GHz, 32 GB RAM, and enabled different
number of cores to be used by PPfold by varying the size of the
threadpool. Here we are plotting the mean and standard deviation
of 4 measurement points, scaled as a fraction of one-core runtime.
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Figure 3 Division of calculations in the inside-outside
algorithm. In order to apply the bifurcation rules of the grammar
to the cell marked in black, the inside algorithm requires the values
in the red cells to be known (from nonterminals L (vertical) and S
(diagonal)). The products of values in cells of the same shade of red
are added to the value in the black cell. Thick blue lines illustrate
the defined sector boundaries, for a choice of divisions where the
dimension of each sector is 3. All sectors have the same size; points
that lie outside the region to be calculated (for example, negative
subsequence lengths) are stored but ignored in the calculations.

Sükösd et al. BMC Bioinformatics 2011, 12:103
http://www.biomedcentral.com/1471-2105/12/103

Page 3 of 8



lookup table. Other possible solutions include multiply-
ing the rules of the grammar with a factor, such that
underflow is reached more slowly, thus extending the
foldable length of alignments, or multiplying a block of
probabilities lower than a certain cutoff value by a scal-
ing factor.
In PPfold we have taken an alternative approach and

implemented an extended exponent datatype, consisting

of a float “fraction” and an integer “exponent”
(base 2) part. Together, 64 bits are used to store each
number - the same amount of space as a double-preci-
sion floating point number, so the overall memory
requirements of the algorithm are not increased sub-
stantially. For each nonterminal symbol (in the inside,
outside and expectation parts of the algorithm), we
store two 2-dimensional arrays: one for the exponents
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Figure 4 Dependencies of sectors in the inside-outside algorithm. The geometry for job divisions is inspired by the dependency structure
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Figure 5 Workload of jobs in the inside-outside algorithm. The execution time is proportional to job height, as illustrated here for the (a)
inside and (b) outside algorithms. Jobs executed last take longest (top job in inside algorithm, bottom row in outside algorithm). (The
expectation value calculations are analogous to the inside algorithm, but each job takes comparatively shorter time.) The linear dependence on
job height gives rise to the O(n3) time complexity.
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and one for the fractions. For every operation, we com-
bine numbers from these arrays using custom bitmask-
ing and bitshifting methods.

Implementation
PPfold has been written in Java 5.0, and integrated into
the CLC Workbenches using the CLC Developer Kit
(version 3.31) API. The source code and executables are
available for download at http://www.daimi.au.dk/
~compbio/pfold/downloads.html. PPfold consists of an
“algorithm” package that can be compiled and run

independently of the CLC Workbenches, and a “plugin”
package that provides interfacing with the CLC
Workbenches.
The “algorithm” package includes all classes that are

involved in the processing of sequences and alignments
and creating the final structures. It has no dependencies
on any CLC classes, is capable of taking command-line
arguments and provides a simple graphical user inter-
face for the selection of input files. Export formats cur-
rently supported by PPfold include. ct, .seq (with
reliability scores) and white text, as well as basepairing
probability data.
The “plugin” package makes use of the CLC Develo-

per Kit API such that PPfold becomes a full-featured
plugin to the CLC Workbenches. Futhermore, integra-
tion into “minigrid-enabled” CLC Workbenches makes
it possible to distribute calculations to a collaborative
mini-grid of computers [13]. The details of this aspect
of our work will be published elsewhere.

Testing and benchmarking
Performance
We have evaluated the speed of our algorithm for align-
ments of various sizes, with a varying number of cores
and divisions of calculations. (Table 1) The algorithm is
fast, scales well with the number of cores and makes the
folding of long alignments practically possible.
Accuracy
We have replicated the BRaliBase I benchmarking tests
[12]. PPfold performs as well as pfold for short
sequences (tRNA, RNaseP), and significantly better than
pfold for longer sequences (SSU, LSU), as it does not
suffer from the underflow problem. (Table 2)
Folding of the HIV-1 genome
To demonstrate the speed and accuracy of our algo-
rithm, we have folded an alignment of 24 full HIV-1

Figure 6 Execution time of SCFG part on multicore machines.
The execution time of the SCFG part of the algorithm is reduced
proportionally to the number of cores for a sufficiently high number
of divisions. We used 40 divisions for the folding of 30 × 3000 nt,
on Intel(R) Xeon(R) E5420 CPU, 8 cores, 2.50 GHz, 32 GB RAM, and
enabled different number of cores to be used by PPfold by varying
the size of the thread pool. Here we are plotting the mean and
standard deviation of 4 measurement points, scaled as a fraction of
one-core runtime.

Table 1 Performance

Alignment divisions 1 core (sec) 2 cores (sec) 4 cores (sec) 8 cores (sec) pfold (sec)

1 5.41 4.85 4.84 4.84

2 × 500 nt 4 5.74 3.06 2.15 2.16 0.59

35 3.70 2.05 1.25 0.92

1 51.8 52.0 51.1 50.4

20 × 1000 nt 4 46.6 27.9 19.0 19.6 7.3

35 35.7 18.3 9.7 5.8

1 1738 1640 1581 1464

30 × 3000 nt 4 1476 878 642 632 368

35 842 424 217 123

The actual execution time of PPfold (including both the phylogenetic and SCFG parts) on a Dell Precision T7500 Workstation with Dual Quad Core
Intel®Xeon®X5667 3.07 GHz CPU, 24 GB RAM, is shown, for alignments of different lengths, choosing different divisions, and enabling different number of cores
to be used by PPfold by varying the size of the thread pool. A small number of divisions can in some circumstances result in disproportionately long runtimes,
due to the higher number of extra (unnecessary) points that are present in the calculations. The algorithm is intended to be run using a high number of
divisions on all architectures. For comparison, we also include the runtimes of the original pfold implementation (written in C), which suffers from underflow,
making the results unreliable for alignments of these lengths.
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genomes using PPfold in 65 minutes on a Dell Preci-
sion T7500 Workstation with Dual Quad Core
Intel®Xeon®X5667 3.07 GHz CPU, using 6 GB of
memory. In addition to predicting the consensus
structure within a practically reasonable timeframe,
PPfold has also predicted a number of known RNA

structures, including the TAR, poly(A), PBS, DIS,
AUG hairpins, the gag-pol frameshift and the RRE
region. (Figure 7) [14] The prediction of the full
consensus secondary structure of a large viral gen-
ome alignment, including phylogenetically supported
long-distance interactions, has not previously been

Table 2 BRaliBase accuracy

Sequence Program Ref. basepairs Pred. basepairs Sensitivity, % Selectivity, % Correlation, %

tRNA (M) PPfold 20 21 100.0 100.0 100.0

tRNA (M) pfold 20 21 100.0 100.0 100.0

tRNA (H) PPfold 20 21 100.0 100.0 100.0

tRNA (H) pfold 20 21 100.0 100.0 100.0

RNaseP (M) PPfold 110 110 86.4 96.0 91.2

RNaseP (M) pfold 110 110 86.4 96.0 91.2

RNaseP (H) PPfold 110 69 43.6 71.6 57.6

RNaseP (H) pfold 110 69 43.6 71.6 57.6

SSU (M) PPfold 468 420 74.4 86.1 80.2

SSU (M) pfold 468 0 0.0 0.0 0.0

SSU (H) PPfold 468 373 68.4 89.1 78.8

SSU (H) pfold 468 373 68.4 89.1 78.8

LSU (M) PPfold 839 830 58.2 62.5 60.3

LSU (M) pfold 839 0 0.0 0.0 0.0

LSU (H) PPfold 839 754 52.2 61.0 56.6

LSU (H) pfold 839 0 0.0 0.0 0.0

The results of our tests on the BRaliBase I dataset, using the comparison script available at http://projects.binf.ku.dk/pgardner/bralibase/bralibase1.html, are
shown, both for pfold and PPfold. We carried out stem-extension separately on the PPfold predictions, as it is not implemented in PPfold at present. M: medium-
similarity, H: high-similarity

Figure 7 The secondary structure of 24 HIV-1 genomes. An overlay of an RNA structure arcplot of the PPfold predictions and a circularly
drawn, annotated HIV-1 genome drawing made in the CLC Main Workbench is shown. PPfold has predicted a number of known structures on
the basis of a non-adjusted sequence alignment. The arcplot was made with the “circular Feynman” diagram option of JViz.RNA [17].

Sükösd et al. BMC Bioinformatics 2011, 12:103
http://www.biomedcentral.com/1471-2105/12/103

Page 6 of 8

http://projects.binf.ku.dk/pgardner/bralibase/bralibase1.html


possible on practical timescales without the need for
specialized hardware.
Numerical stability
In PPfold, we have reduced the representation of signifi-
cant digits to 23 bits (from 52 bits in pfold). To assess
potential numerical errors arising from this, we have
folded a large HIV alignment with different divisions,
such that the same computations were carried out in a
different order each time. Our results show that the
inside-outside variables are correct to at least 3 signifi-
cant digits for a 9840-nt long alignment of 30 sequences,
which we do not consider to be significant. (Table 3)

Conclusions
PPfold is a new, multithreaded version of the pfold algo-
rithm, capable of obtaining high-quality, phylogenetically
supported structures for large RNA alignments in a
practically reasonable time, which has not been possible
previously. PPfold distributes both the phylogenetic and
the inside-outside calculations of pfold, and our tests
show that its speed of execution scales well with the
number of executing cores. Using PPfold, we have been
able to obtain a high-quality prediction for an alignment
of 30 full HIV-1 genomes in 65 minutes on an 8-core
computer. We anticipate that our algorithm will be used
also for the prediction of other long RNA alignments,
such as viral genomes and genomic transcripts.

Methods
Summary of the pfold model
Given an alignment, pfold creates a phylogenetic tree by
neighbour-joining, then optimizes branch lengths using a
maximum likelihood approach based on a general reversible
evolutionary model described by Felsenstein [15]. Column-
based likelihoods for unpaired nucleotides and basepairs are
then obtained using post-order traversal through this tree.
The phylogenetic probabilities are conditioned on priors
obtained from the stochastic context-free grammar:

S → L | LS
L → s | dFd
F → dFd | LS

The posterior probabilities are calculated using the
inside-outside algorithm [16]. The structure returned by

pfold is the structure with the maximum number of
expected correctly predicted nested structures. The
matrix of expectation values is defined by the following
recursion relation:

Ei,j = max

{
Ei+1, j−1 + 2Pd(i, j) (Basepairing)

Ei,k + Ek+1, j, i ≤ k ≤ j (Bifurcation)

with initialization conditions Ei,i = Ps(i) for all i, where
the basepair probabilities Pd and unpaired base probabil-
ities Ps are obtained from the inside-outside variables.
The final structure returned to the user is obtained by
backtracking in this matrix. The reader is advised to
consult references [10] and [11] for more details on the
pfold model and algorithm.

Additional material

Additional file 1: Animation of distribution of the SCFG calculations.
The animation demonstrates the asynchronous wavefront computational
approach, and was created on the basis of actual runtime data during
the folding of a sequence of 460 nt, on a 2-core machine. The animation
is divided into three parts: the inside (red/green), outside (yellow/blue)
and expectation (cyan/magenta) calculations. The first colour represents
jobs that are ready to be executed (because all their dependencies are
fulfilled), and are therefore placed in a queue. At any time during the
animation, the two jobs that entered the queue earliest are under
execution (not shown), as the execution happens in a threadpool
corresponding to the available number of cores (here, 2). When a job is
finished, it changes to the second colour, and any newly available jobs
(with finished dependencies) are pushed onto the queue.
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