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Abstract

Background: Currently, a number of bioinformatics methods are available to generate appropriate lists of genes
from a microarray experiment. While these lists represent an accurate primary analysis of the data, fewer options
exist to contextualise those lists. The development and validation of such methods is crucial to the wider
application of microarray technology in the clinical setting. Two key challenges in clinical bioinformatics involve
appropriate statistical modelling of dynamic transcriptomic changes, and extraction of clinically relevant meaning
from very large datasets.

Results: Here, we apply an approach to gene set enrichment analysis that allows for detection of bi-directional
enrichment within a gene set. Furthermore, we apply canonical correlation analysis and Fisher's exact test, using
plasma marker data with known clinical relevance to aid identification of the most important gene and pathway
changes in our transcriptomic dataset. After a 28-day dietary intervention with high-CLA beef, a range of plasma
markers indicated a marked improvement in the metabolic health of genetically obese mice. Tissue transcriptomic
profiles indicated that the effects were most dramatic in liver (1270 genes significantly changed; p < 0.05), followed
by muscle (601 genes) and adipose (16 genes). Results from modified GSEA showed that the high-CLA beef diet
affected diverse biological processes across the three tissues, and that the majority of pathway changes reached
significance only with the bi-directional test. Combining the liver tissue microarray results with plasma marker data
revealed 110 CLA-sensitive genes showing strong canonical correlation with one or more plasma markers of
metabolic health, and 9 significantly overrepresented pathways among this set; each of these pathways was also
significantly changed by the high-CLA diet. Closer inspection of two of these pathways - selenoamino acid
metabolism and steroid biosynthesis - illustrated clear diet-sensitive changes in constituent genes, as well as strong
correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary
effect.

Conclusion: Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in
biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a
traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical
correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest
correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and
steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA
beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based
biomarkers of disease.
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Background

The metabolic syndrome (MetS) describes a combina-
tion of metabolic abnormalities that increase risk of dia-
betes and cardiovascular disease. Although diet is not
implicated as a risk factor, the onset of the MetS is at
least partly triggered by energy dense, high-fat diets that
promote obesity and insulin resistance [1]. Nutritional
genomics strives to understand molecular-level meta-
bolic effects of dietary components, and to develop sen-
sitive tools to analyze these effects. This has proven to
be a formidable challenge, as many nutrients have ubi-
quitous metabolic effects that are both subtle and com-
plex [2]. In the case of MetS, this is further complicated
by the involvement of multiple organs, including adipose
tissue, liver and skeletal muscle.

Traditional metabolic biomarkers, such as plasma glu-
cose and triglycerides, have well-established associations
with health [3-5], but do not reflect the vast complexity of
inter-organ metabolic processes. High-throughput ‘omics’
technologies address this limitation by assessing multiple
cellular processes simultaneously, although this magnitude
of data can become limiting in attempts to summarize
clinical relevance of an ‘omic profile. Combined analysis of
plasma markers and high-throughput data can provide a
richer source of information relevant to metabolic health.
The approach used here - canonical correlation analysis
(CCA) - reveals global correlation patterns between gene
expression and plasma markers. In contrast to typical
ranking based on fold-change or statistical evidence of dif-
ferential expression, these correlation patterns can be used
to rank the ‘importance’ of diet-sensitive genes based on
the degree of correlation with diagnostic markers.

Another novel approach used here is the identification
of bi-directional enrichment in biochemical pathways - a
concept that was developed by Saxena et al. [6] and
implemented by Dinu et al. [7] but is still not routinely
used, particularly in clinical studies. The generic proce-
dure in gene set enrichment analysis (GSEA) involves
defining gene sets (most commonly, KEGG biochemical
pathways), and identifying coordinated regulation of
these sets. However, simple up- or down-regulation of
gene sets does not always capture the subtlety of path-
way biology. For example, the glycolysis/gluconeogenesis
pathway involves both glucose catabolism and anabo-
lism. Given a biological perturbation, such as a dietary
treatment, these two processes may be regulated in
opposing directions. In such cases, whole-pathway sin-
gle-direction regulation would not adequately reflect
observed patterns in expression changes. The modifica-
tion to the GSEA algorithm presented here provides a
computational adjustment that allows for detection of
these bi-directional changes, providing more precise
understanding of transcriptome regulation.
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As a proof of principal, this study focused on cis-9,
trans-11 conjugated linoleic acid (CLA), a fatty acid iso-
mer with anti-diabetic and anti-inflammatory properties
[8,9]. Given the complex multi-tissue basis of the patho-
physiology of MetS, our aim was to determine the meta-
bolic and inter-organ transcriptomic signature of the
three insulin-sensitive tissues (adipose, skeletal muscle
and liver) of obese and diabetic mice fed a diet high in
beef-derived cis-9, trans-11 CLA.

Methods

Animal experimentation

The animal feeding experiment was conducted at the
BioResources Unit, Trinity College Dublin (TCD) Ireland
according to European Union (EU) animal research wel-
fare protocol, with approval for experimentation granted
by the Department of Health and Children in Ireland
(License number B100/3041). Fourteen, 4-week-old male,
ob/ob (C57BL/6]) mice were purchased from Harlan, UK.
The mice were acclimatised for 7 days during which time
they received a purified control diet, before being
assigned to one of two treatment groups for a 28-day
period. During the intervention period, the animals were
exposed to 12 hrs light/12 hrs dark cycles, maintained at
a constant temperature of 22°C.

Dietary composition and preparation of the animal feeds

Diets were produced by Special Diets Service, Essex, UK
and were received as 1 kg vacuum packed, heat sealed
plastic bags. Low-CLA and high-CLA beef (0.53 and
2.65 w/w% of ¢9,t11 CLA, respectively) were provided
by Teagasc (Grange Research Centre, Dunsany, Co.
Meath). Test diet blends were prepared by mixing the
beef component at a 36% inclusion rate to equal por-
tions of wheat feed and maize (corn) feed. Final feeds
were prepared by mixing 100 ml warm water with 100 g
test diet blend. Dietary food intake was measured daily
and the animals received freshly prepared food each day.

Blood sample and tissue collection and handling protocol
The mice were sacrificed at day 28 of the dietary inter-
vention period. Food was removed from the cages at
6:00 pm and the animals were sacrificed the following
morning between 8:00 am - 10:00 am, in the fasted
state. The animals were euthanized using Carbon Diox-
ide (CO,) and cardiac puncture was performed to draw
blood samples. Blood was transferred to a cooled
sodium citrate blood vacutainer tube (BD Vacutainer,
Dublin, Ireland) and centrifuged at 1500 rpm for 15
mins at 4°C, plasma was harvested, aliquoted and stored
(-70°C). Tissue samples for gene expression analysis
were harvested, immediately immersed in 0.5 ml RNA-
Later (Ambion, AMS Techonology) and stored (-70°C).
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RNA was later extracted using a Qiagen RNeasy extraction
kit, and outsourced to ServiceXS http://www.servicexs.
com for hybridization to Affymetrix arrays, custom
designed by the European Nutrigenomics Organization
containing 15313 probesets. This platform is designated
‘nugomm1a520177’, and we used the ‘entrezg’ version
12.1.0 annotation from the MBNI custom cdf database
http://brainarray.mbni.med.umich.edu/Brainarray/Data-
base/CustomCDF/genomic_curated_CDF.asp, which
reflects the latest remapping of Affymetrix probes based
on current data in the NCBI database [10]. The complete
array data are available at the GEO database under acces-
sion GSE23337.

Determination & statistical analysis of plasma markers of
metabolic syndrome

Plasma glucose concentrations were analysed using an
endpoint enzymatic glucose oxidase, peroxidase, chro-
mogen sequence, colorimetric assay (Biomérieux,
France). A multiplex ELISA assay kit manufactured by
Linco Research (Missouri, USA) was used to simulta-
neously quantify insulin, TNFa, MCP-1, resistin, and
PAI-1 concentrations from mouse serum samples, while
IL-6 and adiponectin were measured using ELISA kits
from BioSources International (California, USA) and
R&D Systems (Minnesota, USA), respectively. Plasma tri-
glycerides (TAG) and cholesterol levels were measured
using enzymatic-based assays from Randox Laboratories
(Co. Antrim, UK), while plasma non-esterified fatty acids
(NEFA) were quantified using a Randox NEFA kit. Insu-
lin resistance (as defined by the homeostasis model
assessment insulin resistance index; HOMA ) was calcu-
lated as [fasting glucose (mg/dl) multiplied by fasting
insulin (pU/ml)] divided by 22.5 [11]. Significance of
plasma marker level variation between groups was deter-
mined using ANOVA in conjunction with Tukey’s honest
significant differences test, which corrects for experi-
ment-wise error rate.

Processing of microarray data, and single gene statistical
analysis

Raw microarray data were first assessed for quality using
a set of standard QC tests, including array intensity dis-
tribution, positive and negative border element distribu-
tion, GAPDH and f3-actin 3":5’ ratios, centre of intensity
and array-array correlation check. All QC tests were
implemented in the R programming language [12],
using the affyQCReport library [13]. After quality assess-
ment, all intensity values were background corrected
and normalized (within each tissue group) using the
GCRMA-slow method (which uses a slower and more
exact optimization algorithm) [14]. Probesets were fil-
tered to remove genes with low or null expression,
using a filter wherein probesets showing an intensity
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score less than 3 on more than 50% of the arrays were
removed. Filtered adipose, liver and skeletal muscle
datasets comprised 8575, 7781 and 8093 probesets,
respectively. Single gene analysis was carried out using
the LIMMA library [15], wherein linear models were
fitted to each probeset on the array, to determine statis-
tical significance of the effect of the high-CLA beef diet.
Empirical Bayes statistics were generated using the
eBayes() function, and resultant p-values were adjusted
for multiple testing, using the Benjamini & Hochberg
method [16].

Gene set enrichment analysis

A script in R was written to carry out gene set enrich-
ment analysis on each tissue dataset, adapting the statis-
tical code provided in the GSEAlm library in R
(Additional file 1) [17]. In addition to the typical single-
direction enrichment, an additional test was included
where absolute values of t-statistics were used, to detect
bi-directional enrichment. T-statistics were extracted
from linear models, which were fitted to each gene in a
given gene set (i.e., KEGG pathway) - using ‘diet group’
as the predictor variable and ‘expression level as the
response. These t-statistics (absolute values of t-statistics
for bi-directional enrichment analysis) were then
summed, and normalized for the number of genes in
the gene set. Diet group labels were then randomized,
as in a typical permutation test, and gene-set t-statistics
were re-calculated using these randomized groupings.
This permutation step was repeated 1000 times, and
p-values were calculated by determining the proportion
of permutation t-statistics that were closer to zero than
the ‘true’ t-statistic. For instance, a p-value of 0.05
would be recorded if the original t-statistic were greater
than more than 95% of the permutation t-statistics.
These p-values were corrected using the Benjamini &
Hochberg method [16]. R scripts were written to pro-
duce summary plots of the results, and also to import
KEGG pathway data, integrate microarray results, and
export the annotated pathway to Cytoscape http://www.
cytoscape.org for visualisation.

Regularized canonical correlation analysis

To determine canonical correlations between metabolic
and transcriptomic data, gene expression and metabolic
marker values were centered to 0 and scaled to have var-
iance 1 (i.e, z-score normalized) within each diet group,
to reveal the null correlations between gene expression
and metabolic markers, irrespective of dietary treatment.
To make CCA results more easily comparable to GSEA
results, we used the subset of genes in our expression
dataset with annotation to a KEGG pathway. The ‘mixO-
mics’ library of functions in R was used to carry out the
analysis [18]. Specifically, the rcc function was used to
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define the canonical correlations and the canonical vari-
ates, estim.regul for estimation of regularization para-
meters and the network function to produce the initial
network of interactions. An additional script was written
to output the R network to Cytoscape for visualization.
Taking the group of genes with a correlation score of at
least .65 (using ‘threshold’ argument of the network func-
tion in the mixOmics library; for further information on
this association measure see [19]) with at least one
plasma marker, Fisher’s exact test was performed to
define pathways that were significantly overrepresented
among MetS-associated genes [20].

Results

High-CLA beef diet improved insulin sensitivity,
lipoprotein profile and inflammatory status

Feeding a diet enriched with natural beef derived cis-9,
trans-11-CLA diet significantly reduced fasting plasma
glucose (p = 5.6e-06) concentrations compared to control
linoleic acid (LA)-enriched diet (Diet A) (Figure 1). While
plasma insulin concentrations were not significantly dif-
ferent between diets, insulin resistance (HOMA ) was
significantly improved after the high-CLA beef diet, com-
pared to the control diet (p = 5.1e-06).

There was a marked improvement in plasma TAG and
NEFA concentrations following the high-CLA beef diet
(Diet B), compared to the control diet (»p = 0.023 and
5.56e-05). In contrast, total serum cholesterol was signif-
icantly increased in the high-CLA beef diet. Total serum
adiponectin, an adipokine that promotes metabolic
health, was significantly increased after feeding the high-
CLA beef diet (p = 8.4e-05), while serum IL-6 concen-
trations were significantly reduced by the high-CLA beef
diet, compared with the control group (p = 0.008).
Counterintuitively, serum resistin concentrations were
significantly higher following the high-CLA diet (p =
0.019). Plasma TNFa, PAI-1 and MCP-1 were not sig-
nificantly different between the diets (data not shown).
Overall, these plasma marker results suggest that the
high-CLA beef diet induced changes in glucose homeos-
tasis, lipid metabolism and systemic inflammation reflec-
tive of an improvement in metabolic health.

Single-gene transcriptomic analysis reveals a spectrum of
regulatory responses across insulin sensitive tissues

Figure 2 summarizes the results of single-gene analysis
in adipose, skeletal muscle and liver tissue from mice
fed the control diet (Diet A) or high-CLA beef diet
(Diet B). The strongest effects are clearly manifest in
liver tissue, with expression changes observed in 1270
genes (p < 0.05). Of these, 495 were up-regulated and
775 down-regulated, in response to the high-CLA diet.
Skeletal muscle displayed more modest changes, with
156 genes up-regulated and 445 down-regulated (601
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total). In adipose tissue, only 16 genes were found to be
significantly regulated by diet - 2 up-regulated and 14
down-regulated. Overall, there was very little global
overlap in observed transcriptomic changes; only
6 genes were significantly regulated by diet across all tis-
sues. This finding was somewhat surprising; despite the
divergent biological roles of these tissues, all three tis-
sues share core functions associated with nutrient hand-
ling. Such tissue-specific effects of the high-CLA diet
highlight the value of multi-tissue perspective in nutri-
tional intervention studies of MetS.

GSEA indicates diverse pathway changes in response to
CLA-rich beef

GSEA results showed 166 significantly changed path-
ways in liver, 115 in skeletal muscle, and 23 in adipose
tissue (Additional file 2; Additional file 3; Figure 3).
Altered pathways - particularly in liver and muscle -
spanned a range of biological processes, including meta-
bolism, signalling and immune response. Figure 4 shows
the top 20 significantly regulated pathways (ordered by
proportion of constituent genes significantly regulated)
in adipose, liver and muscle. In adipose tissue, top regu-
lated pathways are primarily involved in cell signalling,
and metabolism of energy, fat, amino acids, xenobiotics,
secondary metabolites and vitamins. Top pathway
changes in liver are in the categories of cell signalling,
immune response, translation, and metabolism of carbo-
hydrates, energy, amino acids, hormones, glycans and
xenobiotics. Muscle tissue pathway changes showed
strongest regulation of signalling pathways, cancer, cell
transport, and metabolism of nucleotides, amino acids,
energy and vitamins.

GSEA indicates that nearly half of the expression changes
in KEGG pathways are bi-directional

Figure 3 summarizes the results from GSEA in terms of
the total number of significantly regulated pathways in
each tissue, as well as the fraction that were significant
only in the bi-directional test. In this figure, ‘up-regulated’
and ‘down-regulated’ pathways represent results obtained
with a typical single-direction GSEA. Pathways in the sec-
ond ‘bi-directional enrichment only’ column were signifi-
cantly enriched using the bi-directional test, but not with
the traditional GSEA method. This figure reveals consider-
able prevalence of this type of pathway regulation, and that
potentially important biological results may be missed
with single-direction enrichment tests.

Regularized canonical correlation analysis identifies diet-
sensitive genes and pathways showing strong association
with metabolic health

Canonical correlation analysis (CCA) is a multivariate
statistical technique, used to infer correlation patterns
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Figure 1 Changes in plasma markers of MetS, in response to dietary fat modification: A = control LA-enriched diet; B = high-c9,t11
CLA beef enriched diet. Error bars represent standard error of the mean. Numbers above plots indicate statistically distinct groups (i.e, different
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between two sets of variables measured on the same
observations [21]. As standard CCA algorithms cannot
be directly applied to high-throughput datasets (due to
multicollinearity in very large correlation matrices),
modified CCA algorithms - such as sparse [22] or regu-
larized [23] CCA - have been developed to specifically
deal with high dimensional datasets. Such regularized
forms of CCA have been applied in joint analyses of
SNP/transcriptomic [22,24] and transcriptomic/proteo-
mic [25] datasets to reveal novel disease biomarkers and
clarify inter-tissue molecular interactions.

As the liver gene expression changes were the strongest
across the three tissues, Figure 5 shows the results of reg-
ularized CCA between plasma markers and liver gene

expression levels. To highlight only the strongest marker-
gene associations, genes in this figure are the subset that
display a correlation score (i.e., using the ‘threshold” argu-
ment of the network function in the mixOmics library)
greater than 0.65 with at least one of the plasma markers
of metabolic health, and showed significant diet-sensitive
expression in the single gene analysis. Width of connect-
ing lines in this diagram represents the magnitude of
multidimensional plasma marker-gene associations (cal-
culated using the network function in the mixOmics
library in R). The number of dimensions used in the cal-
culation is chosen as the number that adequately
describes associations in the dataset (as in principal com-
ponent analysis; in this case, #n dimensions = 6).
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Figure 2 Summary of single-gene changes in expression in
liver, muscle and adipose tissue, in response to feeding obese,
diabetic ob/ob mice a CLA-enriched beef diet that improved
metabolic markers associated with diabetes.
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showing stronger correlations with plasma markers than
expected by chance (Table 1). Each of these pathways
was also significantly changed in liver by the CLA diet
(Table 2). Figures 6 and 7 illustrate the correlations
between gene expression, diet and plasma markers of
metabolic syndrome in the context of the selenoamino
acid metabolism and steroid biosynthesis pathways. In
each pathway, the three highest gene-plasma marker
correlations are illustrated in scatterplots (Figure 6 and
7A-C).

Discussion

Bi-directional enrichment

As the field of transcriptomic methodology is still
under development, it is important to recognize short-
falls in current methodology, and make improvements
where possible. One such improvement presented here
is in the identification of bi-directional enrichment in
biochemical pathways. Although GSEA has added sub-
stantially to the interpretability of transcriptomic data,
commonly used repositories for defining gene sets -
such as the KEGG database - were not designed for
such an application. As a result, in many KEGG path-
ways, single-direction enrichment is not biologically
relevant or even feasible. A clear example of this con-
cept is seen in signalling pathways, which often contain
negative transcription regulation interactions or paral-
lel sub-pathways under opposing regulatory control.
Such cases of de facto bi-directional regulation may
represent a substantial fraction of transcriptomic regu-
latory activities. Accordingly, our results show that
among all significantly regulated pathways, nearly half
of the observed changes were only significant with bi-
directional, and not single-direction enrichment tests
(Figure 3).

The prevalence of bi-directional regulation is further
illustrated in Figure 4, wherein nearly half of observed
changes in the top 20 regulated pathways reached signif-
icance with the bi-directional test only. Further, these
results illustrate that - as expected - bi-directionally
regulated pathways typically contain an even proportion
of up-regulated and down-regulated genes. These find-
ings suggest that bi-directional regulation contributes
substantially to global pathway changes and that impor-
tant pathway effects may be missed in using a traditional
approach to GSEA.

Canonical correlation analysis

A typical single-gene analysis of gene expression data
produces a list of genes that are significantly regulated
by a given treatment condition. This list can contain
hundreds, or thousands of genes, thereby necessitating a
criterion for ranking the relative importance of each
gene in the list. Common ranking criteria, including
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indicated in the legend; the width of connecting lines corresponds to the strength of correlation (dashed lines = negative correlations; solid
lines = positive).

fold-change or p-value have limited inherent biological These CCA results - in conjunction with Fisher’s exact
relevance. There is no reason to assume that greater test and GSEA results for CLA-sensitive pathways -
fold change indicates greater biological importance reveal that selenoamino acid metabolism is correlated
perse. Rather, these criteria are indicative of the reliabil- with the CLA dietary intervention as well as with
ity and reproducibility of the observed differences. The plasma markers of metabolic syndrome (Figure 6). This
plasma markers measured in the present study, on the pathway was significantly bi-directionally regulated by
other hand, have clear biological and clinical relevance  the high-CLA beef diet, but was not significantly regu-
[26,4]. Canonical correlation analysis was applied here lated according to the single-direction test. The selenoa-
to hepatic expression data to assess correlation patterns mino acid metabolism pathway encompasses reactions
between gene expression and plasma markers of MetS. involved in metabolism of the trace mineral selenium
Results from this analysis highlight a number of CLA- and selenium-bound amino acids, such as selenohomo-
sensitive genes, such as f10, casp8 and taar7b, showing cysteine and selenomethionine. Selenoamino acids are
strong correlations with multiple phenotypic markers of  incorporated into selenoproteins (e.g. glutathione peroxi-
metabolic health (Figure 5). dase and thioredoxin) that have strong associations with

Table 1 Fisher’s exact test for statistically overrepresented pathways among CCA results

Pathway Odds Ratio Expected Count Actual Count Pathway Size p value
Selenoamino acid metabolism 3.240 3.694 8 17 0018
Neuroactive ligand-receptor interaction 2.265 7.388 13 34 0.020
Histidine metabolism 2915 3911 8 18 0.026
Arginine and proline metabolism 2.363 6.084 1 28 0.026
Fc epsilon Rl signaling pathway 2192 6.953 12 32 0.030
Pancreatic cancer 1.961 9.343 15 43 0.032
Glycerolipid metabolism 2523 4.780 9 22 0.033
Steroid biosynthesis 3.630 2173 5 10 0.045
Heparan sulfate biosynthesis 3630 2173 5 10 0.045

Expected count represents the expected number of MetS associated genes in each pathway based on the overall number of MetS associated genes in the
dataset, total number of genes tested, and size of the pathway.
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Table 2 Subset of results from high-CLA beef diet GSEA (liver tissue) for pathways found to be related to MetS

Pathway bi-directional up-regulation down-regulation

(p value) (p value) (p value)
Selenoamino acid metabolism < le-8 0.956 0499
Neuroactive ligand-receptor interaction < le-8 0.592 0.892
Histidine metabolism < le-8 1.000 0331
Arginine and proline metabolism < le-8 1.000 < le8
Fc epsilon Rl signaling pathway 0.003 1.000 0.003
Pancreatic cancer 0.003 1.000 0.119
Glycerolipid metabolism 0.003 1.000 0018
Steroid biosynthesis < le-8 1.000 < le-8
Heparan sulfate biosynthesis 0.062 1.000 0.006

health status; deficiency in the liver has been linked to
liver cirrhosis and hepatomegaly in rats [27], and
impaired immune response in mice [28]. Selenium is
also well known for its anti-oxidant activities, and as
such has been extensively studied in relation to cancer
progression [reviewed by [29] and [30]]. Effects of sele-
nium and selenoamino acids on cardiovascular health
have also been reported; in rats, selenium deficient diets
have been shown to increase hepatic triglyceride and
VLDL secretion and fatty acid oxidation [31], and
increase plasma cholesterol levels [32]. More recently,

Sengupta et al. showed that targeted deletion of hepatic
selenocysteine tRNA in mice resulted in elevated plasma
cholesterol and increased expression of genes involved
in cholesterol biosynthesis [33]. Future work should aim
to assess variability in selenium content high-CLA beef,
to determine if the observed alteration in selenium
metabolism is a direct effect of CLA isomers or if it is
due to variable selenium content. Although micro-
nutrient data were not available in the present study,
parallel proteomics work in our research group showed
a significant reduction in hepatic selenium-binding
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protein 1 in mice fed a diet supplemented with pure ¢9,
t11 CLA isomers (p = 0.013; unpublished data).

Our combined GSEA and CCA results also indicated
significant correlation between the high-CLA diet,
plasma markers of MetS, and the steroid biosynthesis
pathway (Figure 7). This pathway has well-documented
association with hepatic function and metabolic health;
Buqué et al recently reported significant over-
expression of steroid biosynthesis genes in fatty liver of
obese Zucker rats [34], and Woo et al., demonstrated
that plasma hyperhomocysteinemia (a cardiovascular
risk factor) induces hepatic cholesterol biosynthesis and
subsequent lipid accumulation [35]. Interestingly, this
study by Woo et al. also showed significant elevation of
plasma cholesterol in response to induction of hepatic
cholesterol biosynthesis, whereas the present study
shows clear reduction of cholesterol biosynthetic gene
expression in conjunction with elevated plasma choles-
terol levels. This observed pattern could be explained by
a feedback system between cholesterol biosynthesis and
plasma cholesterol, as it has previously been shown that
sterol starvation in HepG2 cells induces expression of
tm7sf2 (a gene that encodes an early step enzyme in
cholesterol biosynthesis) [36], and the finding that

tm7sf2 expression is controlled by cellular sterol levels
through the activity of the Sterol-responsive element-
binding protein 2 (SREBP2) transcription factor [37].
The particularly strong positive correlation observed
here between tm7sf2 expression and plasma NEFA levels
(r = 0.94; even stronger than observed correlation
between tm7sf2 and plasma cholesterol: r = -0.71) high-
lights this gene as a candidate for directed studies of
high-CLA beef, hepatic function and plasma lipid
profile.

Conclusions

A key challenge in transcriptomics involves drawing
simple biological conclusions from complex expression
patterns; often, a microarray analysis focuses on a small
subset of genes on the array, excluding hundreds or
thousands for the sake of analytical simplicity. Results
such as those presented here illustrate how CCA pro-
vides a means to define a clinically relevant objective
criterion (i.e., plasma markers) by which to rank the
relative importance of observed expression changes, and
can be applied to provide biological context for large
GSEA datasets. In using these methods jointly, we have
highlighted pathways - including selenoamino acid
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metabolism and steroid biosynthesis - showing particu-
larly strong relationships with both dietary treatment
and metabolic health. As the clinical importance of these
pathways would have been difficult to uncover without
the aid of CCA, we propose that this methodology is
useful in studies seeking to define treatment-
sensitive diagnostic and prognostic biomarkers of disease.

Additional material

Additional file 1: bi-directional GSEA script. R script used to carry out
bi-directional gene set enrichment analysis. Adapted from gsealmPerm
function in GSEAIm package [17].

Additional file 2: Figure S1: Full GSEA results for high-CLA-diet
effects in liver, muscle and adipose tissue. Heatmap showing bi-
directional GSEA results for KEGG pathways in liver, muscle and adipose
tissue.

Additional file 3: Figure S1 legend. Descriptive legend for figure S1.
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