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Abstract

Background: Antibacterial peptides are one of the effecter molecules of innate immune system.
Over the last few decades several antibacterial peptides have successfully approved as drug by FDA,
which has prompted an interest in these antibacterial peptides. In our recent study we analyzed 999
antibacterial peptides, which were collected from Antibacterial Peptide Database (APD). We have
also developed methods to predict and classify these antibacterial peptides using Support Vector
Machine (SVM).

Results: During analysis we observed that certain residues are preferred over other in
antibacterial peptide, particularly at the N and C terminus. These observation and increased data of
antibacterial peptide in APD encouraged us to again develop a new and more robust method for
predicting antibacterial peptides in protein from their amino acid sequence or given peptide have
antibacterial properties or not. First, the binary patterns of the |5 N terminus residues were used
for predicting antibacterial peptide using SVM and achieved accuracy of 85.46% with 0.705
Mathew’s Correlation Coefficient (MCC). Then we used the binary pattern of 15 C terminus
residues and achieved accuracy of 85.05% with 0.701 MCC, latter on we developed prediction
method by combining N & C terminus and achieved an accuracy of 91.64% with 0.831 MCC. Finally
we developed SVM based model using amino acid composition of whole peptide and achieved
92.14% accuracy with MCC 0.843. In this study we used five-fold cross validation technique to
develop all these models and tested the performance of these models on an independent dataset.
We further classify antibacterial peptides according to their sources and achieved an overall
accuracy of 98.95%. We further classify antibacterial peptides in their respective family and got a
satisfactory result.

Conclusion: Among antibacterial peptides, there is preference for certain residues at N and C
terminus, which helps to discriminate them from non-antibacterial peptides. Amino acid
composition of antibacterial peptides helps to demarcate them from non-antibacterial peptide
and their further classification in source and family. Antibp2 will be helpful in discovering efficacious
antibacterial peptide, which we hope will be helpful against antibiotics resistant bacteria. We also
developed user friendly web server for the biological community.
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Background

In the past few decades, a large number of bacterial
strains have evolved ways to adapt or become resistant
to the currently available antibiotic [1]. The widespread
resistance of bacterial pathogens to conventional anti-
biotics has prompted renewed interest in the use of
alternative natural microbial inhibitors such as anti-
microbial peptides. Antimicrobial peptides (AMPs) are
a family of host-defense peptides most of which are
gene-encoded and produced by living organisms of all
types [2-8]. Antimicrobial peptides (AMPs) are small
molecular weight proteins with broad spectrum anti-
microbial activity against bacteria, viruses, and fungi
[3,10]. These evolutionarily conserved peptides are
usually positively charged and have both a hydrophobic
and hydrophilic side that enables the molecule to be
soluble in aqueous environments yet also enter lipid-
rich membranes. Once in a target microbial membrane,
the peptide kills target cells through diverse mechan-
isms [5].

Antimicrobial peptides have a broad spectrum of activity
and can act as antibacterial, antifungal, antiviral and
sometimes even as anticancer peptide [10]. These
antibacterial peptides have other properties like anti-
bacterial activity, mitogen activity or act as signaling
molecules including pathogen-lytic activities [10]. Exten-
sive work has been done in the field of antibacterial
peptide, describing their identification, characterization,
mechanism of action etc. keeping in mind their
numerous biotechnological applications [11-13]. Lot of
work has been done to collect and compile these
peptides in form of a database [14-17].

These antibacterial peptides have very low sequence
homology, despite their common function [18].
Previously we developed a very robust method AntiBP
[19], for predicting antibacterial peptide using SVM,
QM (quantitative matrix) and artificial neural network
(ANN). Growth of antibacterial peptides in APD
database in the last 2 years motivated us to develop
a prediction method based on the newer and larger
(almost double) dataset. We once again analyzed the
antibacterial peptides and developed SVM based
models to predict antibacterial peptides, because our
previous study show that SVM over perform than
other method. In AntiBP2 we also extracted clean
dataset of antibacterial peptide families from Swiss-
Prot and developed classification models for them. In
the following text, we first discuss the method
developed to distinguish antibacterial peptides from
non-antibacterial peptides (prediction part) and in the
next step describe the method for classifying these
peptides on the basis of source and classes (classifica-
tion part).
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Results

Analysis of the antibacterial peptides

Analysis of antibacterial peptides in AntiBP [19] had
shown a preference for certain residues over others at
both the termini. By drawing the pLOGOs [20] it was
also seen that there seems to be a residue preference at
different position of antibacterial peptides. As the dataset
in AntiBP2 was almost double in size compared to the
dataset used in the previous method AntiBP, we again
decided to analyze the antibacterial peptides and look
for any change or shift in preference trend. We again
generated sequence logos of 15 N-terminal and
C-terminal residues using pLOGO program (Figures 1
and 2).
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Figure |
Sequence logo of first fifteen residues (N-terminus)
of antibacterial peptides. The figure depicts the sequence
logo of first fifteen residues (N-terminus) of antibacterial
peptides, where size of residue is proportional to its
propensity.
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Figure 2

Sequence logo of last fifteen residues (C-terminus) of
antibacterial peptides. The figure depicts the sequence
logo of last fifteen residues (C-terminus) of antibacterial
peptides, where size of residue is proportional to its
propensity.
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It was seen that the pLOGOs drawn in AntiBP2 showed
similar trend as shown in the method AntiBP [19]. Here
also in the N-terminus dataset G, F, V, R was
predominating at first position and L, I, W, F were
frequently present at 2nd position. Similarly, certain
residues are preferred at the C-terminus, for example
residues K, G, C, and R are preferred at most of the
positions. Though both N and C terminus have a higher
proportion of positively charged residues but in AntiBP2
analysis also we could notice a higher frequency of
positively charged residues at the C-terminus as com-
pared to the N-terminus (Figures 3 and 4). This may be
because it is the C-terminus first interacts with the
negatively charged membrane of the bacteria and
penetrate it [21]. The N-terminus later helps to hamper

12 M Antibacterial peptide
o ® Non-antibacterial peptide
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Figure 3

Overall comparison of |15 N-terminal antibacterial
peptide and non-antibacterial. This figure shows the
composition biasness of various amino acids in antibacterial
and non-antibacterial peptides at N terminal.
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Figure 4

Overall amino acids comparison of |15 C-terminus
antibacterial and non-antibacterial peptides. This
figure shows the composition biasness of various amino acids
in antibacterial and non-antibacterial peptides at C terminal.
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the crucial bacterial metabolic functions by interacting
with intracellular components like DNA and RNA [22].
Antibacterial peptides also have a high propensity of the
residues Cys which is normally not preferred in most of
the proteins

Overall amino acids composition comparison of anti-
bacterial and non-antibacterial shows positively charged
Lys is prominent in antibacterial peptides (Figure 5).
Similarly Gly and Ile propensity is also high in
antibacterial peptides

Prediction

The performances of NT15, CT15, NTCT15 and whole
peptide based prediction method for antibacterial
peptides are given below in Table 1. The accuracies
achieved by NTCT15 model and whole peptide based
model were almost equal (~91%) and is highest among
all the models. The performance of NT15 model was
better that that of CT15 model.

Performance on independent or blind dataset

The prediction models developed in this study were
evaluated on a 466 sequence independent dataset (Table 2).
These antibacterial peptides in the independent dataset
were not used for developing above models either in
training or testing.

Classification

The result of classification of antibacterial peptides into 5
sources is given in Table 3. The MCC achieved by the
classification model was 0.89, 0.95, 0.94, 0.94 and 0.90 for
bacteria, frog, insects, mammals and plants respectively.

14 - M Antibacterial peptide

H Non-antibacterial peptide

E|hllimjjhlh|..

A CD F LMNPQRSTVWY

~N

Figure 5

Overall amino acids comparison of antibacterial
peptide and non-antibacterial peptides. This figure
shows the composition biasness of various amino acids in
antibacterial and non-antibacterial peptides.
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Table I: Performance of prediction methods developed on NT15,
CTI15, NTCTI5 and whole peptide dataset

Sensitivity Specificity Accuracy MCC

%) %) *)
NTI5 84.14 86.77 86.46 0.705
CTIS 85.5 84.61 85.05 0.701
NTCTI5 92.22 90.24 91.64 0.831
Whole peptide 90.59 93.69 92.14 0.843
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Table 5: Classification of frog antibacterial peptides into families

Sensitivity  Specificity Accuracy MCC
(%) (%) (%)
Bombinin 96.72 98.84 98.44 0.95
Brevinin 99.31 98.29 98.75 0.97
Caerin 100 98.97 99.06 0.95
Dermaseptin 90.48 100 98.75 0.94
Other 95.24 100 99.38 0.97

Table 2: Performance of NTI5, CTI5 NTCTI5 and whole
peptide dataset model on independent dataset

Table 6: Classification of mammal antibacterial peptides into
families

Correctly predicted Accuracy (%)

NTIS 361 77.47
CTIS 359 77.04
NTCTIS 395 84.76
Whole peptide 408 87.55

Table 3: Peformance SVM models in classification of antibacterial
peptides according to their source

Sensitivity (%) Specificity (%) Accuracy (%) MCC

Bacteria 83.33 99.76 97.89 0.89
Frog 99.06 96.98 97.68 0.95
Insects 93.07 99.65 98.95 0.94
Mammals 96.52 97.35 97.05 0.94
Plants 90.67 99.2 98.52 0.9

Table 4: Classification of insect antibacterial peptides into
families

Sensitivity  Specificity Accuracy MCC
(%) (%) (%)
Apidaecin 100 98.95 99.01 0.92
Attacin 93.75 100 99.01 0.96
Cecropin 100 100 100 |
Invertebrate 100 100 100 |
defensin
Lebocin 80 98.96 98.02 0.79

The dateiled results of classification of insect antibacter-
ial peptides into thie listed 5 subfamilies is given in
Table 4. For classification of insect antibacterial peptides
into Apidaecin, Attacin, Cecropin, Invertebrate defensin
and Lebocin, the respective MCC's achieved were 0.92,
0.96, 1, 1, 0.79.

The results of classification of frog's antibacterial
peptides and mammalian antibacterial peptides into
their respective families (5 each) are given in detail in
Table 5 and Table 6. The MCC achieved in classification
of frog antibacterial peptides into its respective

Sensitivity  Specificity Accuracy MCC
(%) (%) (%)
A-defensin 88.89 99.65 97.68 0.92
B-defensin 100 96.51 98.26 0.97
Cathelicidin 98.41 99.29 99.13 0.97
Hepcidin 100 100 100 |
Histatin 97.06 100 99.71 0.98

subfamilies (as listed in datasets section) was 0.95,
0.97, 0.95 0.94, 0.97 and that for mammalian anti-
bacterial peptide families were 0.92, 0.97, 0.97, 1, 0.98.

Discussion

A great deal of interest is shown nowadays in antibacter-
ial peptides or the so called “nature’s antibiotics”, which
seem to be promising to overcome the growing problem
of antibiotic resistance [23-25]. The design of novel
peptides with antimicrobial activities requires the devel-
opment of methods for narrowing down the candidate
peptides so as to enable rational experimentation by wet-
lab scientists. Attempts have been made to develop
methods and strategies for designing effective antimi-
crobial peptides [26,27]. AntiBP is one such method
meant to discover efficacious antibacterial peptides that
we hope could prove to be a boon to combat the
dreadful antibiotic resistant bacteria. Enormous growth
of antibacterial peptide data in the databases motivated
us to develop an improved version of AntiBP using the
same strategy. The new version was name AntiBP2.

The N and C terminus sequence logos of AntiBP2 dataset
were almost similar to those in the previous method
AntiBP. This indicates that though there seems to be an
absence of great homology or conservation among
antibacterial peptides but the pattern of positional
preference of certain residues remains constant. We
once again developed the prediction method to classify
antibacterial peptide from the non-antibacterial peptide.
But this time the method was developed using a training
data that was double in size to the one previously used.
We developed both whole peptide based compositional
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models as well as binary pattern based terminus
approaches. This time we retained the whole peptide
based method also as it becomes difficult to predict
peptides that are less than 15 residues in length by the
binary pattern based terminal models. In this method
also we achieved impressive results with all the above
approaches but the best performers were the NTCT15
and whole peptide based prediction models (achieving
~91% accuracy). This was followed by the NT15 based
prediction model while the CT15 based model being the
poorest performer among all. This trend is just similar to
what was seen in AntiBP. The performance evaluation of
prediction models on the independent dataset followed
the trend shown during development of prediction
models (in sync with the trend followed by the AntiBP
method). The NTCT15 model performed the best
followed by NT15 and CT15 models in respective order.

In AntiBP2 we have also developed models that could
classify antibacterial peptides further into families with
high accuracy. First we successfully made an attempt to
develop classification models that could assign the
source of origin to predicted antibacterial peptides. The
classification models to classify the antibacterial pep-
tides further into corresponding families were also
developed. The results attained in all the classification
methods clearly indicate that although the antibacterial
peptides do no show a greater conservation or homol-
ogy, but they become more and more as we go down to
the level of a particular family. This is evident from the
high accuracies achieved for each family in various
classification models. Therefore, AntiBP2 is an efficient
method that can predict and classify the antibacterial
peptides. We hope that our method would help the wet
lab scientists to design improved and efficacious anti-
bacterial peptides in future.

Conclusion

There is a rapid growth in the field of antibacterial
peptide research in response to the demand for novel
antibacterial agents. AntiBP2 is one such efficient
method that can predict and classify the antibacterial
peptides and help to find newer antibacterial peptides
more speedily and conveniently. We hope that our
method would promote the research to design improved
and efficacious antibacterial peptides in future.

Methods

Dataset

Main dataset

The positive dataset for this method was once again
fetched from the antimicrobial peptide database APD
[17]. We retrieved a total of 999 unique antibacterial
peptides from this database. We used this dataset to

http://www.biomedcentral.com/1471-2105/11/S1/S19

build the whole peptide composition based SVM models
to predict antibacterial peptides of any length.

Negative dataset against whole peptide dataset

As there is no source of experimentally proven non-
antibacterial peptides, so we adopted the same strategy
that was used to generated the negative dataset in
AntiBP. We chose to extract random peptides from
proteins belonging to all intracellular locations except
from the secretary proteins (because antibacterial pep-
tides are mostly secreted outside the cell). Though some
of these randomly selected peptides could be antibacter-
ial in nature but the possibilities are remote. To do this
we used the data which was used in MitPred [28].
MitPred dataset had proteins belonging to various
intracellular locations (nucleus, cytoplasm, ER, golgi
complex, mitochondria). These proteins were then
mixed and shuffled thoroughly so that the negative
dataset does not have overrepresentation of proteins
belonging to any particular location. Now we selected
those proteins that were >100 amino acids in length.
This was done as many of the antibacterial peptides in
the positive dataset having >90 residues in length. Now
for peptide in the positive dataset, we calculated its
length and cut a random peptide of corresponding
length from the negative dataset protein. Thus we got
999 negative peptides in result.

NTI5, CTI15 and NTCTI5 datasets

We created NT15 and CT15 datasets by taking first fifteen
and last fifteen residues respectively from the antibacter-
ial peptides as done in AntiBP [19]. For NTCT15 dataset
we concatenated the CT15 peptides with their corre-
sponding NT15 counterparts. To reduce the redundancy
in the positive dataset, duplicates were removed and we
were left with 782 NT15, 786 CT15 peptides and 861
NTCT15 peptides.

Negative dataset against NT15, CT15 and NTCTI5 datasets
The strategy to generate the negative datasets for NT15,
CT15 and NTCT15 datasets was the same as used in
AntiBP. Once again the dataset having thoroughly mixed
and shuffled proteins belonging to various subcellular
locations was taken. For NT15 and CT'15 negative datasets
15 residues long peptides were cut randomly from this
dataset. From these peptides we selected 786 peptides to be
used as negative dataset against both, NT15 and CT15
datasets. The negative dataset for NTCT15 dataset was
created by extracting 861 random peptides (30 residues in
length) from the non-secretary protein dataset.

Datasets for Subfamily classification
These datasets for classification of antibacterial peptides
were extracted from the protein sequence database
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Swiss-Prot. These include peptides belonging to bacteria,
insects, frogs, mammals and peptides categories into
plants. The antibacterial peptides belonging to insects
further belonged to 5 families i.e. apidaecin, attacin,
cecropins, invertebrate defensins and lebocin. The anti-
bacterial peptides belonging to mammals contained
alpha-defensin, beta-defensin, cathelicidin, hepcidin
and histatin. Frog antibacterial peptides also had
sequences from bombinin, brevinin, caerin, dermaseptin,
dermorphin, phylloseptin, pleurain, tryptophillin. As the
number of peptides in dermorphin, phylloseptin, pleur-
ain and tryptophillin were very less therefore, these were
combined into a single class named as “Other”.

Independent dataset

We took 466 peptides from the family classification
dataset (which was fetched from Swiss-Prot) which were
not present in our main dataset (taken from APD
database). This dataset was not used either for training
or testing the method. These peptides served as the
independent dataset for evaluating the performance of
the prediction models.

Techniques used

As the SVM based technique performed the best in the
method AntiBP [19], we therefore exploited SVM to
develop the prediction method in this case. In this study,
all SVM models have been developed using a freely
available program SVM_Light [29]. This program allows
users to run SVM using various kernels and parameters.
In this study, the accuracy was computed at a cut-off
score where sensitivity and specificity are nearly equal.

Evaluation of parameters

Five-fold cross-validation technique has been used to
evaluate the performance of all the models developed in
this study. In five fold cross-validation technique a
dataset is randomly divided into five sets, where each set
consists of nearly equal number of antibacterial peptides
and non antibacterial peptides. Four sets are used for
training and the remaining set for testing. This process is
repeated five times so that each set is used once for
testing. The performance of method is average perfor-
mance of method on five sets. Following parameters has
been used for assessing the performance of a method.

Senstivity = x100
TP+FN
TN
Specifity = x100
pecifity TN+FP
Accuracy = _ IN+IN x100
TP+TN+FP+FN
MCC (TPXTN)—(FPXFN) 100

= J(TP+FP)(TP+EN)(IN+FP)(IN+EN) |

http://www.biomedcentral.com/1471-2105/11/S1/S19

Where, TP and TN are correctly predicted antibacterial
peptides and non-antibacterial peptides respectively. FP
and EN are wrongly predicted antibacterial peptides and
non-antibacterial peptides respectively. Sensitivity (Sn)
or percent coverage of antibacterial peptide is the
percentage of antibacterial peptide predicted as anti-
bacterial peptide; specificity (Sp) or percent coverage of
non-antibacterial is the percentage of non-antibacterial
peptide predicted as non-antibacterial peptide; overall
accuracy (Ac) is the percentage of correctly predicted
antibacterial and non antibacterial. The five fold cross
validation technique was used for evaluation of all the
three methods.

Prediction of antibacterial peptides

Whole peptide based approach

Though it is seen that the terminus approaches are useful
to scan the antibacterial peptide in a larger protein
sequence but it becomes difficult of predict peptide
which are less than 15 residues. Therefore, a whole
peptide based SVM model was also developed in order
to predict antibacterial peptides of any length. Amino
acid composition of the amino acid residues was fed to
train the SVM.

NTI5, CT15 and NTCTI5 approach

Again the binary patterns of NT15, CT15 and NTCT15
datasets were used to develop prediction methods as
described in AntiBP. The performance was evaluated
using Five-fold cross validation technique.

Classification of antibacterial peptides

Multiclass SVM was exploited to develop the classifica-
tion models and thus models were developed to classify
the antibacterial peptides belonging to different sources
e.g. Bacteria, Insect, Frog, mammals and plants. N SVMs
model were constructed for N-class classification. For
antibacterial peptide classification, the number of classes
was equal to 5. Five 1-v-r SVMs models were constructed
for classification of antibacterial peptides. The ith SVM
was trained with all the samples of ith class labelled
positive and all other samples labelled negative. An
unknown example was classified into the class that
corresponds to the SVM with the highest output score.
The results for the family prediction are given in Table 2.

Antibacterial peptides belonging to various sources were
further classified into families. Classification models
were developed for peptides belonging to insects, frogs
and mammals. To classify Insect antibacterial peptides
into families 5 1-vs-r SVMs were developed. In a similar
way 5 1-vs-r SVM models were developed to classify frog
and mammalian antibacterial peptides into their respec-
tive families. The detailed results of classification of
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insect, frog and mammalian peptides are given in results
section (Table 3, 4 and 5).

Awvailability and requirements

We developed a web server AntiBP2 [30] freely available
for predicting and classify antibacterial peptides using
models developed in this study. This web server was
developed on SUN server (model T-1000) under Solaris
environment using PERL programming languages.
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