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Abstract

Background: Finding sequences of evolutionary operations that transform one genome into
another is a classical problem in comparative genomics. While most of the genome rearrangement
algorithms assume that there is exactly one copy of each gene in both genomes, this does not
reflect the biological reality very well - most of the studied genomes contain duplicated gene
content, which has to be removed before applying those algorithms. However, dealing with unequal
gene content is a very challenging task, and only few algorithms allow operations like duplications
and deletions, especially if the duplicated or deleted segments are of arbitrary size.

Results: We recently proposed a heuristic algorithm for sorting unichromosomal genomes by
reversals, block interchanges, tandem duplications, and deletions. In this paper, we extend this
approach to multichromosomal genomes. We are now able to sort a multichromosomal ancestral
genome into a genome of a descendant by a large set of different operations, including tandem
duplications and deletions of segments of arbitrary size.

Conclusion: Experimental results show that our algorithm finds sorting sequences that have a

weight close to the true evolutionary distance.

Background

During evolution, genomes are subject to genome
rearrangements, which are large scale mutations that
can alter the ordering and orientation (strandedness) of
the genes on the chromosomes or even change the
genome content by inserting, deleting, or duplicating
genes. Because these events are rare compared to point
mutations, they can give us valuable information about
ancient events in the evolutionary history of organisms.
For this reason, one is interested in the most “plausible”

genome rearrangement scenario between two genomes.
More precisely, given two genomes, one wants to find an
optimal sequence of rearrangements that transforms this
genome into the other. In the classical approach, each
gene has exactly one copy in each genome, and only
operations that do not change the genome content are
considered. A breakthrough in the research of these
“classical operations” was Hannenhalli and Pevzner's
algorithm for sorting by reversals [1], and due to further
research, we are now able to sort multichromosomal
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genomes by reversals, translocations, fusions, and fissions in
polynomial time [2,3]. If one also considers transposi-
tions, the problem gets more complicated, and there are
only approximation algorithms known [4-6]. To simplify
the existing algorithms, Yancopoulos et al. invented the
double cut and join operator (DCJ), which can simulate
reversals, translocations, fusions, fissions, and block
interchanges (a more generalized form of transposi-
tions), resulting in a simple and efficient algorithm [7].

However, restricting the genes to be unique in each
genome does not reflect the biological reality very well,
as in most genomes that have been studied, there are
some genes that are present in two or more copies. This
holds especially for the genomes of plants, and one of
the most prominent genomes is the one of the flowering
plant Arabidopsis thaliana, where large segments of the
genome have been duplicated (see e.g. [8]). There are
various evolutionary events that can change the content
of the genome, like duplications of single genes,
horizontal gene transfer, or tandem duplications. For a
nice overview in the context of comparative genomics,
see [9]. In a pioneering work, Sankoff tackled the
challenge of genomes with duplicated genes with his
“exemplar model” [10], where the following problem
was examined. Given two genomes with duplicated
genes, identify in both genomes the “true exemplars” of
each gene and remove all other genes, such that the
rearrangement distance between these modified gen-
omes is minimized. This approach was later extended to
the “matching model”, where one searches for a
maximum matching between the copies of each gene
such that the genome rearrangement distance according
to this matching is minimized [11]. However, both
approaches have been proven to be NP-hard for the
breakpoint distance and the reversal distance [11-13].
Note that these approaches do not construct the
evolutionary events that changed the genome contents,
i.e. the set of operations is still restricted to the classical
set of operations. The first approach that explicitly
constructed duplication events was done by El-Mabrouk
[14], where one searches for a hypothetical ancestor with
unique gene content, such that the reversal and duplica-
tion distance from this ancestor to a given descendant
(with duplicated genes) is minimized. This work has
been further extended during the last years (see e.g.
[13,15]). Still, the duplications were technically limited
to have the length of one element, and therefore the
algorithms can only be applied if no large segmental
duplication happened during evolution. One idea to
overcome this problem was to simulate duplications by
insertions, as it has been done in [16-18]. Recently,
Yancopoulos and Friedberg provided a mathematical
model (but without algorithm) of a genome rearrange-
ment distance for genomes with unequal gene content
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[19], combining the DCJ operator with arbitrary but
length-weighted insertions and deletions. To the best of
our knowledge, the first work that allowed duplications
of arbitrary segments was done by Ozery-Flato and
Shamir [20], who demonstrated that a simple greedy
algorithm can find biologically realistic sorting scenarios
for most karyotypes in the Mitelman Database of
Chromosome Abberations in Cancer [21]. Further simplifi-
cations of the model led to an algorithm with provable
approximation ratio of 3 [22] (note that the algorithm
performs much better in practice). Recently, we pro-
posed a heuristic algorithm for sorting a unichromoso-
mal genome by DCJs, tandem duplications, and
deletions of arbitrary segments [23]. In this work, we
extend this approach to multichromosomal genomes.
We are now able to sort an ancestral multichromosomal
genome by a large set of operations, including duplica-
tions and deletions of arbitrary size. As a constraint, two
chromosomes in the ancestral genome must be either
disjoint or identical. Although this restriction seems to
be very limiting, this is often fulfilled in practice. A
possible application is to examine the evolution of a
cancer karyotype out of a diploid set of healthy
chromosomes.

Methods

Preliminaries

A chromosome 7' = (z!...z}) is a string over the alphabet
¥ ={1, ..., n}, where each element may have a positive or
negative orientation (indicated by x or x ). We get the
inverse of an element n;: (indicated by —71;» ) by inverting
its orientation. The reflection of a chromosome (z;...7;)
is the chromosome (—z;...— ). It is considered to be
equivalent to 7. A genome n= {r’, ..., n'} is a multiset of
chromosomes. The multiplicity mult(m, x) of an element x
is the number of its occurrences (with arbitrary orienta-
tion) in m. A segment is a consecutive sequence of
elements of a chromosome. Each element x can also be
represented by the ordered set of its extremities x,(the tail)
and xy,(the head), where the ordering of the extremities is
x, x, if x has positive orientation, and x;, x, otherwise. For
example, the chromosome (1 2) can also be written as
(1,152,2;). The two extremities belonging to the same
element are called co-elements. We say the tail/head x,/, of
an element x is a telomere if there is a chromosome in 7
beginning or ending with x,,. The value t(x, x)
determines how often x, is a telomere in n, the value
t(m, xy,) is defined analogously. Two consecutive extre-
mities in a chromosome 7' which are no co-elements
form an inner adjacency w.r.t. another genome p if they
are also consecutive in a chromosome of p, otherwise
they form an inner breakpoint. An extremity which is a
telomere in 7 forms a telomere adjacency w.r.t. another
genome p if it is also a telomere in p, otherwise it forms a
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telomere breakpoint. For example, if p = {(1,1,2,2,3:31)}
and 7 = {(1,1,2:25), (1,1,3,31)}, then 1, and 3, form
telomere adjacencies, while 2;, forms a telomere break-
point. Applying an operation op to a genome = yields the
genome op(n). A genome rearrangement problem is defined
as follows. Given two genomes p and m and a set of
possible operations, where each operation is assigned a
weight, find a sequence of minimum weight (i.e. the sum
of the weights of the operations is minimized) that
transforms p into n. This minimum weight will be
denoted by d(p, 7). In our algorithm, we will consider all
operations listed in Subsection “Operations”. For sim-
plification, we will assume that two chromosomes in
p are either disjoint (i.e. they have no element in
common) or identical. Furthermore, each element in
must appear in at least one chromosome of p. Note that
these restrictions only hold for the genome p, not for 7.

Operations

The following set of operations will be considered by our
algorithm. A reversal inverts the order of the elements of
a segment. Additionally, the orientation of each element
in the segment is inverted. A transposition cuts a segment
out of a chromosome, and reinserts it at another
position in the same chromosome. If we additionally
apply a reversal on this segment, we speak of an inverted
transposition. A fusion concatenates two chromosomes.
Both chromosomes 7' and 7/ can be inverted before the
operation, i.e. we can replace 7' or 7/ by its reflection. A
fission splits a chromosome into two chromosomes. A
translocation splits two chromosomes 7' and 7 into 7',
7" and 7', 7", and then concatenates 7' with 7/" and
7" with 7", Again, both chromosomes can be inverted
before the operation. A tandem duplication inserts an
identical copy of a segment immediately after this
segment in a chromosome. A transposition duplication
inserts an identical copy of a segment at an arbitrary
position in the genome. A deletion cuts a segment out of a
chromosome. A chromosome duplication creates an iden-
tical copy of a chromosome. A chromosome deletion
deletes a chromosome.

All operations have weight 1, except for (inverted)
transpositions and transposition duplications, which
have weight 2. These weights are chosen rather by
mathematical than biological reasons, but still result
in biologically realistic scenarios (see also Section
“Discussion”). To simplify the analysis of the effects of
the operations in Section “A lower bound”, we will there
use the double cut and join operator (DCJ), which has been
introduced in [7]. A DCJ cuts a genome at two positions,
and rejoins the cut ends in two new pairs. It is a well-
known fact that reversals, translocations, fusions, and
fission can be described by one DCJ operation, while
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transpositions can be described by two DCJ operations.
Duplications and deletions cannot be described by DCJ
operations and therefore must be examined separately.

The breakpoint graph

Our main tool for developing the algorithm is the
breakpoint graph, which is an edge-colored multigraph
that visualizes the current adjacencies and breakpoints. It
has been introduced by Bafna and Pevzner to solve
rearrangement problems on genomes without duplicated
genes [24]. We extend this graph such that it can also be
used for genomes with duplicated genes. The breakpoint
graph of two genomes p and m can be constructed as
follows. First, we write the set of vertices {1, 1p, 2, 2, ...,
n,, ny,} from left to right on a straight line. Second, for each
pair (x,, yyn) of extremities that are no co-elements but
consecutive in a chromosome of p, we connect the
corresponding vertices by a gray edge. Third, we analo-
gously add a black edge for each pair of extremities that are
consecutive in . However, if one of the endpoints is not
an endpoint of a gray edge (i.e. it corresponds to a
telomere in p), we do not add the black edge (this is
required to obtain a good lower bound in Section “A
lower bound”). For an example, see Fig. 1. In contrast to
the original breakpoint graph, each vertex can be the
endpoint of several gray and black edges. The multiplicity
of an edge (v, v') is the number of black edges between v
and v'. A blackedge (v, v) is called a loop. Let L(p, =) denote
the number of vertices with a loop. Two vertices v, v’ are in
the same component of the graph if and only if there is a
path (consisting of gray and black edges) from v to v'. Let
C(p, n) denote the number of components in the
breakpoint graph of . A black edge is called a 1-bridge if
the removal of this edge increases C(p, 7). A pair of black
edges is called a 2-bridge if none of the edges is a 1-bridge
and the removal of both edges increases C(p, 7).

. . o o .
I 1 2 2 3 3 4 Ay 5 By G G
Figure |

The breakpoint graph. The breakpoint graph of
p={(123),(123),(450)} and

= {(i 29 §),(4 3256),(51)}. Note that there is no

black edge (44, 34), as 3yis a telomere in p. The edge (2, 3,)
has a multiplicity of 2, all other black edges have a multiplicity
of I. The edge (24, 2;) is a loop. The breakpoint graph
consists of 5 components, the black edge (5,, 6,) is a |-bridge,
the pair of black edges (I, 5;), (2, 5) is a 2-bridge.
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A lower bound

Instead of searching for a sequence of operations opy, ...,
opithat sorts p into 7, one can also search for the inverse
sequence op;',...,op;" that sorts 7 into p (we will call
such a sequence a sorting sequence). This is more
convenient, because then the breakpoint graph has
some nice properties due to the limitations in p. Note
that simply restricting 7 instead of p would not work,
because the operations are directed from the restricted
ancestral genome to the unrestricted descendant, i.e. we
would nevertheless have to invert the operations. In the
following, we will examine what effects the inverse
operations have on the breakpoint graph. In the
unichromosomal case, we were mainly interested in
the effects on components and loops (see [23]). As the
breakpoint graph does not contain edges for telomeres,
we additionally have to consider the amount of incorrect
telomeres (denoted by T(p, m)), which is defined as
follows.

T(pm)= Y, maxfi(p,x,)-t(r,%),0}

x|t(p,x,)>0
+ Y maxfi(p,x,) - 1z, %,),0}

xplt(px,)>0

+ Z {(m,x,) + 2 (r, x,)

xr‘t(p/xr)>0 x,,\t(p/xh)>0

In other words, for each telomere x,(or x;) in p, we count
how often we must create this telomere in 7 such that
t(p, x;) < t(m, x;) (or t(p, xi) < t(m, x,)). Additionally, we
add the amount of telomeres x; and x;, in 7 that have to
be removed, i.e. they are not telomeres in p.

Lemma 1. If m = p, then C(p, n) is maximized, and L(p, m)
and T(p, ) are minimized.

Proof. If m = p, the set of gray edges and the set of black
edges in the breakpoint graph are equal. Thus, removing
black edges does not increase the number of compo-
nents, and adding black edges can only decrease the
number of components. Therefore, changing = cannot
increase C(p, n). L(p, n) and T(, n) are both positive
numbers, and if 7 = p, they are equal to 0 and therefore
minimized. ©

In [23], we have shown that all operations can either
change the number of components by 1, or change the
number of loops by 2. These observations still hold for
our slightly modified breakpoint graph. We will now
examine how an operation can change T(p, ).

Inverse reversal, translocation, transposition
These operations can be simulated by one or two inverse
DCJs (which is equivalent to a normal DC]J), thus it is
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sufficient to examine the effects of a DCJ (note that
transpositions, which require two DCJs, have weight 2).
A DCJ can only change T(p, ) if one of its edges is the
end of a chromosome. Then, a telomere x, ;, is removed
and a new telomere y, / is created. This decreases T (p, n)
by 1 or 2 if x, s, is not a telomere in 7 and y, ;, is a
telomere in 7z, otherwise the operation does not decrease
T(p, m). However, in the first case, the DCJ did not cut
any black edge, as we neither draw black edges for
telomeres in p nor for telomeres in 7.

Inverse fusion (fission)

Splitting a chromosome will only decrease T(p, ) if both
new telomeres are also telomeres in p. In this case, no
black edge in the breakpoint graph is removed, i.e. C(p,
n) and L(p, 7) remain unchanged. T(p, n) is decreased by
at most 2.

Inverse fission (fusion)

Concatenating two chromosomes can decrease T(p, ) by
at most 2. This operation never removes a black edge,
thus C(p, ) cannot be increased and L(p, 7) cannot be
decreased.

Inverse tandem duplication
This operation does never change the set of telomeres in
7, and therefore cannot change T(p, 7).

Inverse transposition duplication

This operation can decrease T(p, 7) only if the duplicated
segment is at a chromosome end, and the new
chromosome end (after deleting the segment) is a
telomere in p. In this case, no black edge with
multiplicity 1 is removed, therefore C(p, 7) and L(p, n)
remain unchanged. The decrement of T(p, n) is < 2.

Inverse deletion (insertion)

This operation can only change T(p, n) if we insert a
segment at a chromosome end. In this case, no black
edge is removed, i.e. C(p, m) cannot be increased and
L(p, 7) cannot be decreased. T(p, ) is decreased by at
most 2.

Inverse chromosome duplication

This operation can decrease T(p, 7) by at most 2 (if the
telomeres of the removed chromosome are not telo-
meres in p). Only black edges with multiplicity > 2 are
removed, thus C(p, ) and L(p, 7) remain unchanged.

Inverse chromosome deletion (chromosome insertion)

This operation can decrease T(p, 7) by at most 2 (if the
telomeres of the new chromosome are also telomeres in
p). In the breakpoint graph, no black edges are removed,
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i.,e. C(p, m) cannot be increased and L(p, 7) cannot be
decreased.

Theorem 1. A lower bound Ib(p, =) of the distance d(p, ) is

o200, 1= TOD o) -clpm+ Y

ComponentsC;

where c(p) = n + (number of different chromosomes in p),
and Li(p, w) is the number of vertices with a loop in
component C; in the breakpoint graph of p and n.

Proof. An operation that decreases T(p, 7) will neither
increase C(p, m) nor decrease L(p, m), therefore we
can separate every sequence into operations that
decrease T(p, n) and operations that decrease

Li(p,
CL(p,m)=c(p)—-C(p,7)+ ZCmponemCi [ 1([2’ ) ] . Each

operation decreases T(p, ) by at most 2, so we need at

least T(’)T”) operations of the first kind. Furthermore, if

p = n, then C(p, n) = ¢(p) and therefore CL(p, ©) = 0. As
each operation decreases CL(p, 7) by at most one (the
proof in [23] still holds), we need at least CL(p, n)
operations of the second kind. Therefore, any sorting
sequence must have at least Ib(p, 7) operations. D

Corollary 1. Ib(p, p) = 0.

Unfortunately, there are genomes 7 = p with Ib(p, n) = 0,
i.e. it is not sufficient to sort until the lower bound
reaches 0. We therefore have to introduce another
distance measure 7(p, 7). We will use the following
definitions.

m(p, )= 2 |mult(p,x) - mult(ﬂ,x)|
elements x
ia(p, ) = 2 - # inner adjacencies in 7 w.r.t p
ta(p, ) = # telomere adjacencies in 7 w.r.t p

t(p,w)=4-m(p,7)+ia(p, p) +ta(p, p) —ia(p, w) - ta(p, )

For example, if p = {(1234)} and = = {(12)(3 4)},
then Ib(p, ) = 0 and z(p, n) = 2.

Lemma 2. If p = n, then 7(p, ) = 0. Otherwise, =(p, ) > 0.

Proof. Tt is clear that 7(p, ) = 0 if p = n. In order to
minimize z(p, rr), it is necessary to minimize m(p, ) and
to maximize ia(p, ) and ta(p, n). ia(p, p) and ta(p, p) are
independent of m and therefore fixed. Each inner
adjacency is weighted by 2. We can interpret this as if
each of the adjacent extremities is weighted by 1.
Therefore, we can say that each element in 7 can account
at most 2 to ia(p, ) + ta(p, 7), and this value is reached if
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there is an adjacency on both sides of the element. Thus,
the contribution to 7(p, n) of all occurrences of an
element x in 7 is minimized if mult(p, x) = mult(r, x) and
no extremity of x is part of any breakpoint. Every
additional occurrence of x may increase ia(p, ) + ta(p, n)
by 2, but also increases m(p, n) by 4 and therefore
increases 7(p, ) by at least 2. This means that z(p, n) is
minimized if each element has the same multiplicity in p
and 7, and the breakpoint graph contains no break-
points. This is the case if and only if p and = are
identical. O

The algorithm

The algorithm uses a greedy strategy to sort 7 into p by
inverse operations. For better readability, we will simply
write “operation” instead of “inverse operation” in this
section. First, we define Alb(op) = lb(p, =) - Ib(p, op(r))
and Az(op) = t(p, ) - t(p, op(m)). The score o of an
operation op is defined as the tuple o(op) = (Alb(op),
Az(op)). The comparison operator between two scores is
defined by o(op,) >0(op,) if Alb(op;) > Alb(op,) V A(lb
(op1) = Alb(op2) A At (0p1) > At (0p2)). In each step, we
search for operations that decrease the lower bound, and
apply the one with the greatest score. If no such
operation exists, we use additional heuristics to find
operations that do not change the lower bound but have
a positive score (i.e. o (op) >(0, 0)). There is still the
possibility that we even do not find such an operation.
In this case, we use a fallback algorithm that is
guaranteed to terminate.

Operations that decrease the lower bound

Finding operations that increase C(p, ) can be done by
finding 1-bridges and 2-bridges in the breakpoint graph
and verifying additional preconditions, as shown in [23].
The only difference is that now a DCJ can cut only one
black edge. This is the case when the other cutting point
contains a telomere in p or n. Thus, we also have to
consider DCJs that act on a 1-bridge and a telomere.
Such a DCJ can be interpreted as inverse reversal,
translocation, fission, or transposition. In the last case,
we have to find a third cutting point in the same
chromosome such that the resulting inverse transposi-
tion still increases C(p, 7). Also finding operations that
decrease L(p, n) is straightforward and can be done as in
[23]. The remaining task is to find operations that
decrease T(p, ). For this, we create a list of telomeres in
7 that are not telomeres in p, and another list of inner
breakpoints in m where at least one of the adjacent
elements is a telomere in p. Operations that decrease T
(p, ) must act on one or two points of these lists,
depending on the operation type. Creating the lists can
be done by a linear scan over 7, therefore all operations
that decrease T(p, ) can be found in quadratic time. The
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only exceptions are inverse deletions and inverse
chromosome deletions, which may add segments of
arbitrary content. Practical tests have shown that it is
better to only allow the insertion of segments without
any breakpoints. This does not only lead to better sorting
sequences, but also keeps the time complexity of finding
the operations in O(n?).

Additional operations

If there is no operation that decreases Ib(p, 7), we may
still find operations that do not change the lower bound
but decrease 7(p, n). Searching for all these operations
would exceed our computing capacity, so we just search
for the following subset of these operations that can be
found easily.

e There are inverse tandem duplications and trans-
position duplications that do not change o(p, 7), but
decrement 7(p, 7). We therefore search for identical
consecutive segments that are maximal, i.e. they
cannot be extended in any direction, and check the
effect on o(p, n) and z(p, n) if we remove one of
them. This operation corresponds either to an inverse
tandem duplication, or to an inverse transposition
duplication.

e Depending on the telomeres of a chromosome, the
lower bound can remain unchanged during an
inverse chromosome duplication, but z(p, ) can
decrease. We therefore search for identical chromo-
somes and check the score of removing one of them.
e Inserting a segment of consecutive elements x with
mult(p, x) >mult(r, x) decreases z(p, m). We search for
such segments of maximal length and try to insert
them by an inverse deletion. Note that this is not
always possible as this operation can increase the
lower bound by merging two components.

e Creating inner or telomere adjacencies never
increases the lower bound, but decreases 7(p, n).
We therefore search for DCJs and inverse fissions that
create new adjacencies without splitting old ones.

The fallback algorithm

It is possible that there is neither an operation that
decreases Ib(p, ), nor an operation that decreases z(p, ),
so the main algorithm gets stuck. However, this case
cannot occur if all elements have the same multiplicity in
p and in 7.

Lemma 3. If p # m and mult(p, x) = mult(r, x) holds for all
elements x, then there is an operation with positive score.

Proof. When the preconditions are fulfilled, there must be
at least one breakpoint in 7. We have to distinguish three
cases. (1) This is a telomere breakpoint. W.l.o.g. a
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chromosome in 7 ends with x;, but x;, is not a telomere
in p. Then, mult(p, x) = mult(p, x + 1) (as they are in the
same chromosome), and therefore there must be another
breakpoint including (x + 1),. An operation that creates
an adjacency between x;, and (x + 1), will not decrease
the lower bound, but decrease 7 (p, 7) by at least 2. (2)
The breakpoint is an inner breakpoint between two
extremities that are telomeres in p. In this case, the score
of cutting the chromosome at this breakpoint is (1, 2),
because both extremities become telomeres (i.e. T(p, )
increases by 2), and we create two telomere adjacencies.
(3) The breakpoint is an inner breakpoint, and at least
one of the adjacent extremities is not a telomere in p. W.
l.o.g., the breakpoint is of the form (x;, y4), and &y, is not
a telomere in p. Then, mult(p, x) = mult(p, x + 1), thus
there must be another breakpoint including (x + 1),. An
operation that creates an adjacency between x;, and (x +
1), will not increase the lower bound, but decrease z(p,
n) by at least 2. D

The fallback algorithm will first ensure that the
precondition of the lemma holds. For each chromosome
p' in p, we determine the element x with the most
occurrences in 7. We then create maximal segments of
consecutive elements ym ... such that each element z
in the segment belongs to p' and mult(n, z) <mult(n, x),
and add this segment by an inverse deletion to 7. Note
that this can be done without creating new breakpoints.
This step is repeated until all elements belonging to the
same component in p have the same multiplicity in 7.
We then transform p into p’ by applying chromosome
duplications and chromosome deletions on p such that
for each element x, mult(p’, x) = mult(n, x). Now, we
apply our normal algorithm to sort 7 into p’. To ensure
that the precondition of Lemma 3 is always fulfilled, we
forbid operations that create or delete elements, i.e. any
kind of duplication or deletion. Due to Lemma 3, the
algorithm will find a sorting sequence that transforms n
into p’. As last step, we have to undo the operations that
transformed p into p’.

Results

We tested our algorithm on artificial data and on cancer
karyotypes from the “Mitelman Database of Chromo-
some Aberrations in Cancer” [21].

Artificial data

We used simulated data to assess the performance of our
algorithm. First, we created genomes p with n different
elements and ¢ different chromosomes. Each chromo-
some has the same size, the ploidy (i.e. the number of
identical copies) of the chromosomes is 1 or 2. Then, we
generated the genome 7 by applying random sequences
of operations of weight w = on on p (with o varying from
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0.1 to 1.0 in steps of 0.1). The operations of the
sequences are independently distributed, with all opera-
tions having the same probability. Although these
probabilities do not match the biological reality, this is
still convenient to assess the performance of the
algorithm. Once the type of an operation was deter-
mined, the operation was drawn from a uniform
distribution of all operations of this type. The genomes
p and 7 were now used as input to our algorithm. The
parameters 1 and ¢ were chosen such that they reflect the
properties of biologically meaningful datasets. To under-
stand what “biologically meaningful” means, let us have
a brief look on biological datasets. In most of them,
elements do not represent single genes but synteny blocks,
i.e. regions of a chromosome that are highly conserved
and do not contain breakpoints. These synteny blocks
normally contain several genes. The amount n of
different synteny blocks depends on the allowed
dissimilarity between the synteny blocks as well as on
the evolutionary distance between the genomes. For
example, El-Mabrouk et al. [25] tested their algorithm on
yeast genomes with 55 synteny blocks, Zheng et al. [26]
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identified 34 synteny blocks between rice, sorghum, and
maize. Salse et al. [27] used 60 synteny blocks to
compare Arabidopsis thaliana and rice. A recent compre-
hensive study of Drosophila genomes [28] identified
between 112 and 1406 synteny blocks, depending on the
evolutionary distance of the species. Our datasets reflect
those parameters. Dataset 1 contains 16 chromosomes of
ploidy 2 with a total of 64 elements, this approximately
matches the yeast genome. Dataset 2 contains 12
chromosomes of ploidy 2 with a total of 36 elements,
Dataset 3 contains 5 chromosomes of ploidy 2 with a
total of 60 elements. These are realistic values for plant
genomes. Dataset 4 contains 5 different chromosomes
with a total of 200 elements, two of them with ploidy 1
and three of them with ploidy 2 (corresponding to 2 sex
chromosomes and 3 diploid chromosomes). This reflects
the values for closely related Drosophila species. Each
dataset contains 100 different test cases for each
generated distance w. Together with the use of different
distances w, this allows us to get a much more robust
result than just testing on a few biological datasets. The
results of our experiments are depicted in Fig. 2. The
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Results on artificial data. The relation of the created distance, the calculated distance, and the lower bound for the different

artificial datasets.
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diagrams show that, on average, the calculated distance
and the true evolutionary distance w lie close together. In
many cases, the calculated scenarios were even slightly
shorter than the true distance. In the fourth diagram, an
additional saturation effect can be observed, i.e. we can
find a sorting sequence with weight <130 for most
genomes 7, independent of the true distance w.

Cancer karyotypes

The “Mitelman Database of Chromosome Aberrations in
Cancer” [21] contains the descriptions of cancer karyo-
types which have been manually collected from pub-
lications over the last twenty years. For our experiments,
we used the version of May 14, 2009, which contains
56428 datasets. The data is represented in the ISCN
format, which can be parsed by the software tool CyDAS
[29]. From all datasets which could be parsed by CyDAS
without error (44064 datasets), we removed all
unknown elements and compressed all segments with-
out breakpoint, i.e. if a set of consecutive elements
contains no breakpoint in any chromosome, it can be
represented as one element. The resulting datasets were
used as input to our algorithm. Most of the scenarios are
rather easy to reconstruct, the average lower bound is
2.72 and the average calculated weight is 4.08. However,
there are some more complicated karyotypes, with
rearrangement scenarios of over 50 operations. Exem-
plarily, the reconstructed scenario for one karyotype is
shown in Fig. 3. This karyotype was reported in [30], and
can be described by the ISCN formula (for details about
the ISCN format, see [31]).

47,XY,1(3;7)(q23;422),1(3; 7;9)(423; 432; 422), +i(7) (q10), £(14;18)(q32; ¢21), del(17) (p1 1)

http://www.biomedcentral.com/1471-2105/11/S1/S27

In principle, our algorithm correctly identified all
operations. The triple translocation t(3; 7; 9)(q23; ¢q32;
g22) and the new chromosome +i(7)(q10) are not
allowed operations in our model. Our algorithm
replaced the triple translocation by two translocations,
and the new chromosome by a tandem duplication with
a subsequent fission, which are the best possible
explanations within our model.

Discussion

In the last sections, we have shown that our algorithm
will terminate in any case, and finds rearrangement
scenarios of reasonable quality. However, the weights of
the operations are chosen due to a mathematical model
and do not reflect the biological reality. This leaves room
for further investigations. For example, the algorithm
could be improved by giving unwanted operations a
larger weight or completely omit them. While adapting
the theoretical model to other weights seems to be the
obvious way to improve the algorithm, it might also be
worth to examine how robust the results are w.r.t. the
chosen weights. In other words, does the optimal
rearrangement scenario change when we use other
weights? Some observations in the genome can be
explained at best by a specific operation (e.g. a
duplicated chromosome is most likely caused by a single
chromosomal duplication), no matter how this opera-
tion is weighted. Such observations are predominant in
closely related genomes, and the corresponding opera-
tions can be reconstructed even with a wrong weighting
scheme. In more diverged genomes, there are often
different possible rearrangement scenarios, and the

|
|
|

(T 2),(T2),(F34756),(3475 6),(7 8),(9 10),(11 12),(13 14)
— = = = = == = = 5 = = — — —> — = = = = =3 = — tandem duplication
(1 2),(1 2),(3 45 6),(3 45 6|4 5 6),(7 8),(9 10),(11 12),(13 14)
fission
(1T 2),(1T2),(34756),(34756),(475 6),(7 8),(9 10),(11 12),(13 14)
- - translocation
(T 2),(1T8),3 475637475 6)(475 6)(7 2),(9 10),(11 13),(13 14)
- o translocation
(T2),(T8EFT356),3 752,475 6)(7 6)(9 10),311 13,13 14)
—_— = — —_— —_— — — —_— — = — —_— = —> — — — — —_ — —)—)tranSIOCation
(15 6),(1 8),(34 2),(3 475 2),(475 6),(7 6),(9 10),(11 12),(13 14)
—_ = — — — —_ = = —_— = = —_ = — — — — — — — _)_)translocation
(T56)(T8)(371T2),(372752),(T75 6)(7 6)(9 14), (11 13),(13 10)
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(T5 6)(1L 8),(342),(3 475 2),(475 6)(7 6),(9 14),(12),(13 10)
Figure 3

An example sorting scenario. Sorting scenario of a cancer karyotype that was reported in [30]. For better readability, all

chromosomes that are identical in p and 77 are removed.
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weighting scheme matters. Thus, further investigations
should examine what the “critical distance” between two
genomes is, i.e. up to which distance the optimal
rearrangement scenario is mostly robust w.r.t. the
weighting scheme.

Conclusion

We presented an algorithm to sort multichromosomal
genomes by a wide range of different operations.
Although our results are promising, this algorithm
should be seen as a single step towards an algorithm
that produces biologically reliable results. While one
direction of further research should investigate the
chosen weighting scheme (see Section “Discussion”),
other possible improvements are closer lower bounds or
better heuristics.
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