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Abstract

Background: There are many important clustering questions in computational biology for which no satisfactory
method exists. Automated clustering algorithms, when applied to large, multidimensional datasets, such as flow
cytometry data, prove unsatisfactory in terms of speed, problems with local minima or cluster shape bias. Model-
based approaches are restricted by the assumptions of the fitting functions. Furthermore, model based clustering
requires serial clustering for all cluster numbers within a user defined interval. The final cluster number is then
selected by various criteria. These supervised serial clustering methods are time consuming and frequently different
criteria result in different optimal cluster numbers. Various unsupervised heuristic approaches that have been
developed such as affinity propagation are too expensive to be applied to datasets on the order of 106 points that
are often generated by high throughput experiments.

Results: To circumvent these limitations, we developed a new, unsupervised density contour clustering algorithm,
called Misty Mountain, that is based on percolation theory and that efficiently analyzes large data sets. The
approach can be envisioned as a progressive top-down removal of clouds covering a data histogram relief map to
identify clusters by the appearance of statistically distinct peaks and ridges. This is a parallel clustering method that
finds every cluster after analyzing only once the cross sections of the histogram. The overall run time for the
composite steps of the algorithm increases linearly by the number of data points. The clustering of 106 data points
in 2D data space takes place within about 15 seconds on a standard laptop PC. Comparison of the performance of
this algorithm with other state of the art automated flow cytometry gating methods indicate that Misty Mountain
provides substantial improvements in both run time and in the accuracy of cluster assignment.

Conclusions: Misty Mountain is fast, unbiased for cluster shape, identifies stable clusters and is robust to noise. It
provides a useful, general solution for multidimensional clustering problems. We demonstrate its suitability for
automated gating of flow cytometry data.

Background
Clustering is widely used for exploratory data analysis,
with applications ranging from physics and biology to
social sciences and psychology. In data intensive fields of
biology, it is important to identify groups or clusters of
data showing similar behavior. Many methods for clus-
tering have been developed, which fall into two general
categories: heuristic algorithms and model based ana-
lyses. In heuristic algorithms clustering is obtained either
by optimizing a certain target function or iteratively
agglomerating (or dividing) nodes to form bottom-up
trees. Examples of these approaches include: K-means [1]

and K-median [2] clustering, fuzzy K-means clustering
[3], affinity propagation [4], spectral clustering [5,6], QT
(quality threshold) clustering [7] and density contour
clustering [8]. In contrast to heuristic methods, model-
based clustering methods make inferences based on
probabilistic assumptions about the data distribution.
Gaussian or modified Gaussian mixture models [9] use
the Expectation-Maximization algorithm [10-13] to find
the parameters of the distributions that are fitted to the
data. Then Bayesian information criterion (BIC) [14],
Akaike information criterion (AIC) [13], integrated com-
pleted likelihood (ICL) [15] or other criterion is used to
select the number of clusters.
Flow cytometry (FCM) is a commonly used technique

to measure the levels of expression of multiple markers,
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such as specific proteins, in millions of cells. FCM data
is typically analyzed by an attempt at visual selection of
similar groups of data in 2 dimensional projections, a
process referred to as gating. The visual identification of
similar groups of data points, referred to in FCM as
manual gating, is error-prone, non-reproducible, non-
standardized, difficult to apply to more than two dimen-
sions, and manpower-intensive, making it a limiting
aspect of the technology [16]. Despite its widespread
use, FCM lacks a fast and reliable method for automated
analysis to parallel its high-throughput data-generation.
The development of a reliable, heuristic clustering
approach suitable for large datasets would significantly
improve the value of FCM experiments and would have
widespread application to other data-intensive biological
clustering problems.
Automated FCM gating attempts using heuristic meth-

ods, such as K-means and fuzzy K-means [1,3,17-20] do
not provide stable results. Different initial values for the
algorithm, i.e. initial locations of the cluster centers, typi-
cally result in different clustering results. Often, with a
poor set of initial values, the minimization of the target
function falls into a local minimum and gives an undesir-
able clustering result. Furthermore, these methods work
best with spherical or hyperspherical shaped clusters, a
distribution often not observed in FCM datasets. Several
other useful clustering algorithms based on pairwise
comparisons, including linkage or Pearson coefficients
method [21] and the affinity propagation method [4], are
computationally too expensive to be used for FCM
because the size of the pairwise distance matrix increases
on the order of n2 with the number of points. Classifica-
tion and regression trees [22], artificial neural networks
[23] and support vector machines [24,25] have also been
used in the context of FCM analyses [26-29], but these
supervised approaches require training data, which may
not be available and may perform unreliably if the fea-
tures of the experimental data diverge from the training
set. Model-based approaches are slow, need user involve-
ment and require assumptions about cluster distributions
that limit their general utility [13,15]. A major problem
of all practical approaches for unsupervised FCM cluster
analysis remains the determination of the number of
clusters. The use of BIC, AIC, ICL or other criterion can
make the determination of cluster number unreliable
(see Additional File 1).
To overcome these limitations of the above approaches,

we have developed a new density contour clustering
method that is particularly suitable for FCM data. In the
early 1960’s Boyell and Ruston [30], working on methods
for storing topological data in a manner allowing efficient
reconstruction, recognized that contour lines can be
represented as a tree structure. This insight led to the

idea of density contour clustering by finding the largest
cross section of each histogram peak [8]. Jang and
Hendry [31,32] used a density contour method for clus-
tering galaxies, that in principle is most similar to our
method. Their method is a modification of a method pro-
posed by Cuveas et al. [33,34]. We have developed a new,
fast density contour clustering method suitable for large,
multi-dimensional datasets that will be compared with
Jang and Hendry’s method in Additional File 1. The
method is unbiased for cluster shape and does not
require global optimization of a multi-variable target
function like other commonly used clustering methods
do. The algorithm run time increases on the order of n.
According to the tests on manually gated and simulated
data the method provides correct clustering with correct
number of clusters.
The Misty Mountain algorithm can be understood as

the computational analogy of an airplane view of histo-
gram terrain that is initially completely immersed in
misty clouds. The mist is steadily removed from the top
down by the sun, progressively uncovering clusters as
peaks that pierce the mist. Eventually the merging
points of two peaks, the highest saddle, is revealed.
From there two peaks form one instead of two holes in
the mist. As the level of the mist decreases, more and
more summits and saddles are revealed and evaluated to
determine the number of statistically distinct peaks and
their extent.

Results and Discussion
Misty Mountain algorithm
The approach is briefly described here and more exten-
sively in Methods. The multi-dimensional data is first
processed to generate a histogram containing an optimal
number of bins by using Knuth’s data-based optimiza-
tion criterion [35]. Then cross sections of the histogram
are created. The algorithm finds the largest cross section
of each statistically significant histogram peak. The data
points belonging to these largest cross sections define
the clusters of the data set.
To illustrate the method, we generated a simulated

two-dimensional 106 FCM dataset with the respective
histogram having four peaks (Figures 1a,b). Seven repre-
sentative locations of the histogram intersection with a
lowering plane are shown (Figures 1 c-j). Each cross sec-
tion shows group(s) or aggregate(s) of those bins where
the bin content is higher than the actual level of the
cross section. With decreasing level, the number and
size of the bin aggregates increase (Figures 1d-g). Then
at the level of the highest saddle two bin aggregates coa-
lesce (Figure 1h). At one level higher we have the lar-
gest, still separated bin aggregates (colored by pink and
green in Figure 1g). The data points belonging to these
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two largest bin aggregates define the first two clusters of
the cluster analysis. The blue colored aggregate in Fig-
ure 1i is shown just before coalescing with the gray
colored aggregate. The data points belonging to this
aggregate define the third cluster of the analysis. The
cross section of the red peak is still separated and lar-
gest at frequency = 0 (colored by red in Figure 1j). The
data belonging to the respective bin aggregate define the
fourth cluster.
To realize the steps described above computationally,

the algorithm uses a percolation theory based procedure
[36,37] by labeling different bin aggregates of a histo-
gram cross section by different integers. Then the algo-
rithm comparatively analyzes pairs of consecutive cross
sections to recognize coalescing bin aggregates. Assign-
ing clusters to the coalescing bin aggregates requires the
Lp1−Ls and Lp2−Ls relative heights of the two peaks that
fuse both be statistically significantly greater than ran-
dom fluctuations (see Methods). Lp1, Lp2 and Ls are the
heights of the fusing first and second peak and the sad-
dle between them, respectively.
In the sample data, the algorithm assigned points to

four clusters, requiring 14.7 seconds CPU time on a
standard laptop PC. The characteristic properties of the
assigned clusters such as cluster size and reliability of
the assignation are shown in Table 1. These clusters
contain 85% of all the 106 data points. Misty Mountain
is a tight clustering method in that it does not force all
points into clusters [38].

Testing Misty Mountain algorithm
We analyzed a flow cytometry dataset containing 9549
points representing the side scattering and forward scat-
tering measurements obtained from U937 macrophage
cells (Figure 2a). An expert in flow cytometry would
interpret the large oval group as representing intact cells
and would form a gate to separate these cells for further
analysis from cellular debris. We first used K-median [2]
and spectral clustering [5,6] algorithms. For K-median
clustering we used simulated annealing [39] to find the
global minimum of the target function, i.e. to find a
stable solution of the clustering problem. Both of these
conventional clustering methods gave similar erroneous
results (Figure 2b). We next used the Misty Mountain
algorithm to cluster these data. The respective optimal

Figure 1 Misty Mountain clustering of simulated FCM data. a) Simulated 2 dimensional FCM data. Sum of four Gaussian distributions are
simulated by using Monte Carlo techniques (see Methods). The center of each Gaussian is marked by a colored arrow. b) Two-dimensional
histogram, H(I,J) of the simulated data is created by using an optimal 58 × 58 equally spaced mesh. c) Projection of the 2 dimensional histogram
to the (J,FREQUENCY) plane. Blue lines: levels of histogram intersections shown in d)-j) subfigures. The frequencies at the intersections are: d)
5000, e) 2900, f) 2000, g) 757, h) 756, i) 103, j) 0.

Table 1 Characteristics of the clusters assigned to data in
Figure 1a

Color code Lp Ls C f

green 3385 756 313369 0.777

red 10706 0 300000 1

pink 2493 756 143539 0.697

blue 1911 102 94930 0.947

Lp: height of the peak.

Ls: height of the highest saddle next to the peak.

C: number of data points in the cluster.

f[= (Lp−Ls)/Lp]: measure of separateness of the peak from nearby peak(s). The
parameter estimates the reliability that an element of the cluster belongs to
the respective population.
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histogram contained 20 × 20 bins and there were 529
points in the most populated bin. Thus during the ana-
lysis, cross sections of the histogram were created at 529
levels. The elapsed CPU time of the cluster analysis was
0.28 sec. The result of the cluster analysis is shown in
Figure 2c. These clusters contain 95.7% of all the data
points, which are assigned at high confidence (Table 2).
We next compared Misty Mountain with other state of

the art flow cytometry automated gating algorthims using a
variety of datasets (Table 3 and Additional File 1). The
accuracy of these various algorithms was determined using
expert manual gating to generate gold standards with 2
dimensional and 4 dimensional experimental datasets as
well simulated 2 dimensional and 5 dimensional datasets
having known cluster numbers. Algorithm run time was
compared using these datasets as well as additional high
dimensional experimental datasets for which a gold stan-
dard for accuracy was not generated. The accuracy of Misty
Mountain was superior to that of all other methods tested.
The speed of Misty Mountain was comparable to that of
flowJo and orders of magnitude faster than other state of
the art published methods. Extensive benchmarking sug-
gests that Misty Mountain provides a significant improve-
ment over the performance of other available methods.
The performance of the Misty Mountain algorithm

with a complex flow cytometry dataset consisting vary-
ing levels of two fluorophores, APC-Cy7-A and Pacific
Blue-A, in 853,674 U937 cells is shown in Figure 3. The

dataset in Figure 3a was generated for a barcoding
experiment [40] in which different groups of cells were
labeled with different concentrations of each fluoro-
phore. The respective optimal histogram that was ana-
lyzed contained 52 × 52 bins. The most populated bin
contained 4003 data points. Thus during the analysis,
4003 cross sections of the histogram were created. The
elapsed CPU time of the cluster analysis was 9.8 sec.
The results of the cluster analysis are shown in Figure
3b. The analysis identified 15 large clusters where the
reliability of the cluster elements was from 0.75-0.98,
and 5 small clusters with about 0.5 reliability. These
clusters contained 87% of all the data points. The char-
acteristic properties of the assigned clusters are listed in
Table in Additional File 2. The last cluster in the table
is a very small one and it is considered as noise (see
Sec. Major and Small Peaks of the Histogram). In Addi-
tional Files 3 and 4 the analysis of an even more com-
plex 3D barcoding experiment is shown.
As another example we analyzed one of the graft-

versus-host disease (GvHD) data sets.
These 4D data sets have been made available [41] and

used in a few flow cytometry analysis publications
already [42]. The individual data files are available at:
http://www.ficcs.org/data/data-files/. In our current
example we used a data set from GVHD2.iso, Folder
E#21 H06. Two dimensional projections of the data and
the result of the clustering are shown in Figure 4 and 5,
respectively. This data set is an example for overlapping
populations. Misty Mountain algorithm assigned 6 clus-
ters to the 4D GvHD data set within 0.8 sec. The ana-
lyzed histogram of the simulated data contained 84 bins.
Since the populations are severely overlapping the
assigned clusters contain only 29% of all the data points.
Table 4 lists the characteristics of the clusters assigned

Figure 2 Side scattering and forward scattering of U937 cells. a) Experimental data. Side scattering is plotted against forward scattering. b)
Result of cluster analysis by using the K-median clustering and spectral clustering with assuming 2 centers. c) Result of the cluster analysis by
using the Misty Mountain method. Table 2 lists the characteristics of the resulting clusters. The data points assigned to the two clusters are
marked by red and blue symbols.

Table 2 Characteristics of the clusters assigned to data in
Figure 2a

Color code Lp Ls C f

red 430 5 8338 0.988

blue 529 5 804 0.991

(see legends to Table 1).
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by Misty Mountain. The low f values in Table 4 show
that the histogram peaks belonging to cluster 1, 2 and 3
are seriously overlapping with nearby peak(s). In each of
these cases Misty Mountain assigns cluster to a histo-
gram cross section that is close to the top of the

respective peak and thus the number of histogram bins
assigned to these seriously overlapping clusters is low.
The above two data sets are also analyzed by state of
the art clustering methods in Additional File 1 and com-
pared with the results of Misty Mountain clustering.

Table 3 Summary of comparing Misty Mountain with state of the art flow cytometry specific clustering methods

Data set Manually gated
2D barcoding&

Simulated 5D Gaussians Simulated 2D
non-convex

3D rituximab 4D GvHD Manually
gated 4D

OP9

Misty Mountain accuracy sens (%) 100 100 100 - - 100

spec (%) 100 100 100 - - 100

CPU (sec) 10 196 6 0.3 0.8 3.6

FLAME accuracy sens (%) 20a 60b - 0d* 100d - - -

spec (%) 33a 50b - 0d* 100d - - -

CPU (sec) 5.104 >3.105 1.104 10 360 1.4 · 104

flowClust accuracy sens (%) 45a* 60b* 100c 0c* 100d - - 60d* 60*

spec (%) 60a* 55b* 100c 0c* 100d - - 75d* 38*

CPU (sec) 5.104 4.104 7200 43 480 3660

flowMerge accuracy sens (%) 25 100 0 - - 80

spec (%) 45 100 0 - - 57

CPU (sec) 1.3 · 105 1.27 · 105 7200 124 1020 8400

flowJo accuracy sens (%) 45 - - - - -

spec (%) 47 - - - - -

CPU (sec) 1-10 - - 1-10 1-10 -
a optimal cluster number: 12.
b optimal cluster number: 24.
a*optimal cluster number: 15.
b*optimal cluster number: 22.
c optimal cluster number: 5.
c* optimal cluster number: 2.
d optimal cluster number: 1.
d* optimal cluster number: 4.

* optimal cluster number: 8.
&to save CPU time a data set, reduced by 80%, has been analyzed by FLAME, flowClust and flowJo.

sens (sensitivity) = (# of correctly assigned clusters)/(# of clusters in gold standard).

spec(specificity) = (# of correctly assigned clusters)/(total # of assigned clusters).

Gold standards were independent expert manual clustering for experimental data and specified clusters for simulated data.

Figure 3 Two-dimensional FCM data. 853,674 U937 cells are stained by two florescence dyes, Pacific Blue and APC-Cy7-A. a) The fluorescence
intensity of APC-Cy7-A is plotted against the fluorescence intensity of Pacific Blue. b) Result of the cluster analysis by using the Misty Mountain
method. Each cluster is marked by a code number. Table in Additional File 2 lists the characteristics of the resulting clusters.
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Figure 4 Four-dimensional FCM data from the graft-versus-host-disease data set. 10,463 peripheral blood mononuclear cells are stained by
four florescence dyes: 1) CD4-FITC, 2) CD122-PE, 3) CD3-PerCP, 4) CD8-APC. At each axis of the plots the code number of the respective
fluorescent stain is shown. Six 2D projections of the 4D data set are shown.

Figure 5 Misty Mountain clustering of the graft-versus-host-disease data set. 2D projections of the 4D clustering result are shown. Code
numbers of clusters assigned by Misty Mountain algorithm: 1 (red); 2 (blue); 3 (green); 4 (black); 5 (rose); 6 (light blue). Table 4 lists the
characteristics of the resulting clusters.
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We also compared the performance of the various
gating algorithms using a dataset from 4D bone-mar-
row derived mouse stromal cells (OP9 cells) stained
with antibodies for CD45, Gr1, Mac1 and CD19. Two
experts manually gated this experiment obtaining iden-
tical results. Misty Mountain gave results identical to
that of the experts, unlike the other automated gating
methods (Table 3 and in Additional File 1, Figures
AF14-18, Table AF13-18). In order to test algorithm
performance we used a variety of other experimental
and simulated data sets with biologically interesting
populations such as low density, overlapping and non-
convex populations. Comparisons were made using
simulated 2 dimensional and 5 dimensional data and
additional experiments with 3 dimensional and 4
dimensional data (Additional File 1). These results all
strongly support the improved accuracy and utility of
the Misty Mountain algorithm relative to other state of
the art methods.
Studies were done to evaluate the time complexity of

the Misty Mountain algorithm. These simulations
revealed that at fixed bin number the overall run time
for the composite steps of the algorithm increases line-
arly by the number of data points. Also an increase in
the run time was detected with increasing dimensional-
ity of the data space (see Additional File 5). The number
of clusters did not alter the computation time (Addi-
tional File 5).
The Misty Mountain algorithm can be applied to ana-

lyze other than FCM data when the data set is large
enough to construct an adequate histogram. For exam-
ple in astrophysics it can be used for unsupervised
recognition of star/galaxy clusters, or in social sciences
to analyze questionnaires and identify groups with com-
mon interests/opinions.

Implementation
The implementation, instruction and the input data files
of all the examples analyzed in this study are available
in Additional Files 6, 7 and 8.

PCA- Misty Mountain algorithm for high dimensional data
The current version of the Misty Mountain algorithm
software uses direct analysis for data having up to 5
dimensions. Some flow cytometry datasets may have up
to twelve or even more dimensions. One can set the cri-
tical dimension higher than 5, however the run time,
the number of data points needed for an adequate histo-
gram and the memory requirement for storing the histo-
gram increases super linearly with increasing dimension.
As another option, we have combined the Misty Moun-
tain algorithm with principal component analysis (PCA)
[43]. In order to analyze higher than 5 dimensional data,
we use PCA to project the high dimensional data into a
5 dimensional subspace. The subspace is spanned by 5
eigenvectors belonging to the 5 largest eigenvalues of
the covariance matrix of the data. Then Misty Mountain
analysis is performed on the projected data. Finally the
points of the assigned clusters are back-projected into
their original position in the data space. This procedure
is demonstrated on a simulated 10 dimensional data set
containing points that distributed as the sum of 8
distorted-Gaussians. The parameters of the distorted-
Gaussians (mean and standard deviation of the distribu-
tions) are listed in the table in Additional File 9. By
using PCA, the simulated data are projected into the 5D
subspace where Misty Mountain clustering is performed.
The points of the assigned 8 clusters are back-projected
to their original position in the 10D data space. Table in
Additional File 10 lists the center coordinates of the
assigned clusters. As a demonstration of correct cluster-
ing these cluster centers are very close to the means of
the respective distorted-Gaussians. It is important to
note that the projection of the data into the 5D sub-
space may bring some of the otherwise separated histo-
gram peaks so close to each other that the number of
clusters assigned by the Misty Mountain algorithm
becomes less than the true value. This happens with
higher frequency when the data histogram contains
many, broad peaks. Finally it is important to note that
the optimal choice for the critical dimension depends
on the actual number of the data points, i.e. one should
be able to create an adequate histogram from the data
at the critical dimension.

Advantages and limitations of Misty Mountain algorithm
Advantages:
1) Misty Mountain algorithm is unbiased for cluster
shape.
2) it is robust to noise,
3) it is fast,
4) it is unsupervised. It does not need estimation for
cluster number.
5) the computation time linearly increases with the
number of data points

Table 4 Characteristics of clusters assigned by Misty
Mountain to the 4D GvHD data in Figure 4

Code # Lp Ls C Bin # f

1 1541 1033 1542 1 0.33

2 1115 1033 1116 1 0.074

4 230 25 1011 11 0.891

3 889 804 890 1 0.096

5 175 30 858 8 0.829

6 132 30 265 3 0.773

(see legends to Table 1).

Bin #: number of histogram bins containing the points of a cluster.
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Limitations:
1) Misty Mountain algorithm identifies two closely
situated populations as one when the respective histo-
gram has only one peak
2) it identifies two populations as one when Lp−Ls is
comparable with the standard deviation of Lp−Ls. (Lp
is the bin content at the smaller histogram peak, and
Ls is the bin content at the saddle between the two
histogram peaks.)
3) the computation time, the number of data points
needed for an adequate histogram and the memory
requirement for the histogram super linearly increase
with the dimension of the data space
Misty Mountain provides a useful, general solution for

multidimensional clustering problems. It can be easily
adapted to address diverse large dataset clustering pro-
blems in computational biology. It is particularly suita-
ble for automated gating of FCM and should improve
the ability to interpret experimental data in this field.

Conclusions
In biology, measurements on a single object (such as a
cell or image) are frequently represented by a point in a
multi-dimensional space where the coordinates of the
point refer to the measured values. With the advent of
high-throughput assays, these experiments can generate
datasets comprising millions of points. Clusters of points
may be thought of as regions of high density separated
from other such regions of low density. We describe a
fast algorithm that automatically identifies clusters of
data points showing similar values. The three major
steps of the algorithm are: i) The multi-dimensional
data is first processed to generate a histogram contain-
ing an optimal number of bins. ii) The cross sections of
the histogram are created. iii) The algorithm finds the
largest cross section of each statistically significant his-
togram peak. The data points belonging to these largest
cross sections define the clusters of our data set.
While the idea of clustering by using a density histo-

gram is old, the present implementation results in parti-
cularly fast clustering that is useful for data-intensive
computational biology applications. Misty Mountain
clusters 106 data points in 2D data space in about 15
seconds on a standard laptop PC. The run time linearly
increases with the number of data points. Unlike other
commonly used clustering methods, Misty Mountain is
not model-based, unsupervised and does not require
global optimization of a multi-variable target function.
Without making strong assumptions, this method pro-
vides fast and accurate clustering. The algorithm is gen-
eral, but was motivated by the need for an unbiased
automated method for analysis of flow cytometry (FCM)
data.

Methods
In the previous sections we gave a qualitative descrip-
tion of the Misty Mountain algorithm. In order to help
to understand the logic of the algorithm, we discuss its
key features in detail.
The main part of the program reads in the coordi-

nates of the data points, creates an optimal histogram
from the data, analyses the consecutive cross sections of
the histogram by calling two major routines - LABEL-
ING and ANALYZE -, and finally outputs the result
(see flowchart in Figure 6). These major steps of the
program are discussed below.

Histogram Optimization
By using the Bayesian framework Knuth [35] proposed
an optimal data-based binning for histograms. He
derived the posterior probability, p for the number of
bins of similar shape at given data, d. If there is similar
number of bins, N along each coordinate axis the loga-
rithm of the posterior probability is:

log ( | )

log log . log ( . ) log ( . ) log

p N d

n N N N n ND D D D

=

+ ( ) − − + +Γ Γ Γ0 5 0 5 0 5 ΓΓ( . ) .n constk

k

ND

+ +
=

∑ 0 5
1

where n is the number of data, nk is the number of
data in the kth bin, and D is the dimension of the data
space. The N that maximizes this probability is the opti-
mal bin number along each coordinate axis. There are
other optimal data based binning methods such as
Wand’s method [44]. We prefer using Knuth’s method
because its implementation is particularly easy for any
dimension of data.

The LABELING routine
The LABELING routine separately analyzes each cross
section of the histogram. As an example let us consider
a two dimensional histogram (e.g. Figure 1b). Each cross
section of the histogram is mathematically represented
by an NxN square matrix where the I,J-th element of
the matrix is equal 1 if the respective bin content is
higher than LEVEL (the frequency at the actual cross
section) otherwise it is 0. In this matrix the cross section
of a peak appears as a group or aggregate of 1’s. The
aim of the aggregate labeling algorithm is to assign the
same positive integer to the same aggregate. On the
other hand different aggregates will be labeled by differ-
ent integers. The NxN label matrix, NSTRA is created in
three steps.
Step 1. Initialization of the label matrix.
NSTRA(I,J) = NBIN if the content of the I,J-th bin is

larger than the level of the cross section, otherwise
NSTRA(I,J) = 0. NBIN = NxN is the number of bins. Set
the aggregate counter zero, i.e.: IL = 0.
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Step 2. First scanning of the label matrix.
Starting from the first matrix element, NSTRA(1,1) let

us scan the matrix from left to right and from the top
to the bottom. Let us change the values of the matrix
elements according to the following rules:

a) If NSTRA(I, J) = 0 then it remains zero
b) If NSTRA(I, J) = NBIN, and NSTRA(I−1, J−1),
NSTRA(I−1, J), NSTRA(I−1, J+1) and NSTRA(I, J−1)
matrix elements (if they exist) are equal to 0, then
first let us increase the value of IL by 1; second
change the value of NSTRA(I, J) from NBIN to
NSTRA(I, J) = IL; and, finally, let the IL-th element
of the ICOUNT vector equal to IL.
c) If NSTRA(I, J) = NBIN, and any of the NSTRA(I−1,
J−1), NSTRA(I−1, J), NSTRA(I−1, J+1) and NSTRA
(I, J−1) matrix elements (if they exist) are not equal to
0 then we determine the proper aggregate label for
these non-zero neighbor matrix elements by applying
routine CLASSIFY (described in Step 3). Then we select
the smallest of the proper labels, called JM, and we set

ICOUNT NSTRA I J JM

ICOUNT NSTRA I J JM

ICOUNT NSTRA

( ( , ))

( ( , ))

(

=
− − =1 1

(( , ))

( ( , ))

( ( , ))

I J JM

ICOUNT NSTRA I J JM

ICOUNT NSTRA I J

− =
− + =

− =

1

1 1

1 JJM

NSTRA I J JM( , ) =

Step 3: Second scanning of the label matrix.
After the first scanning, an aggregate may have more

than one label. During the second scan, we assign a sin-
gle label to each element of an aggregate. In this scan
the zero elements remain unchanged, while the new
value of the nonzero element NSTRA(I, J) is determined
by means of the following procedure called CLASSIFY:

1

1

LIJ NSTRA I J

MS LIJ

LIJ ICOUNT MS

IF MS NE LIJ GOTO

NSTRA

=
=
=

( , )

( )

( . . )

(( , )I J LIJ=

This simple procedure finds the smallest label among
the labels of the aggregate where the I,J-th bin is situ-
ated. The labeling routine is similar to the one used in
percolation theory [36,37] for labeling spin clusters. The
difference is that in Step 2b and 2c in spin cluster label-
ing, usually only two nearest neighbors: NSTRA(I-1,J)
and NSTRA(I,J-1), of the I,J-th matrix element are con-
sidered. In our algorithm, we also consider two next
nearest neighbor matrix elements, NSTRA(I-1,J-1) and
NSTRA(I-1,J+1). By using this important modification

Figure 6 Flow chart of the main part of the Misty Mountain
program. IDIM - dimension of the data space. N - the number of
equidistant meshes along each coordinate for creating optimal
histogram. LEVELMAX - highest frequency of the histogram.
LEVEL - frequency where the actual cross section is created.
NCL - actual number of (major and small) histogram peaks. NSTRA
and NSTRB - matrices of labeled aggregates of two consecutive
cross sections. NSTRF - structure matrix that stores the largest
separate aggregates belonging to the major peaks (see e.g. colored
aggregates in Figure 1d-j).
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elongated slanted aggregates are properly labeled. The
FORTAN source code of the LABELING routine is able
to label bin aggregates of any dimension.

The ANALYZE routine
This routine performs a comparative analysis of the
actual and previous cross sections, and stores the largest
but still separated aggregates of the major peaks. It also
recognizes and eliminates small noisy peaks from the
analysis. The distinction between small and major peaks
is explained below in Sec. Major and Small Peaks of the
Histogram. The flowchart in Figure 7 shows the logic of
the ANALYZE routine.
First we give a brief description of the flowchart in

Figure 7. The cross sections of the histogram are created
consecutively from the highest to the lowest level, i.e.
from LEVELMAX to 0. In the grey region of the flow
chart aggregates emerging at LEVELMAX are handled.
When a new aggregate appears at a lower level the yel-
low part of the flow chart is active. The cyan colored
part of the flow chart is active when a single peak that
emerged at a previous level belongs to the aggregate.
The rest of the flow chart is active when more than one
peak belongs to the aggregate. The green colored part is
active when at the previous level every peak was single
and no more than one of them was major peak. The
red, purple and pink colored parts are active when at
the previous level either not every peak was single or
more than one single peak were major.
Now in the rest of this section a more detailed descrip-

tion of the flowchart (Figure 7) is given. At the highest
level, one or more aggregates appear in the cross section.
The counter of the peaks NCL is increased from zero,
and the types and positions of the emerging peaks are
registered in three vectors:
IIPOINT1(ICLU) - location (or characteristic position)

of the emerging ICLU-th peak
IIPOINT2(ICLU) - label of the aggregate of the ICLU-

th peak
IIPOINT3(ICLU) = 1 - type code of a single peak (the

other two type codes are defined below). In the flow
chart (in Figure 7) these steps are highlighted by grey.
At every other cross section level the analysis of the

labeled aggregates starts by creating the IHELP vector.
IHELP(ILAB) is the number of characteristic peak posi-
tions that fall into the aggregate labeled by ILAB. There
are three possibilities:
a) There is no characteristic peak position in the

aggregate labeled by ILAB.
This signifies that a peak is just emerging. In this case

NCL is increased by one and proper values are assigned
to the NCL-th elements of the IIPOINT1, IIPOINT2
and IIPOINT3 vectors. In Figure 7 the respective part of
the flow chart is highlighted by yellow.

b) There is one characteristic peak position in the
aggregate labeled by ILAB.
This means that the respective peak, with code num-

ber ICLU, emerged in one of the previous cross sec-
tions, and it is still a single peak. Thus the peak type
IIPOINT3(ICLU) remains equal to 1. If the peak
remains single until the lowest level of the cross section
(i.e. until LEVEL = 0) the aggregate belonging to this
peak is copied into the final label matrix, NSTRF where
it is labeled by ICLU. In the NSTRF matrix we store the
final result of our cluster analysis. In the flow chart (in
Figure 7) the above described steps are highlighted by
cyan.
c) There are more than one characteristic peak posi-

tions in the aggregate labeled by ILAB.
This is the most important part of the algorithm that

handles the merger of major peaks and the elimination
of small noisy peaks. The counter of the peak positions
falling into the aggregate is denoted by IP.
The analysis of the aggregate starts by creating the

ISZVEC vector. The IP-th element of the vector refers
to the type of the respective peak at the previous cross
section: ISZVEC(IP) = -1 when the IP-th peak has
merged with other peak(s), ISZVEC(IP) = 0 when the
IP-th peak was a small single peak, and ISZVEC(IP) = 1
when the peak was a single major peak. The number of
1’s in ISZVEC is denoted by IHIGH, while the number
of 0’s and 1’s is denoted by INEW.
c1) If at the previous level every peak was single -

INEW = IHELP(ILAB), and no more than one of them
was major peak - IHIGH ≤ 1.
In this case the highest peak, encoded by ICLUm, is

retained, while all the other peaks are eliminated, i.e.:
IIPOINT3(ICLUm) = 1 and IIPOINT3(ICLU) = 0 for all
the remaining small peaks. In Figure 7 the respective
part of the flow chart is highlighted by green.
This strategy is particularly useful at cross sections

where a major peak appears. Frequently, as a first sign
of a major peak, small nearby aggregates appear that
merge at lower levels. This is also our usual strategy for
retaining major peaks, while eliminating the frequently
appearing small noisy peaks.
If LEVEL = 0 the aggregate belonging to the retained

ICLUm-th peak is also copied into the final label matrix,
NSTRF (see part of the flow chart highlighted by cyan).
c2) In all other cases - either not every peak was sin-

gle at the previous level or more than one single peak
was major - there are three options.
c21) Small and previously single peaks are eliminated,

i.e. the value of the respective elements of IIPOINT3
vector change from 1 to 0. This part of the flow chart is
highlighted by red.
c22) Major and previously single peaks become

merged peaks, i.e. the value of the respective elements
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Figure 7 Flow chart of the ANALYZE routine of the Misty Mountain program. ISZM - the largest label of the aggregates in a cross section.
(For simplicity this flowchart assumes that ISZM is also the number of aggregates. In reality ISZM is frequently larger than the number of
aggregates.) ICLU - code number of a peak. ILAB - label of an aggregate. IP - counter of peaks belonging to the same aggregate. CP -
characteristic position of a peak. IIPOINT1(ICLU) - characteristic position of the ICLU-th peak. IIPOINT2(ICLU) - label of the aggregate at the ICLU-
th peak. IIPOINT3(ICLU) = T - the type of the ICLU-th peak: T = 1 - single peak, T = 0- merged small peak, T = -1 - merged major peak. The
values of the IIPOINT2 and IIPOINT3 vector elements are updated at each level. IILEVEL1(ICLU) - level at the top of the ICLU-th peak. IILEVEL2
(ICLU) - level of the saddle where the single ICLU-th peak coalesces with another peak. IHELP(ILAB) - number of characteristic peak positions
falling into an aggregate labeled by ILAB. IHELP(ILAB,IP) - the code number of the peak belonging to the IP-th characteristic peak position in the
aggregate labeled by ILAB. IFINAL(ICLU) = 0 - when ICLU-th peak is eliminated from the analysis. IFINAL(ICLU) = 1 - when the aggregate
belonging to the ICLU-th peak is copied into NSTRF. ISZVEC(IP) = -1 - the IP-th peak has merged with other peak at a higher level. ISZVEC(IP) =
0- the IP-th peak was a small single peak at the previous level. ISZVEC(IP) = 1 - the IP-th peak was a major single peak at the previous level.
INEW - number of single peaks merging with each other at the current level. IHIGH - number of major peaks from the INEW single peaks. Other
notations are at the legends to Figure 6.
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of IIPOINT3 vector change from 1 to -1. The aggregates
belonging to these peaks at the previous cross section
are copied into the final label matrix, NSTRF. The
respective part of the flow chart is highlighted by pink.
c23) Handling of previously merged peaks is shown

and highlighted by purple in the flow chart.

Major and Small Peaks of the Histogram
A histogram contains major peaks such as the four
peaks in Figure 1b and small peaks that are superim-
posed on the major peaks. A small peak is the conse-
quence of the fluctuation of the number of data points
in the respective bins. One can observe this fluctuation
of bin contents by comparing the histograms of repeated
experiments.
The fluctuation of the bin content can be estimated as

follows.
First we point out that the content of each bin follows

binomial distribution. Let us assume that we measure n
cells to create our FCM data set. The probability that
the measured fluorescent intensities of a cell falls into
the ε-th bin is pε. If the measurements on different cells
are statistically independent events the probability that
out of n measurements the result of b measurements
will fall into the ε-th bin and n-b measurements will fall

out of the ε-th bin is: P b n p
n

b
p pb n b( , | ) ( )  =

⎛

⎝
⎜

⎞

⎠
⎟ − −1

This is the binomial distribution. If the mean bin con-
tent, <b> is larger than 10 the binomial distribution can
be approximated by its limit: the Poisson distribution
[45]. The mean of the Poisson distribution can be esti-
mated by the average of the contents in the actual and

nearest-neighbor bins b , while the standard deviation

of the Poisson distribution by the square root of this

average b .

Every time when two or more aggregates merge we
have to decide if the merging aggregates belong to small
and/or major peaks. A peak is considered major if:

L L b bp s p s− > +2 where Lp and Ls are the peak

height and the height of the saddle between the merging
peaks, respectively. On the other hand a peak is consid-

ered small if 0 2< − ≤ +L L b bp s p s . When bp < 10

the Poisson approximation fails and the respective peak
is always considered small.

Simulation of Data
In each simulated data set the data points follow a sum
of regular or distorted-Gaussian distributions. As the
first step of the simulation the means and standard
deviations of the distorted-Gaussians are arbitrarily or

randomly assigned along each coordinate axis. Also two
coordinate axes are randomly selected to each distorted-
Gaussian; directions along which the Gaussian will be
distorted. XIK, the K-th coordinate of a data point
belonging to the I-th distorted-Gaussian is simulated as
follows:

X X SD K K K K

X X SD

IK IK
mean

IK
I I

IK IK
mean

IK

= + ⋅ ≠ ≠

= + ⋅

Δ

Δ

 if  and 

 i

1 2

1 ff 

if 

K K

X X SD s SD K K

I

IK IK
mean

IK IK
I

I

=

= + ⋅ + ⋅ ⋅ =
1

1
2

2
1

Δ Δ[ ]

where Δ and Δ1 is a normal deviates generated by the

Box-Muller method [46], XIK
mean is the K-th coordinate

of the mean of the I-th distorted-Gaussian and SDIK is
the standard deviation of the I-th distorted-Gaussian

along the K-th axis, while K I
1 and K I

2 are the first and

second axes, respectively that randomly selected to the
I-th distorted-Gaussian. Parameter s scales the strength
of the distortion. In the case of our 2D and 10D simula-
tions s = 0.002 and 0.004 have been used. Note that by
using the above procedure one can simulate the sum of
regular Gaussian distributions by setting the distortion
parameter s = 0.

Additional material

Additional file 1: Comparing Misty Mountain clustering with other
state of the art clustering methods.

Additional file 2: Table of cluster characteristics assigned to data in
Figure 3a. (see legends to Table 1 - main text) The ith coordinate of the
center of each cluster was calculated by averaging the ith coordinates of

the C cluster elements: X X j Ci
center

i
j

C
=

=
∑ ( ) /

1
.

Additional file 3: Figure of three-dimensional FCM data. 853,674
U937 cells are stained by three florescence dyes, Pacific Blue, ALEXA-350-
A and APC-Cy7-A. The fluorescence intensities of these dyes are plotted
on the X1, X2 and X3 axes, respectively. By creating equidistant meshes of
the X3 axis from the lowest to the highest intensity the three
dimensional data space is divided into 46 slices. Left panels refer to the
a) 6th, b) 16th, c) 26th and d) 35th slice of the data space. Right panels
show the respective slices from the result of the cluster analysis. In the
four slices all the assigned 89 clusters are represented. Each cluster is
colored by red and marked by a code number. Code number 1 refers to
the cluster containing the largest number of data points, number 2 to
the second largest, etc. Virtually disconnected clusters with similar code
number are in reality connected at a nearby slice. Table in Additional File
4 lists the characteristics of the resulting clusters. The optimal histogram
contained 46 × 46 × 46 bins, and the cluster analysis required 11.2
seconds CPU time.

Additional file 4: Table of cluster characteristics assigned to data in
Additional File 3. (see legends to Table in Additional File 2).

Additional file 5: Figures of simulation results on Misty Mountain
clustering time complexity. Misty Mountain clustering has been
performed on a series of simulated datasets. a) The run time of each
analysis (dot) is plotted against the number of respective data points.
Red dots: the datasets simulate the same 4 Gaussians in 2D (as in Figure
1a) but contain different number of points. Green dots: the datasets
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simulate the same 7 Gaussians in 4D but contain different number of
points. Blue dots: the datasets simulate the same 5 Gaussians in 5D but
contain different number of points. At a fixed bin number the run time
increases linearly with the number of data points. b) The run time is
plotted against the number of simulated Gaussians. In each of these
simulations the number of data points were kept the same: 100,000,
while the dimension of the data space was: 2D (red curve), 3D (blue
curve), 5D (green curve).

Additional file 6: Implementation, instruction and data files.

Additional file 7: Implementation, instruction and data files.

Additional file 8: Implementation, instruction and data files.

Additional file 9: Table of the parameters of 8 distorted-Gaussian
distributions simulated in 10D. The sum of 8 distorted-Gaussian
distributions was simulated in 10D space with distortion parameter s =
0.004 (see Methods). The center coordinates, Xi

mean and the standard
deviations, SDi of each distorted-Gaussian were randomly generated
within (0,1000) and (0,200) intervals, respectively (see Methods).

Additional file 10: Table of center coordinates of clusters assigned
within the 5D subspace of the 10D simulated data. The Misty
Mountain algorithm assigned 8 clusters to the 10D simulated data when
the data were projected into a 5D subspace. The analyzed 5D histogram
of the projected data contained 85 bins. The cluster elements were back-
projected into the 10D data space. The clusters contain 72.7% of all the
data points. The computation time was 9.4 sec. The Table lists the
coordinates of each cluster center. The ith coordinate of the center of
each cluster was calculated by averaging the ith coordinates of the C

cluster elements: X X j Ci
center

i
j

C
=

=
∑ ( ) /

1
. 8 out of the 8 cluster centers

coincide with the centers of the 8 simulated distorted-Gaussians (listed in
Table in Additional File 9).
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