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Abstract

targeted transcripts.

level.

Background: In eukaryotes, alternative splicing often generates multiple splice variants from a single gene. Here
weexplore the use of RNA sequencing (RNA-Seq) datasets to address the isoform quantification problem. Given a
set of known splice variants, the goal is to estimate the relative abundance of the individual variants.

Methods: Our method employs a linear models framework to estimate the ratios of known isoforms in a sample.
A key feature of our method is that it takes into account the non-uniformity of RNA-Seq read positions along the

Results: Preliminary tests indicate that the model performs well on both simulated and real data. In two publicly
available RNA-Seq datasets, we identified several alternatively-spliced genes with switch-like, on/off expression
properties, as well as a number of other genes that varied more subtly in isoform expression. In many cases, genes
exhibiting differential expression of alternatively spliced transcripts were not differentially expressed at the gene

Conclusions: Given that changes in isoform expression level frequently involve a continuum of isoform ratios,
rather than all-or-nothing expression, and that they are often independent of general gene expression changes, we
anticipate that our research will contribute to revealing a so far uninvestigated layer of the transcriptome. We
believe that, in the future, researchers will prioritize genes for functional analysis based not only on observed
changes in gene expression levels, but also on changes in alternative splicing.

Background

In higher organisms many multi-exon genes undergo
alternative splicing (AS) reactions that produce multiple
splice variants, often encoding distinct, but related, pro-
tein products. In contrast to the traditional “one gene,
one protein” hypothesis, most, if not all, multi-exon
genes are now believed to be subject to alternative spli-
cing in human [1], with AS isoforms apparently respon-
sible for many of the salient differences between diverse
tissue types. A significant degree of AS has also been
observed in various plant and animal species, although
the precise magnitude and functional relevance of these
events is unknown [2,3].
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While it has long been assumed that differential gene
splicing plays an important role in determining the phe-
notypes of organisms, it has been difficult to quantify
AS using available high throughput methods. However,
recently developed massively parallel sequencing-by-
synthesis technologies from Illumina, Applied Biosys-
tems and Roche 454 Life Sciences have the potential to
revolutionize the study of the transcriptome [4]. It is
now possible to produce enough high quality reads in a
single run to rival traditional EST libraries that have
accumulated over a span of decades. Furthermore, the
resulting digital counts are more comparable to the
“gold standard” quantification method, quantitative PCR
(qPCR), and may overcome many of the shortcomings
inherent in hybridization-based microarray gene expres-
sion studies.
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Because the technological potential of these “RNA-Seq”
protocols is well appreciated, and rapidly advancing, meth-
ods for accurate estimation of isoform expression levels
are an active area of research. To compute an isoform
expression score, the reads that map to each isoform must
be converted into a quantitative expression value. One
approach is to count the number of reads that map to
each transcript, normalizing against the transcript length
and sequencing depth [5]. Unfortunately, this technique is
often infeasible for AS variants because many reads can
map to multiple isoforms simultaneously. Recently,
Lacroix et al. investigated the theoretical limitations of
transcriptome reconstruction and quantification from a
combinatorial perspective [6]. Their analysis operated
under an “exact information hypothesis” whereby the
exact abundances of all relevant transcribed regions is pro-
vided error-free. However, this approach ignores the sam-
pling process that actually generates observed data along
with the associated measurement error; in practice, statis-
tical approaches are necessary in order to obtain accurate
estimates of transcript abundance. For example, Jiang and
Wong have described a Poisson model for isoform quanti-
fication, showing how to estimate its parameters with a
maximum likelihood approach [7]. Other authors have
employed more basic (but effective) statistical approaches,
for example, Fisher’s exact test, to compare levels of AS
between treatments, e.g. [1].

In this paper, we explore the use of RNA-Seq datasets
to address the “isoform expression estimation problem”
as defined in [7]. It is assumed that the set of splice var-
iants is known; the goal is to estimate the relative
expression levels of these isoforms in a mixture. Obtain-
ing precise estimates is necessary because important
tissue-specific differences in AS frequently involve a
continuum of isoform ratios, rather than all-or-nothing
expression [8]. Although, currently, the assumption of
known isoforms may be limiting in many cases, we will
soon be able to construct detailed lists of known iso-
forms for various organisms and tissue states using
high-throughput sequencing (see for example, [9]). A
key advantage of our method over prior approaches is
that our model takes into account the non-uniformity of
RNA-Seq reads along the targeted transcripts. In addi-
tion, our approach can be easily adapted for use with
any high-throughput sequencing technology, including
those that employ paired reads. In the following sections
we will describe the details of our model, demonstrate
its performance on simulated and real data, and outline
topics for future research.

Methods

Model overview

Given a set of n unique AS isoforms for a gene, g, it is
always possible to partition RNA-Seq reads from g into
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2" categories according to what subset of these isoforms
each read is compatible with. For example, consider two
AS isoforms, T; and Ty:

T, : AAAAAAA UUUUUUUUUU CCCCCCCCCC
T,: AAAAAAA Cccceceecececece

In this example, transcript T; contains a cassette exon
containing only “U” nucleotides. Transcript T, skips this
exon. Reads aligned to these transcripts can be classified
into 3 mutually-exclusive subsets:

+ Subset S;: Reads which contain U’s are only com-
patible with transcript isoform T;.

» Subset S,: Reads which contain A’s followed imme-
diately by C’s (e.g. AAACCCCC) are only compatible
with T,.

+ Subset S3: Reads which contain only A’s or only C’s
are compatible with both T; and T,.

In addition, many reads, including reads containing
one or more G’s, are not compatible with either T; or
T,, but in the following we will disregard these and only
consider reads that map to at least one of the known
isoforms. Let:

Pr(S;) denote the probability that one of the gene’s
reads maps to subset S;

Pr(T;) denote the probability that one of the gene’s
reads maps to transcript T;

@, denote the percentage of the gene’s transcripts
expressed as isoform Tj;

Given the subsets introduced above, the following
equation describes the probability that an individual
read maps to subset S;:

Pr(S; | §) = ZPI(Si | T)Pr(Ty[9))  Vie{1..2"-1}

=1

In general, we can assume that Pr(Tj|4;), the probabil-
ity an individual read maps to a particular transcript, is
dependent on the (unknown) frequency, @, of that tran-
script in the transcript mixture. We will also assume that a
given isoform is sampled with probability proportional to
its known length. Similarly, Pr(S; | T;), the probability
that an individual read maps to subset S;, given the read
maps to transcript Tj, can be worked out using the known
transcript sequence and estimates of the distributions for
read length and read start position (for details, see the sec-
tion “Constructing the Design Matrix”). Let:

Y; denote the number of reads compatible with sub-
set S;
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R denote the total number of reads for the gene
bij = Pr(S; |Tj)
Bj = Pr(Ti]9;)

Assuming that individual reads are independent and
identically distributed (iid), we then have Y; ~ Binomial
(Rr Pr(Si |$) )1 and

E(Yi|q3,R)=R-(Pr(si|<]>))

R- ZPr(Si | T Pr(T; | §))

=1
n

R- 2 PiiB;
j=1

For the example shown above, we can express this lin-
ear model in matrix form as follows:

Rpyy 0 B Y,
0  Rpy {ﬁl } =Y,
Rps3; Rps; 2 Y5

Because Rp,; and Rp;, will always be zero, the rank of
this matrix is 2, and both B; and B, are estimable.
Although, in general, the number of rows (2" - 1)
grows exponentially with the number of possible tran-
scripts, it is possible to either combine or ignore unin-
teresting categories. In fact, a full rank design matrix
can always be constructed by considering only the »
subsets consisting of reads that map to a single isoform.

Distribution of read start position and read length

Most methods for estimating isoform abundance
assume a uniform sampling distribution for reads
along the targeted transcripts (e.g. [5-7]). However, it
is widely acknowledged that the true distribution for
read position deviates substantially from uniformity,
and varies with the fragmentation protocol and
sequencing technology [4]. Consequently, accurate
methods for isoform quantification must incorporate
this critical information.

We believe that these distributions should be consis-
tent properties of the instrument and experimental pro-
tocol. With millions of reads often available per
experiment, it is feasible to determine these distributions
with a high level of accuracy. We used a kernel density
approach to estimate read length and read start distribu-
tions using the observed empirical distributions
observed for well-annotated transcripts (Figure 1la, 1b).
The read length was estimated in a similar manner,
resulting in an average read length of approximately
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30 nucleotides for the Illumina data set, and about 100
nucleotides for the 454 dataset.

To investigate the relationship between experimental
protocol and read distribution, we also created a simple
simulation that emulates the process of cDNA fragmen-
tation by nebulization. The similarity between Figure 1b
and Figure 1c suggests that our simulation captures the
main properties of the nebulization process. We antici-
pate that more detailed models, which incorporate
knowledge of the physical processes of fragmentation
and sequencing, should be able to describe observed dis-
tributions of read length and position even more
accurately.

Constructing the design matrix

Let h(k, m | L) denote the bivariate probability
mass function describing the probability that a read
has start position k and length m, given that this read
aligns to a transcript of length L. We compute
Pr(S; | T;) Vie {1..2"-1} for a particular transcript T;
using the procedure detailed in Figure 2.

Estimation of 8 and @

Given the construction method described above, the
design matrix will always be full column rank, so 8 will
always be fully estimable. Each Y; ~ Binomial(R,
Pr(S; |$)) For computational simplicity, we use the
Normal approximation to the binomial distribution. For
the Normal linear model with a known covariance
matrix, the maximum likelihood estimate (MLE)
obtained using weighted least squares is the best linear
unbiased estimator (BLUE). In the system described
above, the variances are not known, but can be esti-
mated from the data. In this case, the “feasible weighted
least squares” method can be used to approximate the
weighted least squares solution. In cases where a result-
ing B is not a valid probability, we truncate the esti-
mate at 0 or 1. In addition, we ensure that the total
probability is one by dividing each [} by the sum across
all 4.

Under the commonly employed assumption that a
given isoform is sampled with probability proportional
to its length, the probability that a given read maps to a
transcript isoform can be expressed as follows:

L. .
Pr(Tj |¢j)=ﬁj =n]¢
Lig;
i=1

1=

where L; is the length of transcript j in bases. Given
our estimates for the f3; ’s, the known lengths for each

7 S
transcript, and the fact that Eqﬁi =1, the ¢; are
i=1
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Figure 1 Distribution of read start position as a percentage length for genes with median length of 1200 nucleotides. The red line is a
cubic spline fit. (A) lllumina dataset - RNA fragmentation by sonication [10] (dataset 1), (B) Roche 454 dataset - cDNA fragmentation by
nebulization [14], and (C) Simulated cDNA fragmentation assuming fragments in the size range of 500-800 nucleotides.
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Initialize p, =Pr(S;[T;)=0 Vie {1..2"-1}.

For each read start site, &, on transcript Tj :

probability:

Figure 2 Procedure for computing the design matrix.

For each possible read length, m, for a read starting at & :
= Determine the sequence for the read, », aligned to T;, having start position
k, and end position ktm-1: r=Ti[ k, ..., k+m-1].
= Determine which category, S;, the read belongs to, and update its

Pr(S, | T,) = Pr(S, | T,) + h(k,m| L,)

uniquely determined and can be obtained by computing
the unique solution to a set of linear equations. The

sampling distribution of the resulting ¢; cannot easily

be computed analytically, but confidence intervals can
be worked out empirically following a procedure based
on [10].

Multireads

An important consideration when dealing with short
length RNA-Seq reads is that many reads can map to
more than one gene. For example, using 25 nucleotide
Ilumina reads, Mortazavi, et al. found that between 13-
25% of the reads were “multireads,” matching multiple
genes in the mouse genome [5].

Two obvious extensions to the procedure described
above can be made to accommodate multireads. One
approach is to identify sets of genes and transcripts that
share overlapping regions and jointly estimate the abun-
dances of all transcripts in the set. However, since the
size of the design matrix increases rapidly with the
number of transcripts jointly estimated, this method
may not be ideal when the number of overlapping genes
is large.

A second approach is to discard those reads that
map to more than one gene, after making an appropri-
ate adjustment to the design matrix. When computing
the probabilities as described in Figure 2, each poten-
tial read for a given transcript is checked against all
other genes in the target dataset. If the read does not
map to any other genes, the probability Pr(S; |T]-) is
updated as described in Figure 2; however, if the read
is a multiread, the read is skipped without updating
Pr(S; | Tj) . This test can be performed efficiently after
pre-computing a hash table mapping nucleotide k-mers
(e.g. k = 25) to genes which contain that sequence in
one or more transcript isoforms. Given this modifica-
tion to the probabilities in the design matrix, observed
reads that map to more than one gene can now be
discarded.

In the following research, we employ the first
approach for the purpose of simulation and data
analysis.

Datasets

We tested the algorithm on two publicly available data-
sets. Dataset 1 (NCBI Short Read Archive experiments
SRX002554 and SRX002555 [11]) consists of two experi-
ments containing approximately 65 million (SRX002554,
excluding run SRR013412, which was not available at
the time of the analysis) and 57 million (SRX002555)
[lumina reads from floral tissue from two different Ara-
bidopsis strains (SRX002554 = col-0; SRX002555 = ddc).
Dataset 2 (NCBI Short Read Archive Experiments
SRX006704 and SRX006688 [12]) includes approxi-
mately 43 million (SRX006704) and 35 million
(SRX006688) Illumina reads from control and drought-
stressed Arabidopsis plant tissue.

Implementation

The algorithm described above was implemented in
Java, with matrix computations by the JAMA matrix
library (available at http://math.nist.gov/javanumerics/
jama/). Data analyses and simulations were also per-
formed using the R statistical programming language
(http://www.r-project.org/).

Results

Simulation

To test our method, we performed a simulated RNA-
Seq experiment using the Arabidopsis gene models
defined in TAIR 8 (http://www.arabidopsis.org) [13]. A
publicly available dataset (dataset 1 in Methods) was
used to estimate the read length and read start position
for Illumina reads (Figure 1a). The simulation was per-
formed for several of the multi-isoform genes as follows:
First, a relative frequency for each of the alternative iso-
forms was specified as a simulation parameter, along
with a predetermined total number of RNA-Seq reads.
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Each of these reads was then simulated by first selecting
an isoform with probability proportional to its length
and concentration in the mixture. Then, a read start
position k and read length m along the selected isoform
were drawn from the distribution, #( k, m | L ). Using
these read coordinates, the nucleotide sequence along
the sampled isoform was determined, and this sequence
was compared with other isoforms in the mixture to
identify which subset of isoforms the read is compatible
with. The output of one run of the simulation is a list of
subsets and the corresponding counts of simulated reads
assigned to those subsets. For each gene, the entire
simulation was repeated 500 times. Given the simulated
datasets, we then used the linear model described above
to infer the original isoform concentrations from the
simulated subset counts. We performed the estimation
in two different ways for each gene: first, using a design
matrix constructed using the same read position distri-
bution used to generate the simulated reads (Figure la)
and second, using a design matrix constructed from a
uniform read position distribution. Note that using the
incorrect distribution can introduce a severe bias into
the estimates and even change the ordering of the iso-
form expression levels (e.g. Table 1, row d; Figure 3d).

For each of the 500 replications, we also computed
approximate confidence intervals about the estimates.
To evaluate the performance of our approximation, we
checked each confidence interval to see if it included
the true value for the parameter. For the AT1G75410
simulation, 97.4% of the 95% C.I.’s contained the true
parameter; 92.2% of the 90% C.I.’s contained the true
parameter; and 63.2% of the 65% C.I.’s contained the
true parameter.

This entire process was repeated for 100 different
genes. Over several replications, the mean estimates
were always approximately equal to the simulated iso-
form concentrations when the correct distribution was
used to construct the design matrix. For genes with two
isoforms, we found that approximately 750-1000 reads
were often needed to obtain a 95% confidence interval

Table 1 Estimates for phi using 2000 simulated reads
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with a width of ~20%. However, the number of reads
required varies according to mixture composition, num-
ber of isoforms, and the read length and start site distri-
butions. (Data not shown).

Real RNA-Seq datasets

We next tested our method on two publicly available
RNA-Seq datasets (see Methods). For each dataset,
reads were mapped to the transcriptome using the
SOAP v2 alignment program [15]. TAIR 8 was used to
define the tested gene models. Among the 33282 Arabi-
dopsis gene models defined in TAIR 8, 4330 genes had
more than 1 isoform. In particular, 3336 genes had 2
isoforms, 739 had 3 isoforms, 186 had 4 isoforms, 48
had 5 isoforms, 14 had 6 isoforms, 4 had 7 isoforms, 2
had 8 isoforms, and 1 had 10 isoforms.

For dataset 1, in the col-0 sample (SRX002554),
among genes with 2 or more isoforms, 1039 genes had
more than 500 mapped reads (31.1%); 481 genes had
more than 1000 reads (11.1%); 205 genes had more than
2000 reads (4.7%); and 50 genes had more than 5000
reads (1.5%). Similar coverage was observed in the other
samples.

Differential splicing
We first used a chi-square test of subset counts to iden-
tify genes that were differentially spliced between the
two conditions. Genes that did not have at least one
read mapping to the unique regions of at least two iso-
forms were not tested. In dataset 1, 305 of 1340 tested
multi-isoform genes (22.8%) showed significant differen-
tial splicing between the two treatments. Significance
was determined using a p-value cut-off of approximately
0.002, corresponding to a false discovery rate of 0.01
[16]. In dataset 2, 169 of 1705 tested multi-isoform
genes (9.9%) showed differential splicing, according to
the same criteria.

After identifying differentially spliced genes, we then
used the linear model described above to infer the iso-
form ratios within each of the treatment samples. We

Transcript Mixture (@;)

¢, - True Read Distribution

¢, - Uniform Read Distribution

67.5% (61.5%-73.3%
32.5% (26.7%-38.5%

55.5% (43.9%-68.4%
44.5% (31.6%-56.1%

76.4% (68.5%-83.8%

AT1G75380.2=20%

20.7% (05.9%-33.9%

A) AT1G75410.1=70% 69.8% (64.2%-75.2%)
AT1G75410.2=30% 30.2% (24.8%-35.8%)

B) AT2G40140.1=70% 70.0% (55.8%-83.9%)
AT2G40140.2=30% 30.0% (16.19%-44.2%)

(@] AT2G01260.1=20% 19.6% (08.7%-30.5%)
AT2G01260.2=70% 70.3% (62.5%-77.8%)
AT2G01260.3=10% 09.9% (02.2%-18.8%)

D) AT1G75380.1=70% 69.5% (58.9%-78.8%)
( )

( )

AT1G75380.3=10%

09.4% (0.00%-22.4%

70.9% (60.8%-80.3%
04.4% (00.09%-21.4%

)
)
)
)
12.8% (01.0%-23.9%)
)
)
)
)
22.9% (09.3%-35.7%)

(
(
(
10.7% (02.4%-19.9%
(
(
(
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Figure 3 Example of several TAIR 8 gene models used in alternative splicing simulation. (A) AT1G75410, (B) AT2G40140, (C) AT2G01260

discarded reads that mapped to more than one gene,
using the adjusted design matrices computed as
described in the Methods section. In several cases, genes
with highly significant AS levels (according to the chi-
square test), had only very small differences in isoform
composition between the two treatments. These most
likely do not represent significant biological differences.
On the other hand, for both datasets 1 and 2, we also
identified many genes that had large differences in iso-
form composition between the two treatments. In data-
set 1, for example, 184 of the 305 genes (60%) had
differences of 15% or more in the proportion for the
main isoform; similarly, in dataset 2, 77 of 169 genes
(46%) showed a 15% or greater difference in the propor-
tion for the main isoform. Figure 4 shows histograms
illustrating the distribution of differences in main iso-
form proportions between the two treatments within the
two datasets. In particular, several genes appear to exhi-
bit on/off “switch-like” differential splicing (shown in
Figure 4 as genes with large differences in isoform
expression between treatments). Full listings of the dif-
ferentially spliced genes identified in each dataset, along
with expression level estimates for the main isoform,
can be found in Additional files 1 and 2.

To further characterize the genes identified as exhibiting
differential splicing within the two datasets, we per-
formed a GO analysis [17] using the online agriGO tool
[18]. The program takes as input a list of genes and
compares their associated GO terms with those

corresponding to a relevant background set. Enriched
terms are identified and grouped according to the GO
categories “cellular component,” “biological process,”
and “molecular function.” To perform the analysis, we
submitted the lists of differentially spliced genes, and
selected the Arabidopsis TAIR gene models as the back-
ground reference. We used the hypergeometric statisti-
cal test option, with the Yekutieli FDR multi-test
adjustment method, set at a significance level of 0.10.
For dataset 1, which compares leaf tissue for two dif-
ferent untreated strains of Arabidopsis, most of the sig-
nificant GO terms were in the cellular component
category GO category. Notably, many genes were asso-
ciated with terms identifying cell membrane and mem-
brane-bound cellular components, and the GO terms
“membrane,” “plasma membrane,” “thylakoid mem-
brane,” and “membrane-bounded organelle,” were all
significant. This is of interest since it has been pre-
viously shown that AS is often used as a mechanism to
alter the functional domains of transmembrane proteins
[19-21]. In the molecular function category, the AS gene
list was enriched for the terms “structural molecule
activity”, “structural constituent of ribosome”, “nucleic
acid binding” and “ligase activity”. In the biological pro-
cess category, enriched terms include “developmental
process”, “multicellular organismal development,” and
“post-embryonic development”. A full list of the signifi-
cant GO terms is included in Additional file 1, and gra-
phical representations of the hierarchy of significant

” o«



Howard and Heber BMC Bioinformatics 2010, 11(Suppl 3):56 Page 8 of 13
http://www.biomedcentral.com/1471-2105/11/53/S6

A
50 1
40
>
o
c
=
o 301
(O]
—
(18
20 1
. I T [ e
10 .20 .30 40 .50 .60 .70 .80 .90 1.0
Percentage Difference
B
40 7
30 1
>
()]
o
0]
>
o
© 20
L
: I I I I
. I I meml . __ B
.10 .20 .30 40 .50 .60 .70 .80 .90 1.0
Percentage Difference
Figure 4 Differences in main isoform frequency for AS genes. Some of the changes are small and may not be biologically significant. Other
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terms in the three main GO categories are available in
Additional files 3,4,5.

In dataset 2, which compares drought-stressed Arabi-
dopsis plants to untreated controls, the list of differen-
tially spliced genes was significantly enriched for many
terms in the biological process category related to stress
response, including “response to stress”, “response to sti-
mulus”, “response to cold,” “response to chemical stimu-
lus,” “response to cadmium ion”, etc. The significant
biological process GO terms for both datasets are
shown in Figure 5. Enriched cellular component GO
terms for dataset 2 include “membrane-bounded orga-
nelle”, “cytoplasm”, and “ribosomal subunit,” among
others. The full lists are available in Additional file 2,
with graphical representations of the significant terms
available in Additional files 6 and 7.

Differential gene expression

For each dataset, we also tested for differential gene
expression between the two treatments (independent of
isoform composition). For each gene, we computed, within
each treatment, i, the proportion of reads for that gene,

7;, relative to the total number of reads in the sample, #;.

The resulting proportions for each treatment were then
compared on a gene-by-gene basis using the statistic
1 =72 whered =

; |

and n, are both very large, and the samples are

. 7T 710-41) | #2(-%2) gy
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independent, the test statistic, z, is assumed to follow a
standard normal distribution. Because our goal was to
compare differentially expressed genes with differentially
spliced genes, only genes expressing more than one iso-
form were considered (1340 genes in dataset 1, and 1705
in dataset 2). The resulting p-values were subsequently
corrected for multiple testing using the Benjamini-Hoch-
berg method, with a FDR of 0.01 [16].

In dataset 1, 58.6% of the tested genes showed differen-
tial expression between treatments according to these cri-
teria; in dataset 2, 51.4% of the genes showed differential
expression. In concordance with similar observations for
animal systems [3], differential gene expression and differ-
ential splicing events appeared to be statistically indepen-
dent. In dataset 1, for example, since 58.6% of the 1340
multi-isoform genes were differentially expressed, one
would expect a random selection from those genes to
include, on average, about 58.6% differentially expressed
genes. Accordingly, the set of 305 differentially spliced
genes included 180 differentially expressed genes (59.0%).
In dataset 2, 118 (69.8%) of the differentially spliced genes
were also differentially expressed at the gene level. (See
Additional files 1 and 2 for details). The correlation
between AS and differential gene expression p-values was
-0.03 for dataset 1 (Figure 6) and 0.06 for dataset 2.

Multireads and connected components
In dataset 1, 23.3% of the reads mapped to more than
one gene; similarly, 27.5% of the reads were multireads
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A

in dataset 2. In the analysis described above, these reads
were discarded according to procedure outlined in
Methods, after an appropriate adjustment to the design
matrix. An alternative technique for accommodating
multireads is to jointly estimate all transcripts that share
common read-length subsequences. To determine what
genes should be jointly estimated, and to assess the fea-
sibility of this approach for the Arabidopsis genome, we
constructed a graph with TAIR 8 gene models as the
vertices. In the graph, two vertices are connected with
an (undirected) edge if their corresponding gene tran-
scripts contain a common 25 nucleotide substring. The
graph was then partitioned into its connected compo-
nents. A connected component is a subgraph containing
a set of vertices that meet the following conditions: 1)
each vertex in the set can reach any other vertex in the
set along some path in the graph, and 2) each vertex
can not reach any vertex outside the set. Thus, the con-
nected components partition the graph into sets of
genes that should be jointly estimated using a shared
design matrix.

This method partitioned the 33282 TAIR 8 gene mod-
els into 20660 connected components. The average size
of a connected component was 1.6, indicating that most
genes shared 25 nucleotide regions with 0 or 1 other

genes. However, a number of larger components
occurred as well. Figure 7 shows a histogram of compo-
nent sizes. The largest component contained 5194
genes, while the next 10 largest components ranged in
size from 26 to 58 genes. The full list of connected
components is available in Additional file 8.

In order to characterize the types of genes contained in
the largest components, we used the agriGO tool to ana-
lyze the associated GO terms. Several of the largest com-
ponents appear to correspond to gene families and many
were significantly enriched for terms such as “base pair-
ing with RNA,” and “nucleic acid binding,” which are
indicative of a functional significance for shared
sequences. For example, the second largest component
contains a family of genes encoding tRNAs for the amino
acid, proline. The 58 members of this component share
variations of the following 72 nucleotide sequence:

gggcatttggtctagtggtatgattctcgetttgggtgcgagaggtecc
gagttcgattctcggaatgcccc

In contrast, there were no significant terms for the
very largest component and many of the edges in this
5194 gene “super-component” originated from various
low complexity sequences. Table 2 contains descriptions
of the 10 largest connected components, taken from the
gene annotations available in TAIR.
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Discussion

We have developed a new method for using RNA-Seq
data to quantify the alternatively spliced isoforms pre-
sent in a mixture. Comparable existing methods for iso-
form quantification assume uniform sampling along
targeted transcripts; however, real RNA-Seq datasets
rarely exhibit uniform read sampling (e.g. Figure 1). Our
simulations demonstrate that using the wrong read sam-
pling distribution can lead to incorrect conclusions
about the expression of isoforms. Accordingly, we have
designed our method specifically to handle this problem.
Some recent work has also suggested that read sampling
distributions may include systematic biases that are
transcript specific; for example, various aspects of RNA-

Table 2 Putative function for genes in the 10 largest
connected components in the Arabidopsis genome

Component Size Putative Function

5194 7

1

2 58 tRNA - PRO

3 57 tRNA - TYR

4 41 tRNA — SER

5 40 S-locus lectin protein kinase family

6 34 Receptor-like protein kinase

7 26 ECA1 gametogenesis related family protein

8 26 Transposable element gene; disease resistance
protein

9 26 Transcription factors

10 26 Leucine-rich repeat protein kinase

Seq library preparation may introduce a dependence on
the GC content of a given sequence and/or the terminal
nucleotide ditags of the sampled sequence [22,23]. Our
model, like other recent approaches to isoform quantifi-
cation, does not take these sequence-specific biases into
account. However, once these biases are better under-
stood, they can potentially be incorporated into our
model, for example, in the form of sequence-specific
read start and length distributions. This is a topic that
we are actively exploring.

“Multireads,” or reads that map to more than one
gene, are another important problem for accurate iso-
form quantification. In this paper we have suggested
two methods for estimation in the presence of multi-
reads. One approach is to jointly estimate all genes that
share overlapping sequences. An advantage of this
approach, over the alternative which discards multireads
(after making appropriate adjustments to the design
matrix) is that we make use of all available information.
However, in our connected components analysis, we
have shown that the Arabidopsis genome includes gene
families with 50 or more members. Although theoreti-
cally possible with our algorithm, a joint estimation of
these transcripts, using all available information, is cur-
rently infeasible due to the increasing size of the design
matrix.

One major limitation of our approach is that it
assumes that all transcripts are known, yet the current
state of transcriptome annotation is incomplete for most
organisms. Because incorrect assumptions regarding
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potential transcripts in a mixture could lead to erro-
neous estimates, we are investigating ways to incorpo-
rate residual-based diagnostics into our model. These
enhancements would serve to identify the presence of
unknown “hidden” isoforms in a mixture and would
complement isoform quantification with a mechanism
for transcript discovery.

To demonstrate the practicality of our approach, we
have applied it to two public Arabidopsis RNA-Seq
experiments and the results reveal a high level of differ-
ential splicing between strains and treatments. In the
first of the two example datasets, we identified 306
genes that exhibit differential splicing between two dif-
ferent Arabidopsis strains; in the second example data-
set, we found 169 genes that were differentially spliced
between drought-stressed and untreated Arabidopsis
plants. In many of these cases, the predominant isoform
differed between treatments, but we also identified a
large number of genes that varied more subtly in iso-
form expression (see Figure 4). In both datasets, differ-
ential splicing and gene expression appear to be
statistically independent events.

Conclusions

Next-generation high-throughput sequencing promises
to revolutionize the study of the transcriptome. In this
paper, we have introduced a new method for using
RNA-Seq data to quantify the alternatively spliced iso-
forms present in a mixture. Our method, which can
incorporate a non-uniform read sampling distribution, is
flexible enough to accommodate a variety of sequencing
technologies, including those that incorporate paired
reads. We anticipate that the ability to reliably compute
quantitative isoform expression values will help
researchers to separate true alternative splicing events
from spurious transcripts originating from single mis-
spliced transcripts — a major problem in genome-wide
alternative splicing studies. Based on recent studies [1,3]
and our own observations derived from two indepen-
dent Arabidopsis RNA-Seq experiments, isoform expres-
sion level changes frequently involve a continuum of
isoform ratios, in addition to all-or-nothing expression
patterns. Furthermore, in the datasets we have exam-
ined, isoform expression level changes appear to be
independent of gene expression changes. This suggests
the existence of a so far uninvestigated, dynamic layer of
the transcriptome. For this reason, we believe that, in
the future, researchers will prioritize genes for func-
tional analysis based not only on observed changes in
gene expression levels, but also on changes in alternative
splicing.
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Additional file 1: Differentially spliced genes for dataset 1.
Description of Data: Contains a list of all differentially spliced genes
for dataset 1, GO annotations for these genes, and the full set of
significant GO terms.

Additional file 2: Differentially spliced genes for dataset 2.
Description of Data: Contains a list of all differentially spliced genes
for dataset 2, GO annotations for these genes, and the full set of
significant GO terms.

Additional file 3: Enriched “biological process” GO terms for dataset
1. Description of Data: Hierarchical display of enriched GO terms
for dataset 1, under the GO biological process category.

Additional file 4: Enriched “cellular component” GO terms for
dataset 1. Description of Data: Hierarchical display of enriched GO
terms for dataset 1, under the GO cellular component category.

Additional file 5: Enriched “molecular function” GO terms for
dataset 1. Description of Data: Hierarchical display of enriched GO
terms for dataset 1, under the GO molecular function category.

Additional file 6: Enriched “biological process” GO terms for dataset
2. Description of Data: Hierarchical display of enriched GO terms
for dataset 2, under the GO biological process category.

Additional file 7: Enriched “cellular component” GO terms for
dataset 2. Description of Data: Hierarchical display of enriched GO
terms for dataset 2, under the GO cellular component category.

Additional file 8: TAIR 8 Connected Components. List of all
connected components in a graph joining TAIR 8 genes that share
25-mer subsequences.
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