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Abstract

several hours.

given pattern recognition task.

Background: Image analysis is an essential component in many biological experiments that study gene
expression, cell cycle progression, and protein localization. A protocol for tracking the expression of individual C.
elegans genes was developed that collects image samples of a developing embryo by 3-D time lapse microscopy.
In this protocol, a program called StarryNite performs the automatic recognition of fluorescently labeled cells and
traces their lineage. However, due to the amount of noise present in the data and due to the challenges
introduced by increasing number of cells in later stages of development, this program is not error free. In the
current version, the error correction (ie, editing) is performed manually using a graphical interface tool named
AceTree, which is specifically developed for this task. For a single experiment, this manual annotation task takes

Results: In this paper, we reduce the time required to correct errors made by StarryNite. We target one of the
most frequent error types (movements annotated as divisions) and train a support vector machine (SVM) classifier
to decide whether a division call made by StarryNite is correct or not. We show, via cross-validation experiments
on several benchmark data sets, that the SVYM successfully identifies this type of error significantly. A new version of
StarryNite that includes the trained SVM classifier is available at http:/starrynite.sourceforge.net.

Conclusions: We demonstrate the utility of a machine learning approach to error annotation for StarryNite. In the
process, we also provide some general methodologies for developing and validating a classifier with respect to a

Background

Recent advances in microscopy, fluorescent tagging and
automated image analysis have led to the development
of high-throughput methods for monitoring gene
expression at single-cell resolution over time [1-4].

We focus in this work on a particular protocol for
tracking the expression of individual C. elegans genes
during embryonic development. Briefly, the protocol
works as follows. First, histones are genetically tagged
with green fluorescent protein (GFP). During develop-
ment, a stack of confocal microscopy images of the
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embryo is taken every 50-90 seconds. Each stack con-
tains 31-35 image planes with a spatial resolution of 1
micron. A sample image stack is shown in Figure 1(a),
where the z-axis is coded using a red-green-blue color
scale (i.e., red is the closest and blue is the farthest from
the top plane). In this figure, nuclei of nondividing cells
are spherical, and nuclei of dividing cells have elongated
shapes. Typically, the diameter of a cell nucleus is from
3-11 microns; therefore, each nucleus is represented in
4-11 image planes. A typical image series might track
development over 150-200 time points until the embryo
consists of 180 cells. With 30 images per time point,
such a series consists of 5000-6000 images. These
images show approximately 400 cell divisions and
10,000 nuclei at different time points. If we continue to
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Figure 1 C.elegans cell lineaging images. (a) One stack of images taken during development, with the z-axis represented as a red-green-blue
color scale. (b) One image, with two channels corresponding to ubiquitous expression (green) and expression via the pha-4 promoter (red). ()
The worm lineage of 959 cells, with branch lengths determined by StarryNite. Red colored branches indicate expression from the pha-4
promoter.

the 350 cell stage, then the series contains 180-230 time  cell stage [6]. In this work, our goal is to use machine
points, approximately 700 cell divisions and 20,000 learning methods to reduce this manual annotation
nuclei. In addition to tagging all nuclei using a ubiqui- time. Using a collection of manual annotations, we sys-
tously expressed histone, the protocol can be extended tematically analyze the types of errors made by Starry-
to trace the expression of individual genes. In Figure 1 ~ Nite. For the most common type of error, we then
(b), a histone is tagged with GFP, and a second histone design a collection of features that encode relevant
is tagged with RFP, where the RFP histone’s expression  information about the source of the errors. Finally, we
is driven by the promoter associated with the gene pha-  use these features, in conjunction with labels derived
4. Hence, the pattern of red nuclei shows in which cells from manual annotation, to train a support vector
the pha-4 promoter is active. machine (SVM) classifier to identify StarryNite errors
Once the image samples are collected, the primary  with high accuracy. The resulting classifier significantly
analysis task is to identify individual nuclei and to trace  speeds up the time required to manually curate expres-
the lineage of the individual cells. Because the lineage is  sion image series. The classifier is built into the latest
highly stereotyped, this task amounts to mapping the version of StarryNite http://starrynite.sourceforge.net.
observed data onto a lineage tree with fixed topology
and variable branch lengths. Such a tree is shown in Fig-  Results
ure 1(c) for a two-channel experiment, where the line-  Analyzing StarryNite errors
age is colored according to whether the monitored gene Initially, we investigated the types of errors produced by
is expressed along a given lineage. The software tool  StarryNite, with the goal of focusing our analyses on the
StarryNite was developed specifically to solve this cell ~most common errors. To this end, we grouped Starry-
lineaging task [5]. StarryNite can trace a 350-cell stage Nite errors into five categories: (1) false positives, (2)
image series in approximately 25 minutes on a desktop false negatives, (3) positioning errors, (4) incorrect dia-
computer. However, annotation with StarryNite must  meter estimation and (5) tracing errors. A false positive
typically be followed by a manual curation step, because  occurs when StarryNite mistakenly detects a nucleus,
the automatic annotation contains errors. This curation  which in fact is non-existent. Conversely, false negatives
generally takes approximately two hours to edit a line-  are nuclei that StarryNite fails to identify. Positioning
age up to the 194-cell stage and four hours to the 350-  errors occur when StarryNite makes mistakes in finding
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the coordinates of the centroid of the nucleus. Incorrect
size estimation happens when the inferred diameter of a
nucleus differs from the true value. Tracing errors
include cases where a nucleus at a particular time point
is not matched to the right nucleus (or nuclei) in the
next time point. For each nucleus, there can be three
possible matches: one to one, one to two, or one to
none, corresponding to movement, cell division (i.e.,
division call), and cell death [5]. A moving nucleus sim-
ply changes its location from one time point to the
next. A dividing nucleus splits into two children nuclei
in the next time point. Finally, a cell death corresponds
to the case where a cell disappears. Once the embryo
finishes its development it starts to crawl away from the
imaging foci. Hence, in the final stages of development,
some cells will start to disappear from the image data
and some will still be present. Note that all of these
errors are subjectively defined, ultimately, by visual
inspection by a human expert. Hence, there is no hard
and fast rule for, for example, how far off the centroid
must be in order to qualify as a positioning error.

We collected statistics for each error type on a single
benchmark series (081505), which contains image data
up to the 195 cell stage. This series contains a total of
23,987 nuclei annotations by StarryNite and 24,355
annotations in the manually edited version. The results,
summarized in Figure 2(a), suggest that false negatives
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are the most common error types, followed by tracing
errors, dislocations, incorrect diameter estimations and
false positives. Although false negatives are the most
commonly observed errors, we chose to concentrate on
the second most common error type, tracing errors. We
made this choice for two reasons. First, tracing errors
are directly amenable to correction by a simple classifier,
which can be applied systematically to all division calls
made by StarryNite. In contrast, a classifier that
attempts to correct false negative annotations would
have to be applied to all empty regions of all image
stacks. Second, tracing errors have a more complex
morphology than simple false negative annotations,
allowing us to use a rich set of features, as described
below.

Tracing errors can be further subdivided into eight
categories: (1) division annotated as movement, (2)
movement annotated as division, (3) division annotated
as cell death, (4) movement annotated as cell death,
(5) cell death annotated as division, (6) cell death
annotated as movement, (7) indexing errors of moving
nuclei and (8) indexing errors of dividing nuclei. An
indexing error of a moving nucleus occurs when a
moving nucleus at a particular time point is linked to
the wrong nucleus at the next time point. Similarly, an
indexing error of dividing nuclei occurs when the
indices of the newborn children are incorrectly
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Figure 2 Histogram of various types of errors in one image series. (a) Major error types. (b) Subtypes of tracing errors.
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assigned. Figure 2(b) shows that “movement annotated
as division” is the most frequent type of tracing error:
42.3% of the tracing errors in series 081505 are of this
type. Indeed, this series contains a total of 427 division
calls, and 102 (24%) of those were in fact movements.
In addition to being the most frequent tracing error
type, movements detected as divisions are biologically
important as well. Figure 3(a) illustrates one such
error. In the figure, a moving nucleus at a particular
time point ¢ is encapsulated by a white square box. For
simplicity, the figure shows only a single image slice,
corresponding to a fixed z-value. Alternatively, Figures
3(b) and 3(c) contain 3D image representations of all
the nuclei present at ¢ and ¢ + 1, respectively, where ¢
= 35 in this example. According to the human annota-
tor, M1 and M2 move from ¢ = 35 to ¢t = 36 and P1 at
t = 35 divides into C1 and C2 at ¢t = 36. However,
StarryNite annotates M1 at ¢t = 35 as the parent
nucleus and links it to M2 and C1 at ¢ = 36, which are
incorrectly annotated as the children of M1. Thus, in
this example a moving nucleus (M1) is annotated as
dividing, causing a deviation from the true topology of
the lineage tree. Based on these analyses, we decided
to focus our initial efforts on the automatic recognition
of movements detected as divisions.

Feature design

Often, success in machine learning depends critically
upon the ability of the researcher to successfully incor-
porate into the learning framework significant prior
knowledge about the problem domain. Such prior
knowledge can be represented, for example, using a for-
mal, probabilistic prior or, for kernel methods, by select-
ing an appropriate similarity function. However, perhaps
the most straightforward way to encode prior knowledge
is by designing feature extraction routines that are tai-
lored to the task and the data. In our case, we examined
the “movement annotated as division” tracing errors in
several of our image series and, on that basis, designed a
collection of 82 features that provide a rich view of the
types of errors produced by StarryNite. The 82 features
are summarized in Table 1 and explained below.

Time index

The time index denotes how much time has elapsed
since the start of embryonic development. The relation-
ship between developmental age and time index
depends, of course, on the time resolution of the experi-
ment. In general, StarryNight makes more errors, on a
per-nucleus basis, at later time points, simply because
the images at later time points contain more nuclei and
are hence more crowded.
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Figure 3 Moving nucleus annotated as dividing. (a) An image
plane from the series 081505 at t = 35 and z = 23, where t is the
time index and z is the plane index within the image stack. A
moving nucleus is encapsulated by a white square box. (b) 3D view
of the nuclei present at t = 35. M1 and M2 move from t =35 to t =
36 and P1 at t = 35 divides into C1 and C2 at t = 36. (c) 3D view of
the nuclei present at t = 36. StarryNite annotates M1 at t = 35 as
the parent nucleus and links it to M2 and C1 at t = 36, which are

incorrectly annotated as the children of M1.
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Table 1 The set of 82 features is grouped into nine
categories

Feature group Number of features

Absolute time index 1

1

2 Ages

3 Diameters

4 Distances 15

5 Normalized nucleus support 39

6 Angles

7 GFP signals 6

8 Number of nuclei at a given time 1

9 Coordinates 9
Total 82

Age

A cell needs to mature to a certain age before dividing into
two nuclei. Therefore, by including age information we
aim to eliminate incorrect division annotations that corre-
spond to divisions of very young cells or lead to very long-
lived cells. We compute ages of the parent nucleus as well
as the two children nuclei, as described in Methods.
Diameter

We obtain the diameter, in pixels, of the parent and the
two children nuclei directly from StarryNite’s annota-
tion. We expect the diameters of the children to be
similar to one another and smaller than the diameter of
the parent.

Distance

We include 15 distance features that capture the spatial
relationships among the parent, the parent’s neighbors
and the two children.

Normalized nucleus support

During mitosis, a cell typically elongates in one direc-
tion, deviating from its usual spherical shape. To enable
discriminating between dividing and non-dividing nuclei,
we introduce a feature called normalized nucleus sup-
port that quantifies how spherical the nucleus is. Details
are provided in Methods.

Angle

During mitotic division, the two children typically move
in opposite directions. To capture these directional
changes, we define a set of five angle features, as
described in Methods.

GFP signal

Similar to the diameter features, we expect the GFP sig-
nals of the two children to be similar to each other and
less than the GFP of the parent. To capture this infor-
mation, we include six GFP features: the GFP signals of
the the parent at ¢ - 1, the parent at ¢, children at £ + 1
and children at ¢ + 2.

Number of nuclei at a given time

This feature allows the learner to exploit the correlation
between the number of nuclei at a given time point and
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the probability of error. When an image stack contains
many cells, the nuclei are packed more tightly together
and more likely to experience collisions that affect the
direction of moving nuclei. Accordingly, we observed
that StarryNite makes more errors when the number of
nuclei is high.

Coordinates

We included the x-y-z coordinates for the centroids of
the parent as well as the two children (9 features). With
this set of features, we allow the learner to identify a
tendency for StarryNite to make more errors at particu-
lar locations.

Preliminary feature analysis

Prior to performing any machine learning, we measured
the discriminative power of each feature individually.
The goal of this analysis is two-fold: to identify features
that are not individually informative, and to provide a
performance baseline against which to compare our
machine learning results. Using a development data set
consisting of 10 experimental series (see “Benchmark
Datasets” for details), we ranked all of the division calls
according to each of the 82 features. Each such ranking
induces a receiver operating characteristic (ROC) curve,
which plots the true positive rate as a function of false
positive rate as we traverse the ranked list. We use the
area under the curve (AUC) as a performance metric to
rank features. Figure 4(a) shows the ROC curves for the
top five features, according to this metric, and Figure 4
(b) illustrates sorted AUC values across 70 features
(only features with non-zero AUC values are shown). In
Figure 4(b), the features are sorted by their AUC values.
82 features along with their AUC scores are listed in
Additional file 1: features_and_aucs.xls.

This ROC analysis leads to several observations. First,
some of the normalized nucleus supports (the ones that
are far from the centroid) are zero for all examples in
the dataset we used, suggesting that all the nuclei we
evaluated are smaller in size than expected. These non-
informative features were eliminated from all subse-
quent analyses. Second, the best feature is “distance
from parent to child-1” with an AUC of 0.8857. This
provides a baseline against which to compare our
trained classifier.

In general, the single-feature rankings are consistent
with our biological expectations. For instance, correct
divisions have a higher average distance between parent
and child-1 than incorrect divisions, because we expect
a certain amount of separation between parent and chil-
dren. When a child candidate is too close to a candidate
parent, then StarryNite is more likely to make an incor-
rect division call linking those close cells. Furthermore,
in mitosis we expect the children to move rapidly from
each other, resulting in a certain amount of separation
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Figure 4 Analysis of individual features. (a) The figure plots ROC curves for the features with the top five AUC scores. Feature names are
defined as follows: “Dist P-C1" is the distance from parent to child-1; “Dist C1-C2 at t+1" is the distance between children at t+1; “Cos P-C1, P-
C2" is the cosine of the angle between (parent to child-1) and (parent to child-2); “Age C1" is the age of child-1; “Dist P-NN1" is the distance
from parent to the nearest neighbor of parent. (b) The AUC associated with each feature. The features are sorted according to the AUC.
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between them. This separation is related to the second
best feature. We expect the children to move in oppo-
site directions from each other, which can be captured
by the third best feauture. We expect the age of a new-
born child to be larger than the time it takes a regular
moving cell to divide starting from the current time
point. This information is represented in the fourth best
feature. Finally, we expect a distance relation between a
parent and its neighbors, as we observed in the fifth
best feature, because if they are close to each other Star-
ryNite is more likely to get confused about choosing the
right parent and labeling a moving nucleus as a dividing
one.

Initial testing of an SVM classifier

We performed a 10-fold cross-validation experiment on
the development data set. At each cross-validation itera-
tion, we chose one experimental series as the test set
and used the remaining series as the training data. Then
we learned the optimal parameters and hyperparameters
of the SVM classifier by performing internal cross-vali-
dation on the training set (see “SVM Classifier”), and we
classified each division call in the test set as correct
("Dividing”) or incorrect ("Moving”).

At the threshold selected by the SVM, we achieve an
accuracy of 88.16%, which represents a 4.3% improve-
ment over StarryNite (83.84%). Several additional perfor-
mance metrics are detailed in Table 2. By definition,
StarryNite has 100% sensitivity, since we only consider
division calls made by StarryNite. On the other hand,
our method is 8.5% better than StarryNite in terms of
the precision rate (i.e., the likelihood of a prediction to
be correct) although it annotates some of the true divi-
sion calls made by StarryNite as errors. We should note
that, for guiding manual reannotation, it is better to
identify more errors to speed up the editing process

Table 2 Comparison of the SVM and StarryNite on the
development set.

Metric SVM StarryNite
True Positives 3178 3393
True Negatives 390 0
False Positives 264 654
False Negatives 215 0
Sensitivity 93.663 100.0
PPV 92.330 83.840
Accuracy 88.164 83.840

Sensitivity/recall is defined as TP/(TP+FN) and positive predictive value (PPV)/
precision is computed as TP/(TP+FP)

even if some of the movement annotations made by the
SVM are in fact divisions that are correctly captured by
StarryNite. Such incorrect annotations of our method
can still be corrected by the human expert, reducing the
overall effort that needs to be spent for the editing
phase. Figure 5 shows the ROC curve achieved by the
SVM, with a point indicating the selected decision
threshold. For comparison, we also include the ROC
curve produced by the best-performing single feature.
The AUC score of the SVM classifer is 0.9330, which is
better than the AUC score of the best feature (0.8857).
These results show that the SVM classifier is capable of
identifying this particular class of StarryNite errors with
high accuracy.

Feature selection

Having established a baseline accuracy in the previous
experiment, we next explored the possibility of achiev-
ing improved performance by eliminating uninforma-
tive or redundant features from the classifier. We
performed two such experiments, both of which sug-
gest that feature selection for this particular task is not
necessary.
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Figure 5 ROC curves of the best feature and the SVM. Cross-
validated ROC curve produced by the SVM on the development
data set and the ROC curve of the best performing single feature
("distance from parent to child-1"). The SVM decision threshold is
indicated by an asterisk.

In the first feature selection experiment, we adopt a
simple filter, based on the per-feature AUCs shown in
Figure 4(b). Figure 6(a) shows the result of a series of
tests conducted with smaller and smaller feature sets. In
each step, we eliminated one feature with the lowest
AUC. We then performed the same cross-validation
experiment described in the previous section, including
internal cross-validation to select hyperparameters. For
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each cross-validation split, we compare the accuracy of
the reduced-feature SVM with the accuracy of the base-
line SVM that uses all 70 features. The figure shows
that, although some reduced feature sets yield a slight
improvement in accuracy—e.g., eliminating the worst 28
features gives an improvement of 0.622% —the mean is
always less than one standard deviation from zero. This
result suggests that this simple feature selection strategy
does not significantly improve the performance of the
classifier.

In the second feature selection experiment, we consid-
ered the joint effect of groups of related features. In this
analysis, we used the nine feature groups introduced in
the “Feature Design” section. Rather than considering all
2° - 1 = 511 possible combinations of groups, we con-
sidered 18 possibilities: each one of the nine feature
groups alone, and all combinations of eight feature
groups. As before, we performed a cross-validation
experiment on each reduced feature set and then com-
pared the accuracy of the reduced-feature classifier to
the accuracy of the baseline SVM. The results shown in
Figure 6(b) agree with the previous experiment: in no
case does the reduced-feature SVM significantly out-
perform the baseline SVM.

Although these two experiments do not prove that
feature selection for this particular task is a bad idea,
they do suggest that any gains provided by feature selec-
tion are likely to be modest. On the basis of these
experiments, we therefore decided not to pursue more
sophisticated feature selection experiments.

Accuracy Difference (Mean & STD)

12 22 32 42 52 62 72 82
Number of Features Removed

(a)

Figure 6 Two feature selection experiments. (a) The figure plots the mean difference in accuracy, across 10 cross-validation splits, of an SVYM
that uses all features compared to an SVM with some features removed. The number of features eliminated is given on the x-axis. Bars above
the y-axis represent SVMs that yield better performance than the baseline SVM, and vice versa. Error bars correspond to standard deviations. (b)
This figure is similar to panel (a), except that features are considered in groups, as listed in Table 1. Each blue bar compares the accuracy of the
70-feature SVM to an SVM trained from a single feature group, whereas each red bar compares the full SYM to an SVM trained from all feature

groups but one.
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Table 3 Development and validation sets.

Development set Validation set

Experiment Correct Incorrect Total Experiment Correct Incorrect Total
081305 356 59 415 083005xx 366 36 402
081505 323 83 406 083105 323 47 370
081905 317 105 422 083105xx 325 40 365
081905xx 368 52 420 090105 337 73 410
082005 294 107 401 090205 331 75 406
082205 304 53 357 090205yy 393 31 424
090405 320 91 411 090305xx 353 29 382
090905xx 308 36 344 090605xx 275 50 325
082505 406 37 443 090705 362 34 396
082605 397 31 428 081405 366 30 396
Total 3393 654 4047 Total 3431 445 3876

For each experimental series, the table lists the total number of division calls made by StarryNite ("Total”) as well as the number of those calls that are actually

divisions ("Correct”) and that are erroneous annotations ("Incorrect”)

Evaluation on two validation sets

Finally, we tested the SVM classifier on independent
data. Our goal was to find a set of SVM parameters that
yield good generalization performance with respect to
previously unseen data. In pursuit of this goal, we per-
formed two rounds of analyses, on the two validation
sets described in Tables 3 and 4.

Initially, we performed a similar cross-validation
experiment as before using this new data. The results
are shown in Table 5, in the column labeled “CV SVM.”
Apparently, this data set is easier for StarryNite, which
achieves a 4.7% improvement in accuracy, compared to
the development data set (88.52% versus 83.84%). How-
ever, the SVM still provides a significant boost in per-
formance, giving a 5.8% improvement relative to
StarryNite (94.35% versus 88.52%).

Unfortunately, when we use the validation data set as a
test set—i.e., when we train on the development set and
test the resulting SVM on the validation set—our results

Table 4 The second validation set.

Validation set 2

Experiment Correct Incorrect Total
20090401_C25D7_10_1_L1 317 99 416
20081007_nhr-68_14_L1 551 176 727
20080524_hnd-1_6_L2 280 153 433
20080731_ceh-32_4_12 564 313 877
20080929_nhr-67_3_L2 682 315 997
20080524 _hnd-1_6_L1 296 160 456
20080912_tbx-37_b12_L1 484 204 688
20080925_7K185_1_3_L1 673 267 940
20090225_lir-3_10_L1 361 111 472
20080709_ceh-27_1_L1 666 150 816
Total 4874 1948 6822

For each experimental series, the table lists the total number of division calls
made by StarryNite ("Total”) as well as the number of those calls that are
actually divisions ("Correct”) and that are erroneous annotations ("Incorrect”)

Table 5 Comparison of SVM and StarryNite on the
validation data set.

Metric CV SVM Dev SVM StarryNite
True Positives 3375 3157 3431
True Negatives 282 366 0
False Positives 163 79 445
False Negatives 56 274 0
Sensitivity 98.37 9201 100.0
PPV 95.39 97.56 88.52
Accuracy 94.35 90.89 88.52

Two sets of SVM results are included: from a collection of SVMs trained via
cross-validation on the validation data set ("CV SVM”), and from a single SYM
trained on the development set ("Dev SVM”)

are not as good. The SVM, using hyperparameters
selected on the development set, achieves an accuracy of
only 90.9%, which is only 2.4% better than StarryNite’s
accuracy of 88.5%. This difference is statistically signifi-
cant according to McNemar’s test with a p-value of
0.0003. On the other hand, this improvement is smaller
than what we achieved via cross-validation on the devel-
opment set (4.3%) or the validation set (4.7%), suggesting
that, although the SVM does a good job of learning to
identify errors, those two data sets contain systematic dif-
ferences that make it difficult for the SVM to generalize
from one to the other. We have thus violated the basic
premise of most machine learning algorithms, that the
test data is drawn from the same underlying distribution
as the training data. This hypothesis is supported by the
observation that the hyperparameters selected during
internal cross-validation are quite different from one
another: the learned hyperparameters for the develop-
ment set were C = 66.3692, vy = 27!, and for the valida-
tion set C = 2.02018,y = 27,

As mentioned above, our ultimate goal is to produce a
static SVM classifier that yields robust performance
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Table 6 Comparison of SVM and StarryNite on the new
validation set.

Metric CV SVM2 Dev SVM2 StarryNite
True Positives 4306 4571 4874
True Negatives 1273 902 0
False Positives 675 1046 1948
False Negatives 568 303 0
Sensitivity 88.34 93.78 100.0
PPV 86.45 8138 69.39
Accuracy 81.78 80.23 7113

Two sets of SVM results are included: from a collection of SVMs trained via
cross-validation on the new validation data set ("CV SVM2"), and from a single
SVM trained on the new development set ("Dev SVM2"), which is the
combination of the initial development and validation sets

across a variety of possible data sets. Because our
experiments suggest that our initial development and
validation sets contain systematic differences, we next
trained an SVM on the combination of the two data
sets and tested the performance of the classifier on a
second validation data set, which contains ten new ser-
ies (Table 4). As shown in Table 6, the SVM performs
9.1% better than StarryNite when tested on the new
validation set. Furthermore, the similarity between the
first and the second columns implies that the test data
and the training data come from similar sources.

Note that in Table 6, the accuracies of both StarryNite
and the SVM are lower than the results presented in
Tables 2 and 5. This is mainly because all the images in
our first dataset are sampled with 1 minute time resolu-
tion while some of the series in the second dataset have
1.5 minute resolution (see Methods for details of data-
sets). We also trained and tested our SVM classifier
only on series with 1.5 minute resolution and obtained a
similar drop in performance (data not shown). This
result can be explained as follows. When the time reso-
lution increases from 1 min to 1.5 min, the newborn
cells that are sampled by the imaging protocol move
further away from the parent cell, which makes it more
difficult to detect divisions because right after a division
we expect the parent and the children to be close to
each other to some extent. Having a larger separation
between parent and children cells leads to an increase
in divisions detected as movements. On the other hand,
because the newborn cells come closer to other cells
that are actually moving, the number of movements
detected as divisions increases. Therefore, having experi-
ments with 1.5 min time resolution in our test set
makes the classification task more challenging for both
methods. Nonetheless, the performance of the SVM was
significantly better than StarryNite, validating the suc-
cess of our approach.

The final trained SVM, which is incorporated into the
StarryNite program, is trained from all three data sets,
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in an effort to provide the best generalization
performance.

Discussion

To date, several experimental protocols have been devel-
oped to monitor differential gene expression during
embryonic development in which image analysis plays a
fundamental role for efficient recognition and annota-
tion of cells [7-16]. To correctly identify and classify
cells, these methods employ a collection of features,
such as shape, geometry, texture, wavelet and moment
features [3,12,13]. Often, feature reduction techniques
are applied to the computed features (e.g. principal com-
ponent analysis, linear discriminant analysis, maximum
margin criterion, stepwise discriminant analysis based
feature selection and genetic algorithm based feature
selection) to achieve greater discriminative power
[4,13,15,17].

In this work, instead of using features described by
other research groups, we focused on relatively simple,
biologically motivated features that have the potential to
discriminate dividing cells from moving ones. There are
a couple of reasons for this preference. First, the classifi-
cation task we are solving is relatively straightforward
compared with, for example, recognizing the individual
phases of mitosis. Second, having a large feature set
does not always guarantee improved recognition perfor-
mance [12,13], even in the presence of sufficient training
data. This is mainly because many features share the
same information. In this paper, we also did not apply
commonly used feature reduction techniques because,
first, we have enough training data and, second, our pre-
liminary feature analysis experiments suggest that fea-
ture selection is unlikely to lead to dramatically
improved performance on this set of morphological fea-
tures. On the other hand, the extension of the feature
set to include other feature types is a possible direction.
For instance, depending on the source of the image
data, it may often happen that additional cell features
might also be exploited that are specific to the tissue
type or species. These features could be introduced to
add even stronger support to automated error detection.
In that case, more sophisticated feature selection meth-
ods can be exploited to extract the most informative
feature set for a more accurate classifier. We leave this
extension as future work.

Conclusions

In this work, we concentrated on one of the most com-
mon errors made by StarryNite, which is image analysis
software for automatic recognition and tracing of devel-
oping C. elegans cells in a 3D imaging protocol. We
have shown that the error rate for calling a nucleus as
dividing can be significantly reduced by an SVM
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classifier. The original level of errors that must be iden-
tified and corrected in a new StarryNite dataset consti-
tutes approximately 12-30% of the original observations.
Automated correction using the SVM then can be
expected to reduce this error rate by 2-9%. This cuts the
amount of manual corrective work by 16-30%. Our
method may over-predict potential annotation errors in
some cases, but those false predictions can actually be
helpful in drawing attention to trouble spots for final,
manual data cleanup, and thus speed that process.

This work suggests several avenues for future research.
Perhaps most obviously, this post-processing approach
can also be applied to other types of errors. It is also
possible to relate one type of an error to another,
because errors are frequently coupled. For instance,
movement detected as division error can be coupled
with division detected as movement. Similarly, a move-
ment detected as cell death can be coupled with a
movement detected as division at a later time point. In
the future, by considering correlations among error
types, it should be possible to design more accurate
classifers. Alternatively, the decision mechanism of the
SVM can be used in the context of the StarryNite algo-
rithm, rather than as a post-processing step. Further-
more, it should be possible to utilize the topology of the
C. elegans cell lineage tree during the annotation pro-
cess. Though the exact time instances of divisions might
vary from one embryo to another, the topology of the
tree and the average division times are known a priori.
Such information could be exploited by a more elabo-
rate statistical model. Finally, the use of the SVM classi-
fier is not limited to StarryNite only. It can easily be
applied to other data types or utilized in projects in
which a methodological error correction step is essential
due to large data size. Therefore, our method offers a
guide to a wider audience on how to test and assess
such algorithms in general. Further advances in accurate
annotations will make it possible to analyze gene expres-
sion in the later cell stages, which is important because
the majority of genes responsible for embryonic devel-
opment start differentiating after the 195 cell stage.

Methods

Benchmark datasets

This study relies upon two primary datasets. The first
one contains a total of 20 small benchmark experiments,
each edited up to the 195 cell stage. The second dataset
contains 10 benchmark series, some of which are edited
up to the 350 cell stage. For each experiment, we have
annotations produced by StarryNite as well as the
manually edited annotations, which we take as the
ground truth in our simulations. Properties of the data
sets are summarized in Tables 3 and 4.
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We divided the first dataset into two groups of ten
experiments: the development set and the validation set.
We used the development data set to perform the indi-
vidual feature analyses described under “Preliminary
Feature Analysis” and “Feature Selection” and the valida-
tion set for reporting the accuracy.

To enrich our performance evaluation, we trained the
SVM on the first dataset and computed the predictions
and accuracy measures on the second dataset. In our
simulations with the second dataset, we only considered
data up to the 195 cell stage, to be consistent with the
first dataset.

Because we concentrated on divisions annotated as
movements, from each experiment series, we only
extracted the division annotations generated by Starry-
Nite. For simplicity, we eliminated the cases where Star-
ryNite correctly detects a division but assigns the wrong
nuclei as the children (i.e., indexing errors of division
shown in Figure 2(b)). In each row of Tables 3 and 4, we
show the number of correct division calls by StarryNite,
incorrect division calls (which are actually movements),
and the total number of selected nuclei in that series.

Feature definitions

Age

To compute the age of a parent, we trace the parent
backwards in time until we reach another division or
the starting time point. Then the age of that parent is
defined as the time elapsed between those two time
indices. Computation of the ages is similar for the chil-
dren. Instead of tracing a nucleus backwards in time, we
trace it in the forward time direction until we reach a
cell division, cell death or the last time point in the
annotation data. Then the age of a child is computed as
the time elapsed between those two time indices.
Distances

Let the time point at which we last observe the parent
nucleus be ty. This means that at £, + 1 the parent
nucleus is replaced with two children nuclei, as illu-
strated in Figure 7. We compute the following features:
the distances in microns between the parent and its
children (2 features), the distance between the two chil-
dren at £y, + 1 (1 feature), the distance between the chil-
dren at £y + 2 (1 feature), distances of movement for the
two children from ¢, + 1 to £, + 2 (2 features), distances
between the nearest neighbors of the parent and the
children (6 features), and distances between the parent
and the nearest neighbors of the parent (3 features).

If a parent has fewer than three neighbors, then we
omit that parent from our training data. For prediction,
if a parent has fewer than three neighbors, we replace
the features that requre the computation of nearest
neighbors with their median values.
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time =t

time = ty+1

time = ty+2

\

Figure 7 Cell division followed by cell movements. Parent nucleus at time = t, divides into two children nuclei at ty + 1. Then the children
move during the time elapsed between t5 + 1 and ty + 2.

For consistency, we label the child that is closer to the
parent nucleus as child-1 and the farther one as child-2.
We then compute distance features accordingly (i.e., dis-
tance from child-1 to the nearest neighbor of the parent,
etc).

Normalized nucleus support

In 3D time lapse microscopy imaging, each nucleus
occupies a volume in three-dimensional space. Because
we have image slices in the z direction, the image of a
nucleus is contained in a set of x-y planes (typically 4 to
11 planes). The normalized nucleus support at the i
plane is defined as

S, =—=—, (1)

where N, is the number of pixels that have intensity
greater than a threshold 1 in a region of support
denoted by R, and N is the total number of pixels in
that region. We define 1 as

= minR(I)-iz-maxR(I) , @)

where I is the image pixel intensity function. As the
support region R, we chose a square that has the same
xy coordinates as the centroid of the nucleus and that
has a side length equal to the diameter of the nucleus.
We choose a square instead of a circle because we
would like to be tolerant to the errors made by Starry-
Nite in estimating the diameter. For instance, if the dia-
meter of a nucleus is significantly underestimated, then
the nucleus support would be computed as 1.0 both for
a dividing and a non-dividing nucleus.

Because each nucleus can be represented by up to 11
planes in the z direction, and because image planes are
1 micron apart from each other, we computed the
nucleus support at the plane that is closest to the cen-
troid of the nucleus and at five planes on each side of
the centroid, for a total of 11 features per nucleus (see

Figure 8). We compute the normalized nucleus support
features for the parent and the two children, yielding a
total of 33 features. In addition, we compute the average
and the standard deviation of these features separately
for the parent and the two children, yielding six addi-
tional features.

Angle

Let (xp, ¥p, zp)" denote the 3 x 1 vector that contains
the coordinate information for the centroid of the par-
ent. Similarly let (xc1, yc1, zc1)" and (xca, Yea zca)'
denote the vectors that contain the coordinates for
child-1 and child-2, respectively. Then the vector from
the parent to child-1 becomes u = (xc1 - Xp, Yc1 - ¥ps
zc1 - zp). Similarly, the vector from the parent to child-2

A

\

VY

z Squares of width = diameter

Figure 8 Computation of the normalized nucleus support
features. A nucleus and the square regions on which the
normalized nucleus supports are computed. Only 4 planes are
shown for simplicity.
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is computed as v = (xcy - %p, Yc2 - ¥p» Zc2 - zp). The
cosine of the angle between these vectors is

T

u v
Mo n’
v

3)

cos(a) =

where ||u|| is the length of u computed as (")

We compute the cosines of the angles between the
following vector pairs:

1. parent to child-1, parent to child-2

2. parent at £-1 to parent, parent to child-1

3. parent at ¢-1 to parent, parent to child-2

4. parent to child-1, child-1 to child-1 at ¢ + 2
5. parent to child-2, child-2 to child-2 at ¢ + 2

If we denote the time index of the parent by ¢, then the
we are assuming that it moved from ¢ - 1 to t. Similarly,
the time indices of the children start from ¢ + 1. The first
angle measures whether the two children move in oppo-
site directions. The second and the third angles measure
whether the separation of children is symmetric with
respect to the parent’s axis of movement from ¢ - 1 to ¢.
The fourth and fifth angles measure whether the children
change their direction when moving from ¢ + 1 to ¢ + 2.
We normally expect them to keep moving in the same
direction unless there is a collision with other nuclei.

SVM classifier

We implemented an SVM classifier [18,19] that operates on
the division calls of StarryNite and decides whether a divi-
sion annotation is correct or incorrect. We implemented
our classifier using LIBSVM [20]. Before processing, each
feature was linearly rescaled to the range [-1, 1]. For each
cross-validation fold, we performed 5-fold internal cross-
validation within the training set, selecting two hyperpara-
meters, the regularization parameter C €, {2°, 272, .., 2!%
and the radial basis function kernel width y €, {2%°, 273, ..,
2% to maximize accuracy. Subsequently, the selected hyper-
parameters were used to train an SVM on the entire train-
ing set, and the learned SVM was applied to the test set.

Additional file 1: Features, feature groups and AUC scores. The set
of 82 features that are originally considered for the SVM classifier. The
feature names and the group numbers are tabulated. Features are sorted
with respect to their AUC scores and the ones that have zero AUC
scores are then excluded from the classifier.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
84-S1.XLS]
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