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Abstract

Background: Extracting protein-protein interactions from biomedical literature is an important task in biomedical
text mining. Supervised machine learning methods have been used with great success in this task but they tend
to suffer from data sparseness because of their restriction to obtain knowledge from limited amount of labelled
data. In this work, we study the use of unlabeled biomedical texts to enhance the performance of supervised
learning for this task. We use feature coupling generalization (FCG) – a recently proposed semi-supervised learning
strategy – to learn an enriched representation of local contexts in sentences from 47 million unlabeled examples
and investigate the performance of the new features on AIMED corpus.

Results: The new features generated by FCG achieve a 60.1 F-score and produce significant improvement over
supervised baselines. The experimental analysis shows that FCG can utilize well the sparse features which have little
effect in supervised learning. The new features perform better in non-linear classifiers than linear ones. We
combine the new features with local lexical features, obtaining an F-score of 63.5 on AIMED corpus, which is
comparable with the current state-of-the-art results. We also find that simple Boolean lexical features derived only
from local contexts are able to achieve competitive results against most syntactic feature/kernel based methods.

Conclusions: FCG creates a lot of opportunities for designing new features, since a lot of sparse features ignored
by supervised learning can be utilized well. Interestingly, our results also demonstrate that the state-of-the art
performance can be achieved without using any syntactic information in this task.

Background
With the exponential explosion of biomedical literature
such as MEDLINE, developing automatic information
extraction (IE) tools is essential for people to seek
information more accurately and efficiently [1]. The
task of protein-protein interaction extraction (PPIE)
aims to extract interacting protein pairs from biomedi-
cal literature, which contributes to PPI network analy-
sis and discovery of new functions of proteins. In
recent years, it has attracted a lot of research interests
[2-16] from different domains such as bioinformatics,
natural language processing (NLP), and machine

learning (ML). Bioinformatics researchers focus on
constructing corpus [2,3], designing domain-specific
rules for PPIE [4,5] and integrating the extraction
results into PPI network analysis [6]. In NLP commu-
nity, a lot of works focus on how to apply linguistic
parsing to enhance the extraction performance
[7-12,15,16]. People find that methods that incorporate
syntactic parsing information can improve the extrac-
tion performance significantly and outperform methods
that use only lexical information. In addition, most of
these methods are in the framework of machine learn-
ing. Recent studies [10-12,16] show that integrating all
the lexical and parsing features in a kernel-based
supervised learning model achieves state-of-the-art
performance on benchmark datasets. Since in
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supervised learning there exists a feature space for
each kernel [17], these methods essentially represent
each interacting protein pair and their contexts by a
feature vector and the weights of features are learned
from labeled training data.
However, these methods are restricted to obtain

knowledge from limited amount of labeled data, and
when the data size is small there is no sufficient infor-
mation to assign proper weights to low-frequency or
out-of-vocabulary (OOV) features (not in training data
but in new examples). Another case is that many sparse
features are not included in the original features set
because they do not perform well in the experiments
and filtered by system designers at the beginning. But
are these discarded features really worthless? For exam-
ple, usually multi-word expressions are not selected as
features in NLP tasks due to data sparseness, but intui-
tively their discriminating ability is strong. Can we uti-
lize them to get a higher performance?
Fortunately, the huge amount of biomedical texts

available online has provided rich background
knowledge for solving the data sparseness, where a lot
of low-frequency features in training data will become
informative. The goal of this study is to leverage unla-
beled data to enhance the representation of local lexical
features and make better use of sparse features for the
PPIE task. The learning method is based on our recently
proposed semi-supervised learning strategy- feature cou-
pling generalization (FCG) [18,19]. Its core idea is to
create new features from the co-occurrences of two
special types of raw features: example-distinguishing fea-
tures (EDFs) and class-distinguishing features (CDFs).
EDFs are strong indicators for the current examples and
CDFs are strong indictors for the target classes. Intui-
tively, their co-occurrences in huge unlabeled data can
capture indicative information that could not be
obtained from limited amount of labeled training data.
We used this method to learn an enriched representa-
tion of entity names from 17GB unlabeled biomedical
texts for a gene named entity classification (NEC) task
[18] and found that the new features outperformed
elaborately designed local lexical features.
The primary work of this study is to design proper

EDFs and CDFs for the PPIE task and compare the per-
formance of new features with local lexical features. In
addition, using the experimental data we investigate the
different performances of low-frequency features in
supervised methods and FCG, and show that FCG can
utilize the sparse features ignored by supervised learning
to get a better result.

The rest of the paper is organized as follows: we first
give a brief introduction of FCG framework, and then
describe in details our methods for PPIE including

preprocessing, local lexical feature and FCD feature
design. Next, we investigate the performance of various
features in our experiment. Finally, we conclude with
discussion and possible future improvement.

Methods
In this section, we first give a brief introduction of the
general framework of FCG semi-supervised learning
and discuss why it can be applied to the PPIE task.
Then we design a set of Boolean features from the lex-
ical information of contexts and select different EDFs
and CDFs based on the Boolean lexical features. We
compare the performance of FCD features with lexical
features and also combine the two feature types in the
final system.

The general framework of feature coupling generalization
Feature coupling generalization [18] is a framework for
creating new features from two special types of features:
example-distinguishing features (EDFs) and class-distin-
guishing features (CDFs). EDFs are intuitively defined as
“strong indicators” for the current examples, and CDFs
are “strong indicators” for the target classes. The relat-
edness degree of an EDF fe and a CDF fc estimated from
the unlabeled data U is defined as feature coupling
degree (FCD), denoted by FCD (U, fe, fc). The FCG algo-
rithm describes how to convert FCDs into new features.
The assumptions behind this idea are: 1) the relatedness
of an EDF and a CDF provides indicative information
for classifying the examples that generate the EDF. 2)
Given more unlabeled data, more FCDs that cannot be
obtained from labelled data can be generated from unla-
beled data.
Assume that F = {f1, …, fn} is the feature vocabulary of

“raw data” that contains every Boolean feature one
could enumerate to describe an example, and X ⊆ Rn is
the vector space of the raw data, where each example is
represented by a n-dimensional vector x = (x1, …, xn) Î
X. The algorithm process of FCG [18] can be summar-
ized as follows:

1) Select the “example-distinguishing” part of F as
EDFs, denoted by E ⊆ F.
2) Map each element in E to a unique higher-level
concept (EDF root) in the set H, denoted by root (e):
E ® H.
3) Select the “class-distinguishing” part of F as CDFs,
denoted by C ⊆ F.
4) Define the set of FCD types T to measure the
relatedness of EDFs and CDFs.
5) Let the vocabulary of FCD features be H × C × T
so that each FCD feature maps a tuple (h, c, t),
where h Î H, c Î C, and t Î T.
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6) Calculate FCDs from unlabeled data and convert
each example from the old representation x to a
new feature vector x ̃ by the equation:

 x x band e FCD U e ci h c t

root e h

t 


( , , )

( )

( , )* ( , , )x (1)

where eÎE, x ̃i Î x ̃ , i indexes each triple (h, c, t) in
H × C × T. The operator band(e, x) (short for “Boolean
And” operating) equals 1 if the feature e appears in the
example x, and 0 otherwise.
For simplicity, here we assume that EDFs and CDFs

are all extracted from F. In a broader sense, we can use
the transformed feature set of original data to generate
EDFs or CDFs. For example, the “CDF II” used in the
NEC task [18] is the combination of local context words
by a classifier. In the above algorithm, we assume F con-
tains all the “feasible” combinations of original features
derived from the data, and all the EDFs and CDFs are
limited to be generated from this set.
In supervised learning, usually only a subset of ele-

ments in F can be utilized. This means features that
don’t lead to performance improvement are treated as
irrelevant ones, which are either removed before train-
ing or assigned very small weights during training to
lower their impact. In FCG framework, we also need to
select a subset of F as EDFs or CDFs, but the criterion
for feature selection is rather different. Here ‘good’
EDFs or CDFs mean the performance of FCD features
generated from them is good, although the perfor-
mances of individual EDFs or CDFs might be poor in a
supervised setting. In other words, irrelevant features in
supervised learning may be good EDFs or CDFs that
produce indicative FCD features, so that FCG could uti-
lize the features ignored by supervised learning.
The selection of EDFs and CDFs plays a central part

in this framework. We suggested that when selecting
these features, a trade-off between “indicative” and
“informative” should be considered [18]. In the NEC
task [18] for determining whether an entity is a gene or
protein name, the EDFs were selected as the whole enti-
ties and boundary word-level n-grams, and the CDFs
were context patterns (such as “X gene” and “the expres-
sion of X”) and the discretized scores of a SVM trained
by local contexts. The experiments show that good
results can be achieved when various types of EDFs
together with hundreds of CDFs are used. We also
found that these FCD features performed better in non-
linear classifiers than linear ones
The PPIE task can be treated as a binary classification

problem that determines whether a sentence contains
the evidence of the interaction of two focus proteins. It
is natural to adapt the method to the PPIE task since
we are just extended the method from “term

classification” to “sentence classification”. However,
there are two major differences: 1) there is position
information of the two interacting proteins in each sen-
tence, which makes it a little different from “sentence
classification”. How can we incorporate the position
information into EDFs or CDFs? 2) Usually there are
more words in a sentence than in a named entity, which
makes it difficult to use the whole sentence as EDFs
since they are not informative even in the unlabeled
data. How can we select the “example-distinguishing”
part of a sentence that contains two proteins?

Corpus and pre-processing
We used AIMED corpus to examine our methods
because: 1) many previous works [2,7-13,15,16] were
evaluated on this corpus. 2) It focuses on the single per-
formance of relation extraction rather than BioCreative
2 PPI task [20], where the whole text mining process
including protein name recognition, normalization, and
PPIE are evaluated together.
Pyysalo et al. [21] made a comparative analysis of five

PPI corpora and converted all the corpora [21] to a
common format to facilitate research in this area. The
recent work [10,16] was evaluated on this dataset. We
used their transformed version of AIMED corpus, which
contains 1000 positive and 4834 negative examples.
We converted each sentence to lowercase, replaced

XML tags like “&quot;” by their standard ASCII charac-
ters, and then a sentence is tokenized by splitting tokens
from non-letter or digit characters, e.g., “wild-type (d)”
-> “wild - type ( d )”. We replaced the two focus pro-
teins in the current example by “prot1” and “prot2”, and
the other proteins in the same sentence by “prot0”. We
also replaced all the examples with overlapping “prot1”
and “prot2” by the same sentence “prot1 prot2 .” We
ignored these self-interactions just for simplicity, since
they will make it difficult to design a consistent feature
set. The reason we kept these examples in the dataset is
to keep the numbers of examples consistent with other
works [10,16] on the same corpus for a fair comparison.

Lexical information
As discussed in previous sections, in each example, the
positions of the two focus proteins make the task differ-
ent from a simple sentence classification task. We will
show that they play an important role in our FCD and
local lexical features. For clarification, we will give some
notions of words, n-grams, areas and positions in a sen-
tence with regard to two interacting proteins.
Vocabularies of words: LW = {words in labeled data},

and UW = {words in unlabeled data}.
Vocabularies of word-level n-grams: LN = {1-3 grams

in labeled data}, and UN = {1-3 grams in unlabeled
data}.
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Assume that words in an example are indexed by the
following sequence:
Indices = (0, …, i1, …, i2, …, END)
where i1 is the index of the token “prot1”, i2 is the

index of “prot2”, and END is the index of the last token
of the sentence.
General areas: GA = {Left_Area, Inner_Area, Right_Area}

= {[0, i1-1], [i1+1, i2-1], [i2+1, END]} –text snippets split
by “prot1” and “prot2” in each sentence denoted by
“Left_Area prot1Inner_Areaprot2 Right_Area”.
Surrounding areas: SA = {P1_Left, P1_Right, P2_Left,

P2_Right} = {[i1-4, i1-1], [i1+1, i1+4], [i2-4, i2-1], [i2+1,
i2+4]} – texts surrounding “prot1” or “prot2” within a 4-
word window.
Specific positions: SP = {m_From_P1, n_From_P2 |

m = x - i1, n = x - i2, x Î [i1-5, i1+5] ∪ [i2-5, i2+5]} –
words or n-grams that appear in certain positions in SA
with the window size 5, and x is the index of the cur-
rent text. Note that the definition of SP is somewhat dif-
ferent from our most recent work [19]. Here we use a
more comprehensive set to describe the specific term
positions in each example and find it more effective in
our experiments.
Conjunct positions: CP = { P1_direction ^ P2_direction ^

distance | direction Î {Left, Right}, distance = discretized
(i2-i1) Î {0,1, 2, 3, 4, 5, (6~7), (8~10), (11~15), (16~20),
(21~30), (31~40), (40~) } – conjunctions of partial ele-
ments (two areas adjacent each protein) in SP and the dis-
cretized word count between the two proteins.

Local lexical features
We note that the lexical features used in the recent
works [11,12,16] based on AIMED corpus only involved
bag-of-words or simple variants. Here we attempt to
enhance lexical-level representation by incorporating n-
gram and position information and give a detailed eva-
luation of the contribution of each feature type. Four
types of features are investigated in our work:
GA-BOW – bag of words: features derived from LW ×

GA, e.g., “Word_In_Left_Area=expression”. These fea-
tures ignore word positions in the current area, which
are almost as the same as features of the baselines used
in the works [11,12,16].
GA-Lex – bag-of-n-grams: features from LN × GA. It

simply enriches the bag-of-words representation by
bigrams and trigrams.
SA-Lex –n-grams surrounding proteins: features from

LN × SA, e.g., “P1_Right=interacts with”. They are used
to highlight n-grams in the “indicating areas”, since
intuitively features surrounding candidate protein pairs
are more indicative.
SP-Lex – n-grams with specific offsets from two pro-

teins: features from LN × SP, which gives the informa-
tion of specific distances from the n-grams in SA to

protein candidates, e.g., for the example “…prot1 inter-
acts with prot2…”, some of SP-Lex can be“1_From_-
P1=interacts”, “2_From_P1=with”,“-1_From_P2=with”
and “2_From_prot1 =interacts with”. It provides more
specific information than SA-Lex.
Conjunct position n-grams (CP-Lex): features from

LN × CP. The feature set is the conjunction of a subset
of features in SP-Lex and the distance of two proteins.
It can simultaneously capture the lexical information
around both proteins and is thus more indicative than
SP-Lex. The only problem is that they may suffer from
data sparseness.
Our classifier for all the lexical features is SVM light

[14] with linear kernel and default parameters.

EDF selection
For a fair comparison with local lexical features, some of
the EDFs used in our experiments are derived from
most discriminating ones of local lexical features and we
also propose some new features that have never been
used in relation extraction to our best knowledge. Three
types of EDFs are reported in this work:
SP-EDF: features derived from UN × SP. It can be

viewed as the extension of SP-Lex features to the voca-
bulary of UN. Obviously it has stronger discriminating
ability than features derived from GA or SA. The set of
EDF roots is GA but not SP because features derived
from SP result in a much higher dimension in feature
space, which will bring heavy computational burden.
We do not use SA as EDF roots because the perfor-
mance is slightly inferior to GA in our experiments.
CP-EDF: features derived from UN × CP. The set of

EDF roots is {P1_Left, P1_Right} × { P2_Left, P2_Right}.
Each feature is a pattern that connects two n-grams
each of which is adjacent to a different protein. One
CP-EDF can be viewed as a partial conjunction of two
SP-EDFs and the distance of two proteins, so its discri-
minating ability will be stronger than SP-EDFs. This fea-
ture set is the same as that in our work [19].
DS(discretized similarity)-EDFs: the discretized simi-

larity with the target examples. If the similarity between
the source and target examples is over a certain thresh-
old, the feature indexed by the target example will be
set “true” for the source example. We used cosine simi-
larity function in our experiment, which is defined as
follow:

Similarity( , )
.
*

s t
s t

s t
 (2)

where the vector s and t represent source and target
examples respectively. Each vector is generated by a modi-
fied set of SP-EDFs. There are four modifications: 1) we
do not limit the window size, because we want to use
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more information from the whole sentences and this will
not add much computational cost rather than SP-EDFs
and CP-EDFs. 2) We remove unigrams (single words)
from the vectors, leaving only bigrams and trigrams. 3)
We add the terms that appear in SA to each vector three
times in order to improve their weights. 4) If the two
examples have different distances of two proteins, the
similarity score will be zero. We use these strict match
schemes to improve the discriminating ability of the simi-
larity function. The features are indexed by the set
DSEDF={SimWith_target_Over_threshold | target Î {all
the examples for training and testing}, threshold Î {0.1,
0.2, 0.3, 0.5, 0.8}}. For an example x, we defined one EDF
root which generates EDFs in the set {e | e Î DSEDF, tar-
get(e)=x}. This means in FCG (see also Equation 1) we
sum up all the EDF-CDF pairs where the target of EDFs
are the same as the current example.
For example, there is a labelled example x and a unla-

beled example u, and assume that:1) there is no good
features in x , possibly due to extreme sparseness in
training data, but there is a good features c in u. 2) The
similarity between x and u is over 0.8 , indicating the
two examples are very similar. Then for both x and u
the value of the feature SimWith_x_Over_0.8 is “true”.
For x the feature is a strong discriminating feature that
can distinguish it from others, and its co-occurrence
with c in u can provide indicative information beyond
the training data. An example of EDF generation is
shown in Table 1.

CDF selection
We used Chi-square – a popular feature selection tech-
nique – to rank local lexical features (GA+SA+SP) in
labelled training data and selected top 400 ones as
CDFs. This idea is similar to that in our former woks
[18,19] where information gain was used. Here we find
that the results obtained by Chi-square seem to capture
more indicative patterns for PPIE. In Table 2, top
ranked CDFs in our experiment are listed (see also the
“Evaluation methods” section for the detailed
implementation).
Note that rather different from lexical features, these

EDFs and CDFs are not elements of the input vectors of
the target classifiers. They are used only for generating
FCD features which belong to part of the final feature
vectors. Figure 1 shows an example of the generation of
FCD features for the PPIE task, where only SP-EDFs
and one type of FCD measure are considered, so the
FCD features are indexed by the conjunction of EDF
roots and CDFs. It can be seen clearly that the sparse
EDFs are generalized to a higher-level representation.

Classifier
In the work [18], we found the density of FCD features
was much higher than lexical features widely used in
NLP and was somewhat like the feature spaces for
image recognition, which inspired us to make use of
non-linear classifiers. We used SVD plus RBF kernel
and achieved better results than linear kernel. Similarly,
for the PPIE task we also investigated the two models:
linear SVM and RBF kernel based SVM. For the RBF
model, we first used SVD to get a sub-space of FCD fea-
tures and then used the new features as the inputs of
SVM with RBF kernel. In our experiments, SVD was
done on the entire AIMED corpus and top 200 most
significant features in left-singular matrix were selected.
The parameter “-c” and “-g” of SVM light were set at 3
and 20. Then we combined the prediction scores of

Table 1 Examples of EDFs

Current
example:

The results show that prot1 heterodimerizes with
prot0 and prot2 in vivo , but it does not
homodimerize to a measurable extent .

SP-EDF: -4_From_P1=the
-9_From_P2=the
-3_From_P1=results
-8_From_P2=results
-3_From_P1=the results
-8_From_P2=the results
…,
1_From_P2=and prot2 in
...

CP-EDF: P1_Left=that^P2_Left=and^5
P1_Left=show that^P2_Left=prot0 and^5
P1_Left=results show that^P2_Left=with prot0 and^5
P1_Right= heterodimerizes^P2_Left=and^5
…

DS-EDF: SimWith_example0_ Over_0.8
SimWith_example0_ Over_0.5
SimWith_example0_ Over_0.3
SimWith_example0_ Over_0.2
SimWith_example0_ Over_0.1
SimWith_example1_ Over_0.8
…

In SP-EDF, the distance of a protein and an n-gram is the word count
between the protein and the last token of the n-gram. In the CD-EDF, the
distance between the two proteins is 5, so all the features are joined with the
distance.

Table 2 Examples CDFs

CDFs Chi-
square

CDFs Chi-
square

P2_Left=with
P1_Right=with
Inner_Area=with
Left_Area=prot0
-1_From_P2=with
0_From_P2=with
prot2
2_From_P1=with
Inner_Area=,
2_From_P1=- prot2
-1_From_P2=prot1 -

219.34
194.41
183.05
168.05
118.53
118.53
106.68
106.62
93.10
93.10

2_From_P1=prot1 - prot2
0_From_P2=prot1 - prot2
P1_Right=prot0
Inner_Area=prot0
P1_Right=interacts with
-1_From_P2=between prot1
and
P2_Left=between
-3_From_P2=between
-2_From_P2=between prot1
P1_Left=binds

93.10
93.10
83.61
83.09
80.94
79.3
75.91
74.4
74.4
68.17

Since the CDFs extracted from the training set of each round of ten-fold cross
validation are highly overlapped, here we just list the top results of the first
round. “Chi-square” is the score given by Chi-square feature selection method.
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lexical features and FCD features given by SVMs using a
simple weighted linear function, where their weights
were set at 3/5 and 2/5 respectively.

FCD measure & unlabeled data
In this work, we consider one type of FCD measure:

FCD
co x y b

count x b count y b
1 10

10 10


   

       
log ,

log *log
(3)

where x is an EDF, y is a CDF, and co(x, y) is the co-
occurrence count of x and y. The smoothing factor b is
assigned 1. We log the term count to avoid highly
biased values in very large corpus. This measure can be
viewed as a variant of pointwise mutual information
(PMI). We discussed its advantage in the work [18].
The experimental results in [18] show that the perfor-

mance of FCD features increases when more unlabeled
data are added. So in this work, we downloaded more
data, which include all the PubMed abstracts (up to
2009) and data collection of TREC genomics track 2006
[22,18], with the total size of 20GB. We tokenized the
texts using the same method as introduced previously
and tagged the protein names using the gene/protein
mention tagger developed in the work [18]. We used
the “dictionary-based” method because it is very fast
(over 10,000 sentences per seconds). The method for
the dictionary construction was also based on FCG and
it achieved an F-score of 86.2 on BioCreative 2 Gene
Mention test corpus [23]. Note that in the PPIE task,

“unlabeled” means no need to label the protein-protein
interactions, but the protein names should be recog-
nized first. For efficiency we removed the sentences that
contain over 10 protein names in the experiments.
Finally we obtained around 47 million unlabeled
examples.

Results and discussion
Evaluation methods
Although AIMED corpus was used for evaluation by
many researchers, it is still difficult to compare their
results exactly, because they used different evaluation,
data pre-processing and training/test set splitting meth-
ods in their experiments. We try to keep our evaluation
metrics as the same as the recent works [10-12,16]. We
used F-score as the primary evaluation measure and also
reported AUC. Airola et al. [10] suggested that for this
task, abstract-level cross validation should be used to
avoid sentences in the same abstract are both used for
training and testing. We also performed abstract-wise
10-cross validation, where abstracts were divided into 10
groups, and one was used for testing and the others for
training in each round. We extracted CDFs from each
training data separately to avoid the use of answers in
test set at training time.

4.2. Local lexical features
Table 3 shows the performances of various combina-
tions of local lexical features. We can see the F-score of
GA-BOW features is 50.17, which is similar to the

Figure 1 An example that shows how FCG generates new feature for the PPIE task. Here only CP-EDFs are considered. They are divided
into four groups according to different EDF roots. A CDF is denoted by cj. Since only one FCD type is used here, the FCD features are indexed
by the conjunction of EDF roots and CDFs.
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results reported in the recent work [11], where the F-
score of a similar feature set is 51.1. The discrepancy
may be caused by lemmatization they used, or the
detailed methods in data preprocessing and splitting
stages. It can be seen that features derived from sur-
rounding areas and specific position information
improve the performance significantly and produced a
surprisingly good result – 61.4 F-score and 86.11 AUC,
which is better than most of the recent works based on
syntactic parsing [10,11] (see also “Comparison with
other systems” section). Note that this run only used
simple Boolean lexical features, so it is much faster and
easier to implement than syntactic based methods,
which will make it feasible in practice. To our best
knowledge, the features (F2, F3, F4 and F5) are not
explicitly used as Boolean lexical features in the PPIE
task and their contribution is not examined well on the
AIMED corpus. The simple idea of creating these lexical
features is similar to our work on entity classification
[18], just following the cue from general to concrete:
“word -> n-grams -> n-grams in specific positions”.
From Table 3, the additional contribution of bigrams

and trigrams over unigrams seems not big. We will ana-
lyze the reason in the “Sparse features in FCG and
supervised learning” section together with FCD features
and show it is mainly due to the data sparseness in
training corpus.

FCD features
Table 4 lists the performances of various types of FCD
features. It can be seen that among FCD features the
method that integrates all the features in RBF kernel
achieves the best result – a 60.06 F-score and an 83.78
AUC. The combination of FCD and lexical features
achieve a 63.54 F-score and an 87.24 AUC. It improves
the performance of lexical features by over 2% in F-
score, but the improvement is a little lower than our
results in the work [19], it is because the modified SP
features here lead to significant improvement to SP-
EDFs and SP-Lex, but not so much for the combination
of FCD features.
From Table 4, it also can be seen that of all the single

types of features SP-EDF perform best, possibly because
the n-grams with specific offsets are both indicative and

informative in the unlabeled data compared with other
EDFs. CP-EDFs are the conjunction of two SP-EDFs
and thus more discriminating, but the performance is 5
percent lower than SP-EDFs. We believe the reasons: 1)
we just select a subset of SP for the conjunction due to
the limitation of computational complexity. 2) Sufficient
co-occurrences of CP-EDF and CDFs cannot be
obtained from our unlabeled data, even though the data
size is big. It seems that DS-EDFs are able to find a
good trade-off between indicative and informative, but
its performance is still inferior to SP-EDFs. It indicates
there may be other factors that determine the quality of
EDFs, such as a better similarity function between
examples that can reflect their “real similarity” under
this task. In addition, there are two common reasons
that can explain the inferior performance of CP-EDFs
and DS-EDF: 1) different EDFs may prefer different
CDFs, but we fix CDFs in these experiments, which lim-
its the full use of some EDFs. 2) In SP-EDF, the number
of EDFs per example is more than CP-EDFs and DS-
EDFs, which show that the combination of weak EDFs
can beat strong ones. This analysis can inspire us to
investigate and quantify the factors that determine the
quality of EDFs and CDFs, so that automatic selection
of better FCD features will become realistic in the
future.
From Table 4, we can see that the performance of

SVD-RBF model is at least as good as linear model,
which is a similar to our previous work on entity
classification [18]. It is an important finding for NLP
community, since we find a general way to generate a
non-linear representation for natural language which
has at least as good performance as linear methods that
have been widely used in machine learning for NLP. In
our experiments, we just examined a simple non-linear
method, and we believe that there will be a better non-
linear model for this task or FCD features in general.
Figure 2 and Figure 3 show the relation between the

performances of FCD features, the numbers of CDFs
and scale of unlabeled examples. Similar to our earlier
results on entity classification [18], generally there is
consistent improvement when more CDFs and unla-
beled data are incorporated. So in the future we may
consider using more CDFs and unlabeled data to
enhance the performance. But we think it a more
important work to investigate what kind of CDFs or
unlabeled data can contribute more to the performance
of FCD features.

Comparison with other systems
In Table 5, we compare the performances of our meth-
ods with other results reported in previous researches
evaluated on AIMED corpus. Although it is difficult to
make a strict comparison due to different methods for

Table 3 Performance of local lexical features

Feature Precision Recall F-score AUC

F1 42.2 65.12 50.17 78.22

F1+F2 45.83 61.65 50.89 78.92

F1+F2+F3 54.06 60.25 56.39 83.1

F1+F2+F3+F4 60.61 63.43 61.11 85.97

F1+F2+F3+F4+F5 62.13 62.4 61.4 86.11

F1: GA-BOW; F2: GA-Lex; F3: SA-Lex; F4: SP-Lex; F5: CP-Lex
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data splitting and pre-processing, it can be seen that our
combined method is among the state-of-the-art systems.
It is an important finding for both biomedical text
mining and NLP community, because unlike other
methods, no syntactic information is used in this run.
But it doesn’t mean there is conflict between FCG and
syntactic features and we can also consider incorporat-
ing syntactic information into FCG or just combining
our results with others to get higher performance in the
future. Another interesting finding is that our baseline
with simple local lexical features not only achieves good
results but is much more efficient and robust than syn-
tactic based methods.
In the work [18], we discussed the efficiency of FCG

in real world applications. In summary, for real-time
application, it needs the support of “feature-level” search
engine. Alternatively if the task can be divided into non-

real-time sub-tasks, we can run FCG on each sub-task
in an offline manner. For example, in this task, we can
generate a huge number of lexical patterns indicating
for PPI and used FCG to remove noisy patterns. Then
the refined patterns are used as features integrated into
the lexical feature-based method. The idea is similar to
the dictionary construction for the NER task [18]. In
this way, we can utilize the information from unlabeled
data and make the system efficient.

Sparse features in supervised learning and FCG
In this section we try to answer the question discussed
in the “Background” section: how can FCG utilize the
sparse features ignored by supervised learning? Using
the data in our experiments, we observed very interest-
ing results. Figure 4 shows the performance compari-
sons of local lexical features and FCD features derived
from similar lexical information. It can be seen that

Table 4 Performance of FCD features

ID Local SP-EDF CP-EDF DS-EDF Linear RBF Precision Recall F-score AUC

1 * * 62.13 62.40 61.4 86.11

2 * * 53 64.48 57.6 81.75

3 * * 58.08 62.67 59.16 82.97

4 * * 56.83 53.55 54.33 79.26

5 * * 54.64 57.71 54.47 78.34

6 * * 53.5 56.4 53.87 78.02

7 * * 54.45 58.71 55.56 79.79

8 * * * * 54.08 63.66 58.06 82.61

9 * * * * * 59.7 61.52 60.06 83.78

10 * * * * * * 60.47 68.31 63.54 87.24

In RBF SVM, SVD is used to reduce the feature dimension and a SVM with RBF kernel is used to classify examples. Run 10 combines the outputs of Run 1 and
Run 9.

Figure 2 Relation between the performance of FCD features
and the number of CDFs. The patterns are selected in a
descendent order of Chi-square scores. For all the FCD features,
linear classifiers are used.

Figure 3 Relation between the performance of FCD features
and the number of unlabeled examples. Here linear classifiers
are used.
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FCD features perform much better than lexical features
consistently. We note that the densities of features
derived from SP, CP and DS in the AIMED corpus are
respectively 0.05%, 0.023% and 0.025%. Therefore the
results seem to show that when the features are extre-
mely sparse in training data, the performance will be
poor in supervised learning, but can be enhanced by
FCG from huge unlabeled data.
More results can be found in Figure 5, which shows

the performance of different feature sets when only fea-
tures with less than certain counts in AIMED corpus
are used. As can be seen, when using the extremely
sparse features (e.g., less than 4 times in AIMED cor-
pus), the performance of local features are rather poor,
but there is no big impact on FCD features. We also
found that when these features were removed from local
lexical features, there was almost no negative impact on
the performance, which indicates that these features are
ignored in supervised learning. It is encouraging to see
that these discarded features can be good EDFs and

perform well in FCG together with the huge unlabeled
corpus. We obtain two important conclusions from the
results: 1) since FCG can activate the inactive features
in supervised learning, the room for designing new fea-
tures will become much larger and a lot of features that
have never been used in NLP can be examined, such as
DS-EDFs in our experiments. 2) It inspires us to develop
automatic methods for selecting EDFs concerned with
the frequency of features, since the results show that
FCG seems to prefer features with high sparsity, which
is opposite to supervised learning.

Conclusions
We present the application of FCG semi-supervised
learning strategy to the PPI extraction task and show
that FCD features derived from simple lexical informa-
tion can achieve good results and produce further
improvement over a high baseline. We believe that there
is still a lot of room for improvement. In the future
work, we will focus on designing EDFs and CDFs that
cover more lexical or linguistic information (e.g., from
shallow or syntactic parsing) of the whole sentences.
Since many experiments show that FCD features per-
form well in non-linear classifiers, we will examine
other popular learning techniques in pattern recogni-
tion. It is encouraging to see that FCG performs well in
the two different NLP tasks: entity classification and
relation extraction, so we will continuously examine this
method in more tasks on natural language processing
and machine learning.
The results also indicate that the frequency of features

seems to be an indicator for the quality of EDFs and we

Table 5 Comparison with other systems on AIMED corpus

Method or author F-score AUC

(Miwa et al., 2009) [16] 65.2 89.3

Our method (Combined) 63.5 87.2

(Miwa et al., 2009) [12] 62.7 (64.3) 83.2 (87.9)

Our method (Lex) 61.4 86.11

Our method (FCD) 60.1 83.8

(Miyao et al., 2008) [11] 59.5 -

(Airola et al., 2008) [10] 56.4 84.8

(Sætre et al., 2007) [9] 52.0 -

(Mitsumori et al., 2006) [14] 47.7 -

For the work [12], the scores in brackets are their reported results obtained by
removing all the examples with self-interaction protein pairs in AIMED corpus.

Figure 4 Comparison of local lexical features and FCD features.
For FCD features, non-linear classifiers are used.

Figure 5 Sparse features in FCG and supervised learning The
x axis is the count of features (EDFs for FCD features) in the AIMED
corpus. The y axis is the F-score obtained by training with all the
features equal or less than the certain feature count indicated by
x axis. For FCD features, linear classifiers are used.
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believe that there must be other factors that determine
the quality of FCD features. In the future work, we will
investigate these impacts through experiments as well as
theoretical analysis on different datasets.
Major contributions of this work can be summarized

as follows:

1) We are the first to apply FCG to the task of PPIE.
We proposed several novel types of EDFs/CDFs and
got promising results on a popular dataset.
2) Our work create much more opportunities for
designing new features for this task, since the results
show that a lot of sparse features ignored by super-
vised learning can work well in FCG.
3) Our methods indicate that state-of-art results can
be achieved without using any syntactic information
in the PPIE task or even in general relation extrac-
tion tasks.
4) Our results demonstrate that semi-supervised
learning can work well on huge amount of unlabeled
data in this task.
5) We analyze different performance of features in
supervised and semi-supervised learning with regard
to the sparsity of features and obtain some interest-
ing findings.
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