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Abstract

Background: Comparative genomics methods such as phylogenetic profiling can mine powerful inferences from
inherently noisy biological data sets. We introduce Sites Inferred by Metabolic Background Assertion Labeling
(SIMBAL), a method that applies the Partial Phylogenetic Profiling (PPP) approach locally within a protein sequence
to discover short sequence signatures associated with functional sites. The approach is based on the basic scoring
mechanism employed by PPP, namely the use of binomial distribution statistics to optimize sequence similarity
cutoffs during searches of partitioned training sets.

Results: Here we illustrate and validate the ability of the SIMBAL method to find functionally relevant short
sequence signatures by application to two well-characterized protein families. In the first example, we partitioned a
family of ABC permeases using a metabolic background property (urea utilization). Thus, the TRUE set for this
family comprised members whose genome of origin encoded a urea utilization system. By moving a sliding
window across the sequence of a permease, and searching each subsequence in turn against the full set of
partitioned proteins, the method found which local sequence signatures best correlated with the urea utilization
trait. Mapping of SIMBAL “hot spots” onto crystal structures of homologous permeases reveals that the significant
sites are gating determinants on the cytosolic face rather than, say, docking sites for the substrate-binding protein
on the extracellular face. In the second example, we partitioned a protein methyltransferase family using gene
proximity as a criterion. In this case, the TRUE set comprised those methyltransferases encoded near the gene for
the substrate RF-1. SIMBAL identifies sequence regions that map onto the substrate-binding interface while
ignoring regions involved in the methyltransferase reaction mechanism in general. Neither method for training set
construction requires any prior experimental characterization.

Conclusions: SIMBAL shows that, in functionally divergent protein families, selected short sequences often
significantly outperform their full-length parent sequence for making functional predictions by sequence similarity,
suggesting avenues for improved functional classifiers. When combined with structural data, SIMBAL affords the
ability to localize and model functional sites.
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Background

Phylogenetic profiling is a powerful discovery method in
bioinformatics. In this method, typically, the presence or
absence of a member of a protein family in a genome is
treated as a trait whose phylogenetic distribution can be
compared to that of another trait, usually meaning
another protein family. The joint presence or joint
absence of two traits over a sufficiently large and varied
set of species provides strong statistically-based evidence
that those traits are functionally connected in some
fashion [1]. Profile methods are being used increasingly
to relate protein families to varied types of second traits
such as phenotype, biological niche, transcriptional reg-
ulatory sites, and so on [2]. One such type of trait,
metabolic capability, can be calculated by the Genome
Properties system [3] using rules based largely on hid-
den Markov Models (HMMs) from the TIGRFAMs col-
lection [4], as well as by the application of other
methodologies such as Subsystems [5] or MetaCyc [6].
For example, one can determine which species have and
which lack the capability to synthesize menaquinone or
metabolize urea, even when those capabilities are
encoded in different ways by different organisms. We
have found that these assertions of metabolic back-
ground (profiles) provide excellent opportunities for
launching phylogenetic profiling studies.

Phylogenetic profiling (PP) methods often are limited
by their reliance on pre-constructed protein families, or
on fixed parameters that serve in lieu of pre-constructed
families. Recently, we addressed this limitation by intro-
ducing Partial Phylogenetic Profiling (PPP) [7]. PPP uses
a given phylogenetic profile as a query, and determines
which proteins in a target genome score best against
that profile. Each protein is scored by selecting the
(BLAST) sequence similarity cutoff that optimizes its
match to the query profile. As the algorithm explores
more and more permissive cutoffs, more genomes are
added to the set of genomes compared to the query pro-
file. At each depth, this set corresponds to only a part of
the query profile (hence “partial”), and the preponder-
ance of matches over mismatches is scored according to
the binomial distribution. For each protein, the depth at
which the agreement with the query profile scores best,
and the score itself, are recorded. Once all genes in a
genome have been run, sorting by score reveals those
proteins that best match the profile. The on-the-fly opti-
mization method eliminates dependence on pre-defined
protein families. It enables profile-based discovery even
where pre-built families are lacking, and obviates the
need for pre-set score thresholds.

Profiling methods may indicate strongly that some
biological connection underlies the regular co-occur-
rence of two traits, but they do not always reveal the
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nature of the connection. PPP and other profiling meth-
ods provide inferences about the functional relationships
between full-length proteins and the biological systems
represented by query profiles. A biochemical basis for
those relationships might be revealed by identifying
which specific protein sequence domains and motifs are
most responsible for the correlation of two traits. There-
fore, a computational method to dissect and explain the
origin of PPP’s signal may provide a wealth of additional
clarity and insight, especially when different sites within
a protein mediate interactions with substrates, cofactors,
and/or auxiliary proteins.

The basic scoring mechanism from PPP - using bino-
mial distribution statistics to optimize sequence similar-
ity cutoffs during searches of partitioned training sets -
can be reused to discover key subsequences in groups of
proteins. Here we demonstrate that SIMBAL, Sites
Inferred by Metabolic Background Assertion Labeling,
generalizes that approach by providing the additional
freedom to apply phylogenetic profiling methods locally
within a protein sequence. We show that SIMBAL can
mine a protein sequence for short sequence regions,
presumably containing critical sites, and that it outper-
forms other simple classifiers, such as BLAST matches
to full-length proteins, for the task of classifying func-
tionally diverged members of homology families.

Results

Training sets classified by metabolic context: urea ABC
transporters

Several features of urea transporter permeases make
them attractive for demonstrating the potential of SIM-
BAL. Functional prediction for transporter proteins,
important as it is, is difficult because these proteins are
highly hydrophobic and may be difficult to study by
crystallographic techniques. Similarly, these transporters
show relatively weak sequence conservation, complicat-
ing inferences made solely from pairwise homology
comparisons. However, urea utilization and urea uptake
both are broadly and sporadically distributed (Figure 1),
giving strong, clear signals for comparative genomics
methods. The multi-component systems that are
required for urea-utilization, especially the nickel cofac-
tor-dependent urease system that numerically dominates
over the urea carboxylase system, provide clear discrimi-
nation between utilizers and non-utilizers. Independent
characterizations of urea transport operons in Cyano-
bacteria (Synechocystis sp. PCC 6803 and Anabaena sp.
PCC 7120) [8] and Actinobacteria (Corynebacterium
glutamicum) [9] reveal considerable sequence divergence
across species for the corresponding permease subunits,
including substantially different lengths, despite their
shared function. In a large number of distinct lineages
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(Burkholderia malei, Ralstonia eutropha, Bradyrhizo-
bium japonicum, Deinococcus radiodurans, Prochlorococ-
cus marinus, Bacillus halodurans, Haloarcula
marismortui, etc.), the urease operon and urea ABC
transporter operon are adjacent, providing additional
support through local gene context for extending the set
of trusted urea transporter sequences. Having five subu-
nits in the urea ABC transporter (the substrate-binding
protein UrtA, permease subunits UrtB and UrtC, and
ATP-binding cassette proteins UrtD and UrtE) provides
a means to test the self-consistency of the transitive
annotation of function from one genome to another. All
belong to larger families that have considerable numbers
of homologs of differing function (as inferred from their
large numbers of paralogs with differing current public
annotations) from which they must be discriminated.
The remote but real homology between the two per-
mease subunits UrtB and UrtC (below 25% even though
both proteins share the reduced complexity from being
highly hydrophobic integral membrane proteins) pro-
vides an opportunity to examine similarities and differ-
ences in the locations of the apparent hot-spots of
predicted functional specificity. Therefore, the pair of
permease subunits of the urea ABC transporter was
chosen as the first test system for SIMBAL.

Partial Phylogenetic Profiling (PPP)

The Genome Properties rule for urea utilization (see
Methods) was used to generate a profile for Partial Phy-
logenetic Profile (PPP) analysis. Urea utilization was
taken as a union of species with urease and those with
the urea carboxylase pathway. PPP of the genome of
Corynebacterium glutamicum vs. this profile revealed, as
the top eleven hits, six (out of seven) components of the
urease system, followed by the known five-gene operon
for a urea ABC transporter. All scores exceeded that of
the (non-urea related) twelfth hit by more than three
orders of magnitude. The results, shown in Table 1, dis-
play the power of phylogenetic profiling methods for
associating proteins with biological processes and mole-
cular functions. PPP applied to other genomes with
putative urea ABC transporters similarly found complete
five-gene operons in the top tier of results, confirming
predictions made by TIGRFAMs “equivalog"-level
HMMs: TIGR03407 (substrate binding protein UrtA),
TIGR03409 and TIGR03408 (permease subunits UrtB
and UrtC), and TIGR03411 and TIGR03410 (ATP-bind-
ing cassette subunits UrtD and UTrtE).

SIMBAL: using metabolic background assertions to find
key subsequences

A training set of sequences from PF02653 ("Branched-
chain amino acid transport system/permease compo-
nent”) and from all other families in the same Pfam [10]
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clan, CL0142 ("Membrane_trans”), were collected from
the CMR [11], partitioned based on apparent urea meta-
bolism potential of the source genomes, made non-
redundant at 80% sequence identity, and used for SIM-
BAL analysis (see Figure 2A and Methods). This training
set consists of 5224 sequences in the TRUE branch and
4887 sequences in the FALSE branch.

The genome of Corynebacterium glutamicum ATCC
13032 encodes all structural and accessory components
of the urease system [9], so all 23 C. glutamicum mem-
bers of the CL0142 clan are assigned to the TRUE
branch of the SIMBAL training set (Figure 2A). This
includes the urea ABC transport permease subunits
NCgl0894 (UrtB, [GenBank:BAB98324]) and NCgl0895
(UrtC, [GenBank:BAB98325]), members of PF02653,
which have been characterized [9], are clustered with
the urease genes and are identified as top hits by PPP
analysis. Results of SIMBAL analysis are plotted in
Figure 3. Each subsequence is designated by the location
of its center on the parent sequence (x-axis) and by its
length (y-axis), and then given a color to show its SIM-
BAL score. Results are presented as heat maps, where
hot spots in red indicate the most significant SIMBAL
scores while blue shows the weakest. Because larger
sequence windows have less freedom to slide, the result-
ing graphic is triangular in shape. The apex represents
the greatest possible subsequence length, equal to the
full length of the protein, with its center at the midpoint
along the protein sequence. These plots clearly indicate
that, in this protein family in C. glutamicum, the two
bona fide urea ABC transporter permease subunits have
significant regions of relatively high score. The results
also show large regions where the sequence seems to
contain hardly any evidence of the parent protein’s spe-
cificity for urea transport. Notably, the best performing
subsequences ("hot spots”) for these two permeases out-
score their respective full-length parent sequences. In
contrast, the three other C. glutamicum members of this
family are nearly featureless indicating that no portion
of these sequences, when used as a BLAST query suc-
ceeds in recovering the pattern of urea utilizing species.
One of these, NCgl0030 (GenBank:BAB97424], is shown
as a triangle plot at exaggerated scale in Figure 3C and
as a direct comparison of the size-30 subsequences in
Figure 3D.

Although no crystal structures have been determined
for UrtBC, two structures from homologous transporters
in the CL0142 clan have been published: the B12 trans-
porter permease/ATPase complex BtuCD from E. coli
[PDB:1L7V] [12], and the unknown specificity permease/
ATPase complex HI1471/HI1470 from Haemophilus
influenzae [PDB:2NQ2] [13]. Both of these structures
include single-gene, homodimeric permeases, in contrast
to the heterodimeric UrtBC. Notably, these two
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Figure 1 The phylogenetic distribution of urea metabolism in bacteria is broad and sporadic. The urease system (GenProp0051, blue
circles) and the urea carboxylase/allophanate hydrolase pathway (GenProp0481, green circles) are plotted on the AMPHORA inferred
phylogenetic tree of prokaryotes from Eisen & Wu[24]. Certain archaeal species also metabolize urea and are not shown (although they were
included in the analyses).

program MEMSATS3 [14] and found it to yield consistent
results when applied to UrtBC, BtuC and HI1471 with
little disagreement as to the position and number of
membrane-spanning helices. The only major structural
difference between UrtBC and the crystallized permeases
is the lack of the N-terminal helix in UrtB (Figure 4).
Based on this alignment, the SIMBAL hotspots from
UrtBC can be mapped onto the corresponding segments
of the crystal structures. Even allowing for some error in
the alignment, it is clear that SIMBAL only identifies
residues on the cytoplasmic face of the permease, and
that the first two peaks in both UrtB and UrtC identify

structures capture two different conformational states of
the permease, inward-open in the case of HI1471 and
outward-open in the case of BtuC. These two permeases
are more closely related to one another than either is to
UrtBC. It is difficult to calculate a reliable sequence
alignment between UrtBC and either of these reference
sequences due to their overall divergence (UrtB and
HI1471 have less than 20% aligned identity, for instance).
Secondary structure prediction algorithms can be utilized
to derive the approximate location of the transmembrane
helices of UrtB and UrtC and these in turn used to con-
strain a multiple sequence alignment. We utilized the
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Table 1 Top scoring Partial Phylogenetic Profiling results
for urea utilization vs. Corynebacterium glutamicum ATCC
13032, based on 117 TRUE genomes and 235 FALSE
genomes.

PPP  TRUE Depth Locus Protein
score®

454 95 95 NCgl0083  urease, gamma subunit UreA

454 95 95 NCglo085  urease, alpha subunit UreC

454 95 95 NCgl0088 urease accessory protein UreG

449 94 95 NCgl0084 urease, beta subunit UreB

392 82 82 NCgl0087 urease accessory protein UreF

349 73 73 NCgl0089 urease accessory protein UreH

285 66 68 NCgl0894 urea ABC transporter, permease
subunit UrtB

28.2 59 59 NCgl0895 urea ABC transporter, permease
subunit UrtC

26.9 65 68 NCgl0893 urea ABC transporter, substrate-
binding UrtA

241 59 62 NCgl0896 urea ABC transporter, ATPase
subunit UrtD

19.5 55 61 NCgl0897 urea ABC transporter, ATPase

subunit UrtE

a) PPP scores are reported as the optimal negative log odds against observing
the indicated number of hits to the TRUE profile at the indicated search
depth.

Page 5 of 16

every residue of the exit pore in the inward-open confor-
mation (Figure 5).

This observation suggests that, for UrtB and UrtC-like
ABC transporter permease subunits, the most promi-
nent evolutionary constraints tied to urea utilization are
neither interactions with the substrate-binding protein
nor with the substrate where it begins to transit the
membrane. Rather, the key sites that track with urea uti-
lization appear to be those that control release of the
substrate on the cytosolic face of the plasma membrane.
Exit from the channel corresponds to a change in trans-
porter complex quaternary structure as part of the cycle
that couples ATP hydrolysis to substrate translocation
[15].

The evolutionary history of UrtB and UrtC-like trans-
porter permeases clearly contains numerous examples of
paralogy formation and neofunctionalization, such that
the protein family now contains examples of both
ancient divergences with conserved function, and more
modern splits with divergent function. By marking sev-
eral small regions, separated along the main chain but
close in the folded structure and surrounding the pore,
SIMBAL shows that transporter permease subunits

A: by metabolic background:
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CL0142 permeases partitioned by
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Figure 2 Methods for partitioning a protein family for SIMBAL analysis. A) Partitioning by metabolic background assertions: members are
assigned to the TRUE branch based on the observed presence of a metabolic pathway (or markers thereof) in their parent genomes (here, the
ability to metabolize urea). The TRUE branch will contain both members involved in the chosen metabolism (green arrows) and, if there are
many family members per genome, members which are not (black arrows). The FALSE partition will have few mis-attributed members. B)
Partitioning by local genomic context: members are assigned to the TRUE branch by virtue of their proximity to a chosen marker (here, the
substrate of a particular methylase among several in the larger family), while other members from the same genome are assigned to the FALSE
branch. In genomes where no proximity cues are present members are omitted from the analysis. While not applicable to the PrmC example,
one could also assign to the FALSE partition based on the proximity of members to markers of functions other than the one of interest.
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Figure 3 SIMBAL results on ABC permeases versus a urea metabolism partition of the Pfam CL0142 clan. A) SIMBAL triangle heat map
for the Corynebacterium glutamicum UrtB protein (NCgl0894) constructed of stacked rows of output from windows of size 5 amino acids up to
the full length of the protein, colored by the SIMBAL score. Peaks at window sizes 15 and 30 are indicated in blue boxes. B) A portion of the
heat map for the C. glutamicum UrtC protein (NCgl0895). C) A heat map for the non-urea transporting C. glutamicum NCgl0030 permease at
exaggerated scale illustrating negligible response. D) SIMBAL score plot of UrtB (blue) and NCgl0030 (green) at a window size of 30 amino acids. )
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indeed contain sequences that tend to predict functional
specificity rather than recent common ancestry.

The genome of Bradyrhizobium japonicum USDA 110
encodes 78 CL0142 ABC transporter permease domains,
73 of which are in the same PF02653 family as UrtBC.
These are organized in 45 distinct clusters, 27 of which
are of the 5-gene type (binding-protein, permease, per-
mease, ATPase, ATPase) typical of the known urea trans-
porter. A phylogenetic tree of the PF02653 permeases (not
shown) has 4 major branches that can be classified as

UrtB-like, UrtC-like, sugar transporter-like (3 and 4-gene
types) and unknown (4-gene type). All 78 of these were
analyzed by SIMBAL. Only certain members of the
UrtBC-like clades showed any peaks by SIMBAL above
noise. Two of these genes (blr1449 [GenBank:BAC46714]
and blr1450 [GenBank:BAC46715]) reproduce the pattern
of hotspot peaks observed for the C. glutamicum UrtB and
UrtC genes and are in fact the B. japonicum homologs of
UrtB and UrtC that are observed adjacent to the genes for
the urease enzyme system. An additional pair of genes
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Figure 4 Structural alignment of crystallized ABC permeases with UrtB and UrtC. Primary sequence of HI1471 from H. influenzae and BtuC
from E. coli were aligned by MUSCLE. The ten transmembrane helices (A-J) observed in the respective structures are indicated in yellow.
Predictions of transmembrane helices of C. glutamicum UrtB and UrtC were carried out by MEMSAT3[14] and are also shown in yellow. The UrtB
and UrtC sequences were added to the HI1471/BtuC alignment manually. Topology of the crystallized permeases is indicated in the last line (O:
outside, linside). The four highest scoring SIMBAL subsequences at 15 amino acid length for UrtB and UrtC are indicated in red font. Note that
all are partially or completely localized to the predicted inside (cytoplasmic) face of the membrane.

(bIr0968 [GenBank:BAC46233] and blr0969 [GenBank:
BAC46234]) have SIMBAL peaks nearly indistinguishable
from those of the urease-linked permeases in C. glutami-
cum and B. japonicum. Interestingly, this second 5-gene
ABC transporter cluster is adjacent to a gene of the
PF03069 Acetamidase/Formamidase family (blr0972,
[GenBank:BAC462337]) and a gene of the PF00795 car-
bon-nitrogen lyase family annotated as “aliphatic amidase,
AimE” (blr0973, [GenBank:BAC462338]), strongly sug-
gesting that the transported molecule is not urea, but
some other amide-containing molecule or molecules, pos-
sibly acetamide or formamide.

The examination of SIMBAL results for B. japonicum
provides a cautionary clarification. The hot-spots identi-
fied as highly similar in both raw sequence and SIMBAL
score still should be interpreted to reflect functional

specificity that reflects substrate chemical properties.
This specificity, however, may include related amides,
echoing the ability of urea carboxylase from Oleomonas
sagaranensis, for instance, to act on formamide and
acetamide as well as urea [16].

SIMBAL applied to training sets classified by local
genomic context

Local genomic context can provide strong clues to pro-
tein function. The S-adenosylmethionine-dependent pro-
tein-(glutamine-N5) methyltransferase PrmC (HemK)
[17] N-methylates a glutamine residue in a specific Gly-
Gly-Gln motif of peptide chain release factors 1 and 2
(RE-1, RF-2; products of the prfA and prfB genes)[18].
PrmC and prfA are adjacent in Escherichia coli and many
other bacterial species. A complex of PrmC with RF-1
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Figure 5 Structural mapping of UrtBC SIMBAL hotspots. Left: Mapping onto the “inward-open” structure of HI1471 [PDB:2NQ2][13]. Right:
Mapping onto the “outward-open” structure of BtuC [PDB:1L7V][12]. SIMBAL hotspots are clustered around the inward-facing pore. In each
example the homodimeric structures are shown in blue and green, with one subunit (blue) representing UrtB, and the other (green)
representing UrtC. Hotspots are shown in red and orange, respectively. Molecular models visualized with MacPyMOL http://www.pymol.org/.

.

Outward-open
conformation

has been solved crystallographically [17], and can provide
a context for interpreting results from SIMBAL analysis.
Candidate PrmC proteins were identified by using the
broad-specificity TIGRFAMs model TIGR00536. This
model represents a family of methylases including genu-
ine PrmC proteins, a number of unidentified methylases
and the E. coli YfcB protein, identified as the methylase
(PrmB) carrying out the glutamine methylation of ribo-
somal protein L3 [19]. Hits to the TIGR00536 model
were placed in the TRUE partition for the PrmC SIM-
BAL training set (Figure 2B) if they were encoded in the
immediate neighborhood of prfA (at most two interven-
ing genes). In species with two paralogous PrmC family
proteins, the one not encoded near prfA was placed in
the true-negative set. In species with a prmC homolog
that was not near to prfA, the protein was not used in
either partition of the training set since it is not possible
to conclude whether the gene is active on one, both or
neither of RF-1 and L3. Both RF-1 and L3 themselves
are universal in all bacteria, but their post-translational

modifications may not be. Each partition was made
non-redundant to no more than 80% sequence identity,
and SIMBAL analysis was performed. This training set
contains 187 proteins in the positive branch and 62 pro-
teins in the negative branch. Note that this training set
is 1/40™ the size of that used in the previous example
and has a 3:1 true-false ratio as opposed to the 1:1 ratio
used previously. This training set, though smaller,
should contain essentially no false positives (noise) by
virtue of the way it was constructed as opposed to the
considerable amount included in the permease example.
Also of notable difference is the much less sporadic nat-
ure of the PrmC profile.

In theory, SIMBAL should detect short sequences that
outperform full-length sequences for making functional
predictions by BLAST versus members of the homology
family under study. This will be observed primarily
when neofunctionalization has occurred within the clade
containing the target function. In such a case, better
functional predictions are made by conservation at


http://www.biomedcentral.com/1471-2105/11/52

Selengut et al. BVIC Bioinformatics 2010, 11:52
http://www.biomedcentral.com/1471-2105/11/52

critical sites than by time since the most recent com-
mon ancestry. Because neofunctionalization events hap-
pen sporadically, some sequences will show SIMBAL
hot spots in much starker contrast to the apex (full-
length sequence) signal than do others. Comparing
results based on several different starting sequences,
however, adds a measure of confidence through consis-
tent “voting” for functionally important sites.

SIMBAL analysis was first performed against the
sequence of the (crystal structure solved) PrmC protein
from E. coli W3110 (b1212, [PDB:1T43]). This protein is
a member of the TIGR00536 PrmC family and has been
characterized as the methyase acting on RF-1 and RF-2
in vitro [19]. This SIMBAL plot is dominated by five
major peaks with scores in excess of 15, and several
additional minor peaks with scores between 5 and 15.
Sequences of members of the PrmC TRUE partition
were aligned and confirmed to form a single clade by
phylogenetic analysis (not shown). Ten sequences were
chosen to represent diverse subclades of this tree and
each was analyzed by SIMBAL. We observed some var-
iation in the number, relative position and strengths of
peaks. A typical result is illustrated in Figure 6A. To
obtain a consensus, all of the SIMBAL results at window
sizes of 14 and 6 amino acids were co-registered by
locally aligning the subsequences for each peak and
were then averaged (Figure 6B). The average value for
the full-length sequences (plot apex) is also indicated.

The eight subsequences identified by SIMBAL (Table
2) include 33 of the 42 residues observed to make con-
tacts with RF-1 in the complex crystal structure [19]. Of
the nine not identified by SIMBAL, seven are the most
distal from the active site and make contact with an RF-
1 domain distinct from that containing the methylation
target glutamine (Figure 7A). Subsequences C and E,
displaying the strongest SIMBAL scores, are positioned
closest to the active site and make contacts with the
residues flanking the conserved GGQ target sequence
and the target motif itself. Subsequence C, in particular,
dominates the SIMBAL results and is observed as the
strongest peak in every sequence analyzed. One may
infer that this subsequence encodes the most distinc-
tively PrfC-like portion of the protein, mediating not the
catalysis per se, since other PrfC-homologs presumably
use the same catalytic mechanism, but the discrimina-
tion of the substrate from other potential methylation
targets. Unlike all the other susbsequences identified,
subsequence C appears to have a central position in the
binding surface, its RPDTE motif making contacts with
RF-1 at the methylation site and the sequence loops
immediately before and after, as well as positioning a
negatively charged group (Glu-96) at the positive dipole
end of the following alpha helix (Figure 7B).

Page 9 of 16

SIMBAL does not identify merely the most conserved
motifs in a protein family; subsequences D and E are
equally well conserved as the high-scoring subsequence
C (Table 2). Rather, what are found are those regions
conserved enough that BLAST identifies them efficiently
within the TRUE partition of the family, yet divergent
enough that corresponding sequences outside the desired
partition are excluded. In the case of subsequence C, the
difference between the consensus from the positive and
negative branches of the partition is clear:

PrmC-POSITIVE I P R P D/E T E

e V E
| [
PrmC-NEGATIVE i P R S P I A E I e

L
|
L

The sequences are variable precisely at the place
where the most significant substrate contacts are made
(Figure 7B). In comparison, subsequence D, which con-
tains the well-conserved SAM-methylase motif I [20] is
not only conserved among the true PrmC genes, but is
only slightly different in the PrmC-like proteins. This is
consistent with its position adjacent to the SAM cofac-
tor where it makes no direct contacts with the substrate.

Displaying the full heat map (Figure 6A), rather than
just a SIMBAL trace for a fixed window size, shows an
interesting attribute for motif C. Not only is it the
strongest of the peaks at the selected window size, but
its signal remains conspicuous in longer and longer win-
dows (points plotted higher up in the triangular heat
map) as long as they include the motif. This behavior
creates a feature in the SIMBAL heat map in which a
large red and yellow area appears to spread upward in a
V-shaped “plume” from a highly localized single site, the
center of motif C. Features of this type likely represent
both the strength of the signal at small window sizes
and supporting signal from neighboring residues. How-
ever, the mapping of SIMBAL peaks from short window
sizes to crystal structure shows that even sites that lack
such V-shaped plumes in the heat map remain impor-
tant for finding and interpreting determinants of protein
functional specificity.

Discussion

In developing the PPP method [7] we introduced the
strategy of using BLAST results from every gene in a gen-
ome and scoring the results based on the likelihood that
the top hits would predominantly hit genes from the gen-
omes in a given phylogenetic profile. Here, in the SIM-
BAL method, we have transferred that methodology to
an analysis of individual protein sequences. Instead of
scanning every gene in a given genome, we instead scan
all subsequences of a given protein sequence. BLAST is
again utilized, this time versus all proteins in the same
homology family where that family has been partitioned
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Figure 6 SIMBAL results on PrmC RF-1-specific methylases versus a PrmC/RF-1 proximity partition of the TIGR00536 PrmC-like
methylase family. A) SIMBAL triangle heat map for the Bordetella bronchiseptica RB50 PrmC protein (BB0385, [GenBank:CAE30883]). B) A SIMBAL
score plot of 10 PrmC proteins averaged after local registration of the SIMBAL hotspots by alignment of the corresponding subsequences, at a
window size of 14 (blue) and, in the vicinity of peak E, at 6 amino acids (black). The average SIMBAL score for the full-length proteins is shown
in red. PrmC sequences came from the genomes of: £. coli 536, Arthrobacter aurescans, Bacillus clausii KSM-K16, Mycoplasma hyopneumoniae 232,
Mesoplasma florum, Sinorhizobium meliloti 1021, Zymomonas mobilis ZM4, Rhodococcus sp. RHA1, Desulfitobacterium hafniense Y51 and Bordatella
bronchiseptica RB50.
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Table 2 SIMBAL-derived subsequences from PrmC.
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Subsequence® E. coli PrmC subsequence® Consensus® SIMBAL score®
A 18-ESPRRDAEILLEHV-31 espriDAelLLahv 85
B 66-EPIAHLTGVREFWS-79 EPvaVYIllGerEFwG 103
C 90-IPRPDTECLVEQAL-103 IPRPDTEeLVEaal 177
D 115-DLGTGTGAIALALA-128 DLGTGSGAIAIALA 9.0
E 182-SNPPYI-187 SNPPYI 13.8
F 197-GDVRFEPLTALVAA-210 eVIrfEPrsALfaG 6.4
G 237-EHGWQQGEAVRQAF-250 EiGydQgeaVralf 7.1
H 259-ETCRDYGDNERVTL-272 etrkDLaGndRwvl 79

a) subsequences as indicated in Figure 6B. b) Contacts with RF-1 observed in the PrmC:RF-1 crystal structure indicated in bold. c¢) Lower-case residues are less
than 50% conserved, residues in bold are greater than 80% conserved. d) Scores are reported at a window of 14 amino acids except for subsequence E which

has a window size of 6.

by some method. This binary partition of the data is ana-
logous to a phylogenetic profile and may, as in the urea
permease example, be derived directly from such a pro-
file. The SIMBAL method is generic, however, in the
sense that any method may be applied for the separation
of the proteins into TRUE and FALSE groups, discrimi-
nating among homologs from the same genome as in the
PrmC example where this makes sense. The interpreta-
tion of SIMBAL results will depend directly on the biolo-
gical relevance of the partitioning rationale.

In this work, in order to focus on the methodology
itself, we have chosen examples where the results could
be verified versus solved crystal structures with pub-
lished analyses and interpretations, where much is
known about the relevant biochemistry, where the
proper annotation of gene function is relatively secure
and the understanding of subunit architecture and key
functional sites is fairly advanced. Nevertheless, we did
not use any of this information a priori, bit relied
instead on proxies for constructing the protein family
partitions such as might be used in circumstances where
far less is known about the proteins to be analyzed.

In the urea permease example, many urea ABC trans-
porters are present in clear-cut operons near genes for
the catabolism of urea making their annotation
straightforward.

The partition method we chose, however, is only
based on the metabolic potential of the genomes, and
results in the incorporation of large numbers of non-
urea permeases into the TRUE branch of the partition.
Despite this “noise” in the dataset, SIMBAL was able to
give unambiguous results for relevant permeases. This
robust behavior is due in part to the high information
content of the urea metabolism profile, but also can be
traced to the algorithm itself which only scores top
BLAST hits to the TRUE branch relative to the number
of hits encountered so far in the hits list, and is agnostic
to the size of the TRUE set and the proportion of that
set which has been encountered. Clearly, had there been

no information about which permeases were involved in
urea transport (only the informed guess that ABC trans-
porters were involved) SIMBAL could have been iter-
ated and used like PPP, scanning every member of the
relevant protein family for strong signals (as was done
here with the B. japonicum permeases).

In the PrmC example, we chose to construct the par-
tition based solely on local prmC-prfA operonic con-
text and the inference that additional PrmC homologs
in those genomes were not PrmC. This partition
results in a training set far smaller than it could have
been if other information had been used, and suscepti-
ble to bias based on the non-random distribution of
operonically clustered family members. Despite these
self-imposed drawbacks, SIMBAL derives a list of sub-
sequences covering most of the PrmC-RF-1 contact
surface and clearly identifying the crucial substrate-
binding motif.

Some noise is inherent in these analyses, from the
small sample size of sequence regions, anisotropy of
molecular evolution, and quirks of scoring sequence
similarity by BLAST. However, the graphical display of
scores obtained by SIMBAL shows relatively smooth
curves with clear peaks, rather than scores differing noi-
sily over the length of the sequence. The signals appear
to be real, well-behaved, and consistent with PPP analy-
sis and crystal structures.

We have observed a decided advantage of certain sub-
sequences in these examples to outperform the full-
length protein sequences in BLAST-based discrimina-
tion of the TRUE and FALSE branches of the partitions.
One might imagine that the full-length sequence, incor-
porating all of the strongly discriminating subsequences
should have superior discriminatory power. The issue is
that a full-length sequence also incorporates those
regions of the protein that are strongly conserved across
all members of the family, regions that are conserved
only in certain lineages as well as those which have little
conservation. All of these regions will contribute to the
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visualized with MacPyMOL http://www.pymol.org/.

Figure 7 Structural mapping of PrmC SIMBAL hotspots. A) PrmC is shown as a space-filling model. Subsequences C and E are shown in
orange, others in yellow. Deeper colors indicate residues in contact with the RF-1 substrate. Contact residues not identified by SIMBAL are
shown in blue-green. All other PrmC residues are in green. Segments of RF-1 domains 2 and 3 in contact with PrmC are shown as a ribbon
cartoon in blue. The SAM cofactor is shown at the bottom of the active site cleft as a stick model. B) A detail of the contacts made by the
RPDTE motif of subsequence C. PrmC is shown in orange, contacted residues of RF-1 are in green, otherwise colored blue. Molecular models

overall homology scored by BLAST and tend to wash
out the functional signal encoded by the partition. It is
important to realize that SIMBAL does not reward con-
servation per se, but rather discrimination. A subse-
quence site may have little obvious conservation among
the sequences of the desired class, but so long as its
range of amino acids at particular sites is distinctly dif-
ferent from that of the rest of the partition, it will tend
to be found. Additionally, full-length sequences may
include structural differences (insertions and deletions)
irrelevant to the functional differences underlying the
partition. SIMBAL, like other motif-based approaches is
insensitive these gross changes in protein length.

Methods such as INTREPID [21] have been developed
to identify in multiple sequence alignments the critical
sites that discriminate between branches of calculated
phylogenetic trees. The approach presented here is inde-
pendent of any multiple sequence alignment or tree cal-
culation procedures, avoiding the possibility of errors
they may introduce or the computational burden
involved in their accurate generation. Similarly, SIMBAL
does not involve any explicit training algorithms or
parameters that must be tuned. Most importantly, SIM-
BAL requires neither painstaking compilation of experi-
mentally verified training set data, nor assumptions
about functional homogeneity in clades selected from
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larger protein families. SIMBAL'’s execution for a full
scan at every window size scales with the square of the
length of the object protein. Full scans will not usually
be necessary (a limited range of window sizes from 5-30
residues suffices for most applications) allowing execu-
tion in linear time with protein length.

The method of mapping SIMBAL-identified hotspots
onto crystal structures is used here to lend credence to
our assertion that identified subsequences point to func-
tional specificity. Finding the precise boundaries of these
subsequences, that is, determining that one residue is
critical but another nearby is not, is likely beyond the
resolution of this method (due to the limitations of
BLAST comparisons of short sequences). The algorithm
is designed to mine information from noisy data sets, at
the expense of single amino acid resolution. We note,
however, that SIMBAL heat maps often show unambig-
uous peaks with pronounced edge effects, scores falling
off sharply with single-residue shifts in subsequence
length or location (for instance in Figure 6), from which
one may predict the importance of a particular residue.
Decisions as to what lengths of subsequences to map
onto available crystal structures, will be determined by
users in a case-by-case manner to illustrate emergent
discoveries, rather than by the imposition of ad hoc
rules. The development of ancillary tools to facilitate
such graphical manipulation of these data sets will be
beneficial.

Phylogenetic profiling, a discovery method in com-
parative genomics, has certain limitations. It identifies
protein families correlated to some particular trait, and
therefore provides an enrichment of proteins most likely
to have a meaningful biological connection. But in the
absence of secondary clues such as conserved operon
structure, such hypothesized connections may offer only
limited hints for explaining a protein’s biochemical func-
tion and metabolic role. The method introduced here,
SIMBAL, provides a means to continue investigations
once profiling methods have generated first-round
hypotheses. Phylogenetic profiling depends on substan-
tial functional homogeneity within a protein family; high
rates of neofunctionalization in a protein family may
complicate use of the method by causing equivocal
scores and hard-to-interpret results. By contrast, neo-
functionalization events (mutations that change protein
function) improve SIMBAL results (just as lateral trans-
fer and gene loss events improve phylogenetic profiling),
allowing the method to distinguish sequence differences
that imply altered function from those that do not.

We suggest that, where results of profiling methods
such as PPP appear equivocal, the following protocol
may perform better than PPP alone. First PPP identifies
good candidates for protein families co-distributed phy-
logenetically with some assigned trait, as in the example
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of ABC transporter permeases that score well based on
a query profile of urea utilization. Next, an expansive set
of homologs to each candidate protein is generated
from completed genomes and partitioned according the
trait, to serve as a training set. Finally, SIMBAL scans
candidate proteins, and discovers if there are molecular
signatures that outperform analyses based on the full-
length protein only. SIMBAL extraction of suggested
key motifs appears able to act as a “primitive”, a basic
operation that can identify multiple exemplars of protein
subsequences important for functional prediction. We
expect any number of downstream uses to become pos-
sible, such as building HMMs from SIMBAL-identified
motifs at homologous positions, defining regular expres-
sions to use in conjunction with other classifiers in
functional annotation, or using SIMBAL to guide the
creation of classifiers constructed from discontinuous
signatures. Such SIMBAL-derived classifiers would be
expected to outperform individual SIMBAL hot-spot
sequences just as an HMM or PSI-BLAST model is
expected to outperform BLAST based on a single
sequence.

Conclusions

In Partial Phylogenetic Profiling, the implicit “training
set” is all proteins from all genomes in the TRUE parti-
tion of the profile. This training set is noisy of course -
usually fewer than one protein in 1000 actually match
the reference profile in a meaningful way - yet the
power of profiling methods is beyond dispute. SIMBAL
is likewise a discovery method based on efficient data
mining after provision with a potentially noisy training
set, where the training set now is the entirety of a pro-
tein family, partitioned according to some property cal-
culated on each source genome. The method efficiently
identifies prime candidate sites for conferring functional
specificity to the proteins that contain them, and will be
applicable in protein families where little or no direct
characterization work has been done. The method will
likely provide an excellent complement to protein crys-
tallographic studies as a means to infer the importance
of protein functional determinants, and provide mechan-
isms to develop improved protein functional classifiers
for automated annotation systems.

Methods

Genome Properties Analysis

A phylogenetic profile for “urea utilization” was calcu-
lated by Genome Properties [4], based on complete gen-
omes in the Comprehensive Microbial Resource, or
CMR [11] having either of two component properties,
“urease” http://cmr.jcvi.org/cgi-bin/CMR/shared/Geno-
mePropDefinition.cgi?prop_acc=GenProp0051 or “urea
carboxylase/allophanate hydrolase” [22]http://cmr.jcvi.
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org/cgi-bin/CMR/shared/GenomePropDefinition.cgi?pro-
p_acc=GenProp0481. Prokaryotic species with fully
sequenced genomes in which either urea utilization
pathway scored at least 80% complete were entered in
the profile as TRUE, and those with no markers for
either system were entered as FALSE. The few remain-
ing species with ambiguous results from metabolic
reconstruction were not used.

Partial Phylogenetic Profiling

Partial Phylogenetic Profiling (PPP) was performed as
described previously [7], where precomputed BLAST
search results were obtained from the CMR [11], a com-
parative genomics database for completed prokaryotic
genomes. PPP is a method to query a genome according
to a phylogenetic profile, that is, a list genomes desig-
nated TRUE or FALSE according to selection criteria
such as occurrence of some marker gene. All proteins
from the target genome are evaluated, in competition
with each other, for how well their top sets of similar
sequences by BLAST come preferentially from genomes
marked as TRUE. For a given protein in the target gen-
ome, agreement with the profile is evaluated at all
depths in its list of top-scoring BLAST matches, using
the binomial distribution to find the depth where the
odds of matching as well by chance are minimized. For
different proteins in the target genome, the best match
to the profile occurs at different BLAST score cutoffs
and different depths into their respective lists of best
hits, and the depth is optimized on the fly rather than
through pre-set cutoffs. PPP scores are reported as the
(maximized) negative log likelihood that such a prepon-
derance of TRUE hits over FALSE hits might have
occurred by chance given the ratio of TRUE-labeled to
FALSE-labeled proteins in the partitioned BLAST
database.

Training set construction

SIMBAL requires two sequence collections derived from
a larger homology family that differ in some asserted
attribute. Two methods were used in this study (Figure
2) and are described below, but any number of alterna-
tives may be explored by those wishing to implement
this technique, depending on the nature of the system
being studied.

Example 1

Possible urea ABC transporter permease subunits were
partitioned according to their respective “urea utiliza-
tion” metabolic backgrounds. A set of candidate per-
mease subunits for urea uptake transporters was
generated from CMR proteins matching PF02653 [10],
which includes the two permease subunits (UrtB and
UrtC) of the Corynebacterium glutamicum urea trans-
porter operons [11], plus all CMR proteins matched by
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other members of the same Pfam clan, CL0142:
PF00950, PF01032, PF01098, and PF05145. This set
totals 10,111 sequences, the majority of which are not
urea transporters. These proteins were partitioned
according to whether (TRUE) or not (FALSE) the gen-
ome of origin encodes a urea utilization system as deter-
mined by Genome Properties analysis (see above). Note
that this method naively places many non-urea per-
meases in the TRUE set in addition, modeling the situa-
tion where no other corroborating evidence exists.
Example 2

TIGRFAMs model TIGR00536 describes a family of S-
adenosylmethionine (SAM)-dependent protein methyl-
transferase proteins that includes PrmC (HemK) [19],
PrmB [23], and others that are uncharacterized. Putative
methylases recognized by TIGR00536 were partitioned
according to proximity to the prfA gene as recognized
by TIGR00019, encoding the peptide chain release factor
1 protein (RF-1), a substrate of PrmC. TIGR00536-
family methylases observed no more than two genes
away from prfA were assigned to the TRUE partition.
Those found as the second or third paralog in a gen-
ome, where the first was near prfA, were assigned to the
FALSE partition. TIGR00536-family methyases in gen-
omes where no member is in close proximity to the
prfA gene were excluded from the analysis.

For each training set, the TRUE and FALSE partitions
separately were made non-redundant at the level of 80%
sequence identity with preferential removal of fragmen-
tary proteins. The resulting sequence sets were then
analyzed by SIMBAL.

Site-profiling by SIMBAL

SIMBAL (Sites Inferred from Metabolic Background
Labels) is performed by the program SIMBAL.pl, written
in Perl. Inputs to the program include a query sequence,
a file of proteins for the TRUE partition of the training
set, and a file of proteins for the FALSE partition. SIM-
BAL.pl produces a combined sequence library in which
proteins are labeled according to their partition of origin
and performs BLAST searches for subsequences of user-
specified size ranges. Access to SIMBAL.pl and release
notes are provided, and sample TRUE and FALSE data
sets are available for download at http://www.jcvi.org/
openAccess/uploadSimbalForm.html. SIMBAL.pl pro-
duces tab-delimited output. A web resource that uses
the tabular output to draw triangular heat maps (as in
Figure 3) is found at http://www.jcvi.org/openAccess/
simbalPlotViewer.html. SIMBAL.pl source code is freely
available by request.

For each sub-sequence of the query protein, taken in
turn, the list of BLAST hits to the training set is ana-
lyzed at increasing depths in the hits list. SIMBAL ana-
lysis for the examples presented here were performed in
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single-hit mode, where only the first sequence encoun-
tered per genome from the TRUE partition counts in
scoring, although all hits to the FALSE partition count
(a multi-hit mode is supported in the program, for use
in cases where numerous genes in the TRUE genomes
are expected to carry the trait in question). The SIM-
BAL score at each depth represents the log odds against
the actual number (or greater) of sequences labeled
TRUE occurring at that depth by random chance, and
the reported score for each subsequence is the common
log of the optimal (lowest) score from any depth. As in
PPP, this statistic is calculated using the binomial distri-
bution [7]. SIMBAL reports high significance for subse-
quences whose top BLAST matches are dominated by
large numbers of hits to sequences from the TRUE
branch of the partition. It reports low significance for all
subsequences where the top-scoring matches by BLAST
show no bias toward sequences labeled TRUE, and also
where BLAST finds few hits of any kind, as happens for
short subsequences from poorly conserved regions.

Note that the sequences as evaluated by Partial Phylo-
genetic Profiling are full-length, and BLAST is (to a first
approximation) sensitive and specific enough to detect
relevant homologs out of all proteins from all current
complete genomes. SIMBAL, in contrast to PPP,
searches with subsequences as short as 5 amino acids,
making its BLAST searches far more sensitive to noise
from spurious matches. So while the implicit training
set for PPP consists of all proteins from all genomes in
the profile (divided into TRUE and FALSE partitions),
the explicitly constructed training set for SIMBAL is
restricted to one family of proteins. The expedient of
running BLAST searches against a limited set of homo-
logs rather than against all proteins should cause no
loss of information. SIMBAL is only meant to be applied
to members of a particular homology family, thus,
BLAST hits to its subsequences outside of that family
cannot be considered indicators of a functional correla-
tion. Indeed, such hits, especially for short sequences,
are likely to be due to noise. Instead, the relatively small
size of the training set provides both better search speci-
ficity and a great advantage in terms of the speed of the
algorithm.

Using our web service, which runs each job on a sin-
gle 2.66 GHz Intel Xeon processor, versus a typical pro-
tein sequence of 300 amino acids, execution time
averages approximately one second for each subse-
quence analyzed for a full scan. Thus, as an upper limit,
using a 1 amino acid window shift and checking every
subsequence size from 10 to 300, a complete scan
would execute in somewhat less than 12 hours. Such a
scan, however, would only need to be done to create
manuscript-quality triangle figures such as the ones
shown in figures 3 and 6. In a typical usage, a rougher
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initial scan can be performed with a window shift of 4, a
subsequence length jump of 4 and an upper subse-
quence length limit of 40 amino acids. Such a scan exe-
cutes in only 3 minutes.

Scores produced by SIMBAL, like those from PPP, are
uncalibrated and should not be interpreted as reporting
actual statistical significances, but rather are to be used
for comparison purposes only. The species most closely
related to each other tend to have the most similarity in
gene content, and the highest levels of sequence identity
across orthologous pairs. Consequently, many subse-
quences from numerous proteins examined by SIMBAL
will tend toward matching the “true positive” partition
of the training set preferentially, even if the subsequence
in question has no direct bearing on the trait in ques-
tion. Meaningful signal, however, will stand out from
this background by multiple orders of magnitude. SIM-
BAL can use the binomial distribution naively, as if each
genome arises independently, uncomplicated by taxo-
nomic relationships, because the method is used to gen-
erate comparative rather than absolute scores.

Abbreviations

PPP: Partial Phylogenetic Profiling; SIMBAL: Sites Inferred from Metabolic
Assertion Labeling; CMR: Comprehensive Microbial Resource; HMM: Hidden
Markov Model.

Acknowledgements

The authors wish to thank Andrei Tovtchigretchko for instruction in the use
of the PyMOL software for the preparation of molecular graphics.

The effort of JDS and DHS towards this research and the preparation of this
manuscript was supported by grants from the National Science Foundation
(DBI-0445826) and the National Institutes of Health (1ROTHG004881-01).

Authors’ contributions

JDS and DHH contributed equally to the algorithmic development and basic
research represented by this manuscript as well as its preparation. DBR
provided support through the development of software and web site
construction as well as critical commentary on the manuscript.

Received: 4 August 2009
Accepted: 26 January 2010 Published: 26 January 2010

References

1. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO:
Assigning protein functions by comparative genome analysis: protein
phylogenetic profiles. Proc Natl Acad Sci USA 1999, 96(8):4285-4288.

2. Kensche PR, van Noort V, Dutilh BE, Huynen MA: Practical and theoretical
advances in predicting the function of a protein by its phylogenetic
distribution. J R Soc Interface 2008, 5(19):151-170.

3. Haft DH, Selengut JD, Brinkac LM, Zafar N, White O: Genome Properties: a
system for the investigation of prokaryotic genetic content for
microbiology, genome annotation and comparative genomics.
Bioinformatics 2005, 21(3):293-306.

4. Selengut JD, Haft DH, Davidsen T, Ganapathy A, Gwinn-Giglio M,

Nelson WC, Richter AR, White O: TIGRFAMs and Genome Propetrties: tools
for the assignment of molecular function and biological process in
prokaryotic genomes. Nucleic Acids Res 2007, , 35 Database: D260-264.

5. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de
Crecy-Lagard V, Diaz N, Disz T, Edwards R, et al: The subsystems approach
to genome annotation and its use in the project to annotate 1000
genomes. Nucleic Acids Res 2005, 33(17):5691-5702.


http://www.ncbi.nlm.nih.gov/pubmed/10200254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10200254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17535793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17535793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17535793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15347579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15347579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15347579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17151080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17151080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17151080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16214803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16214803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16214803?dopt=Abstract

Selengut et al. BVIC Bioinformatics 2010, 11:52
http://www.biomedcentral.com/1471-2105/11/52

20.

21,

22.

23.

24.

Caspi R, Karp PD: Using the MetaCyc pathway database and the BioCyc
database collection. Curr Protoc Bioinformatics 2007, Chapter 1(Unit1 17).
Haft DH, Paulsen [T, Ward N, Selengut JD: Exopolysaccharide-associated
protein sorting in environmental organisms: the PEP-CTERM/EpsH
system. Application of a novel phylogenetic profiling heuristic. BMC Biol
2006, 4:29.

Valladares A, Montesinos ML, Herrero A, Flores E: An ABC-type, high-
affinity urea permease identified in cyanobacteria. Mol Microbiol 2002,
43(3):703-715.

Beckers G, Bendt AK, Kramer R, Burkovski A: Molecular identification of the
urea uptake system and transcriptional analysis of urea transporter- and
urease-encoding genes in Corynebacterium glutamicum. J Bacteriol 2004,
186(22):7645-7652.

Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G,

Forslund K, Eddy SR, Sonnhammer EL, et al: The Pfam protein families
database. Nucleic Acids Res 2008, 36(36 Database):D281-288.

Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O: The
Comprehensive Microbial Resource. Nucleic Acids Res 2001, 29(1):123-125.
Locher KP, Lee AT, Rees DC: The E. coli BtuCD structure: a framework for
ABC transporter architecture and mechanism. Science 2002,
296(5570):1091-1098.

Pinkett HW, Lee AT, Lum P, Locher KP, Rees DC: An inward-facing
conformation of a putative metal-chelate-type ABC transporter. Science
2007, 315(5810):373-377.

Jones DT: Improving the accuracy of transmembrane protein topology
prediction using evolutionary information. Bioinformatics 2007,
23(5):538-544.

Oldham ML, Davidson AL, Chen J: Structural insights into ABC transporter
mechanism. Curr Opin Struct Biol 2008, 18(6):726-733.

Kanamori T, Kanou N, Atomi H, Imanaka T: Enzymatic characterization of a
prokaryotic urea carboxylase. J Bacteriol 2004, 186(9):2532-2539.

Graille M, Heurgue-Hamard V, Champ S, Mora L, Scrima N, Ulryck N, van
Tilbeurgh H, Buckingham RH: Molecular basis for bacterial class | release
factor methylation by PrmC. Mol Cell 2005, 20(6):917-927.

Nakahigashi K, Kubo N, Narita S, Shimaoka T, Goto S, Oshima T, Mori H,
Maeda M, Wada C, Inokuchi H: HemK, a class of protein methyl
transferase with similarity to DNA methyl transferases, methylates
polypeptide chain release factors, and hemK knockout induces defects
in translational termination. Proc Natl Acad Sci USA 2002, 99(3):1473-1478.
Heurgue-Hamard V, Champ S, Engstrom A, Ehrenberg M, Buckingham RH:
The hemK gene in Escherichia coli encodes the N(5)-glutamine
methyltransferase that modifies peptide release factors. Embo J 2002,
21(4):769-778.

Kagan RM, Clarke S: Widespread occurrence of three sequence motifs in
diverse S-adenosylmethionine-dependent methyltransferases suggests a
common structure for these enzymes. Arch Biochem Biophys 1994,
310(2):417-427.

Sankararaman S, Sjolander K: INTREPID-INformation-theoretic TREe
traversal for Protein functional site IDentification. Bioinformatics 2008,
24(21):2445-2452.

Kanamori T, Kanou N, Kusakabe S, Atomi H, Imanaka T: Allophanate
hydrolase of Oleomonas sagaranensis involved in an ATP-dependent
degradation pathway specific to urea. FEMS Microbiol Lett 2005,
245(1):61-65.

Colson C, Lhoest J, Urlings C: Genetics of ribosomal protein methylation
in Escherichia coli. lll. Map position of two genes, prmA and prmB,
governing methylation of proteins L11 and L3. Mol Gen Genet 1979,
169(3):245-250.

Wu M, Eisen JA: A simple, fast, and accurate method of phylogenomic
inference. Genome Biol 2008, 9(10):R151.

doi:10.1186/1471-2105-11-52

Cite this article as: Selengut et al: Sites Inferred by Metabolic
Background Assertion Labeling (SIMBAL): adapting the Partial
Phylogenetic Profiling algorithm to scan sequences for signatures that
predict protein function. BMC Bioinformatics 2010 11:52.

Page 16 of 16

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/18428679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18428679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16930487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16930487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16930487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11929526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11929526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15516578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15516578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15516578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18039703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18039703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12004122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12004122?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17237066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18948194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18948194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15090492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15090492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16364916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16364916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11805295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11805295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11805295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11805295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11847124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11847124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8179327?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8179327?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8179327?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18776193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18776193?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15796980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15796980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15796980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/372746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/372746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/372746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851752?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Training sets classified by metabolic context: urea ABC transporters
	Partial Phylogenetic Profiling (PPP)
	SIMBAL: using metabolic background assertions to find key subsequences
	SIMBAL applied to training sets classified by local genomic context

	Discussion
	Conclusions
	Methods
	Genome Properties Analysis
	Partial Phylogenetic Profiling
	Training set construction
	Example 1
	Example 2

	Site-profiling by SIMBAL

	Acknowledgements
	Authors' contributions
	References

