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Abstract

Background: Large microarray datasets have enabled gene regulation to be studied through coexpression analysis.
While numerous methods have been developed for identifying differentially expressed genes between two
conditions, the field of differential coexpression analysis is still relatively new. More specifically, there is so far no
sensitive and untargeted method to identify gene modules (also known as gene sets or clusters) that are
differentially coexpressed between two conditions. Here, sensitive and untargeted means that the method should
be able to construct de novo modules by grouping genes based on shared, but subtle, differential correlation
patterns.

Results: We present DiffCoEx, a novel method for identifying correlation pattern changes, which builds on the
commonly used Weighted Gene Coexpression Network Analysis (WGCNA) framework for coexpression analysis. We
demonstrate its usefulness by identifying biologically relevant, differentially coexpressed modules in a rat cancer
dataset.

Conclusions: DiffCoEx is a simple and sensitive method to identify gene coexpression differences between
multiple conditions.

Background
There are two major classes of approach to the analysis
of gene expression data collected in microarray studies:
either one can identify genes that are differentially
expressed in different conditions, or the patterns of cor-
related gene expression (coexpression). Coexpression
analysis identifies sets of genes that are expressed in a
coordinated fashion, i.e. respond in a similar fashion to
the controlled or uncontrolled perturbation present in
the experiment. Such coexpression is considered as evi-
dence for possible co-regulation and for membership to
common biological processes under the principle of
guilt-by-association [1]. When comparing the transcrip-
tome between two conditions, it is a natural step to
identify differential coexpression to get an even more
informative picture of the dynamic changes in the gene
regulatory networks. Changes in the differential coex-
pression structure of the genes are, for example, a group
of genes strongly correlated in one condition but not in

the other, or one module correlating to another module
in one condition, whereas they are no longer correlated
in the other condition. Differential coexpression may
indicate rewiring of transcriptional networks in response
to disease or adaptation to different environments.
Differential coexpression has been reported in diverse

organisms and across various conditions. For example,
Fuller et al. [2] reported a differentially coexpressed
module in obese mice compared to lean mice; Van Nas
et al. [3] found gender-specific coexpression modules;
Oldham et al. [4] identified gene modules that were dif-
ferentially coexpressed between humans and chimpan-
zees; and Southworth et al. [5] found that aging in mice
was associated with a general decrease in coexpression.
Differential coexpression patterns associated with dis-
eases have been an important focus of research, see
review by De la Fuente et al. [6].
Differential coexpression methods can be divided into

two categories that serve distinct purposes: on the one
hand, targeted approaches study gene modules that are
defined a priori, while, on the other hand, untargeted
approaches aim at grouping genes into modules on the
basis of their differential coexpression status.
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A suitable untargeted method for differential coex-
pression analysis should satisfy the following criteria:
(i) Sensitively detect groups of genes in which the cor-

relation of gene pairs within the group is significantly
different between conditions.
(ii) Sensitively detect changes in correlations between

two groups of genes even when the within-group corre-
lation is conserved across conditions.
(iii) Allow for simple comparison of more than two

conditions.
Criteria (i) and (ii) are illustrated in Figure 1, which

schematically depicts biological scenarios that can give
rise to differential coexpression.
Multiple methods have been proposed to identify such

large-scale correlation patterns [5,7-12]. However, this
early work provided only partial solutions to the

problem of differential coexpression since, with one
recent exception [5], none of the proposed methods
were entirely untargeted. Instead, existing methods can
be divided into two categories: targeted and “semi-tar-
geted” approaches. In targeted approaches, pre-defined
modules are surveyed for correlation changes between
two conditions. For example, Choi et al. [9] proposed a
method that focuses on the analysis of modules based
on known gene annotations, such as GO categories, and
tests the significance of the coexpression changes using
a statistical measure known as dispersion. This has the
advantage of not requiring the gene sets to be highly
correlated in one of the two conditions. However, this
method is targeted in that it relies on the study of
known functional gene sets and is not able to identify
novel, non-annotated modules or modules that would

Figure 1 Illustration of differential coexpression scenarios. Panel A: A gene network is in a coexpressed state in condition 1 as shown by
the red background. In condition 2 an important regulator of that network is now inactive and the module is no longer coexpressed. This
scenario is an example of the differential coexpression type described by criterion (i). Panel B: Two pathways are coordinated in condition 1 via
an important hub gene (shown in blue) whose inactivity in condition 2 means the two pathways are no longer coexpressed. This exemplifies
the module-to-module differential coexpression described by criterion (ii).
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only partially match annotated categories. “Semi-tar-
geted” approaches use classical coexpression methods in
one of the conditions to define modules and study
whether these modules are also coexpressed in the sec-
ond condition. DCA (differential clustering analysis) [10]
is an example of a method using one of the two condi-
tions as reference, meaning the clusters under consid-
eration are obtained from one condition and then
studied in the other condition. In order to avoid bias
towards one of the conditions, Ihmels et al. suggested
doing a reciprocal analysis, switching the reference and
target conditions, while Southworth et al. used a third
dataset as reference [5]. A drawback of such “semi-tar-
geted” methods is that the analysis will only focus on
groups of genes that emerge as clusters in at least one
of the conditions, and will therefore potentially miss
more subtle cases. As an example, a weak but significant
condition-dependent correlation structure between a
group of genes that otherwise belong to distinct,
strongly coexpressed and conserved clusters would not
be detected by this approach. A first attempt at an
untargeted approach was introduced by Southworth
et al. [5], who proposed applying hierarchical clustering
using the difference in pairwise correlations between
both conditions as a similarity metric for two genes.
This approach is therefore suited to identifying groups
in which the within-group correlation changes (first cri-
terion), but it cannot be applied to the detection of
module-to-module correlation differences (second criter-
ion). The field of differential coexpression analysis
would therefore benefit from a new, truly untargeted
and sensitive method for identifying differentially corre-
lated modules that would satisfy all three criteria.
Here we present a solution to this problem in the

form of the DiffCoEx approach for untargeted differen-
tial coexpression analysis: a method which applies the
powerful tools of Weighted Gene Coexpression Network
Analysis (WGCNA) to differential network analysis. We
first describe the five steps involved in DiffCoEx and
then, to illustrate the method’s effectiveness, we present
the results of an analysis performed on a publicly avail-
able dataset generated by Stemmer et al. [13].

Algorithm
Our method builds on WGCNA [14,15], which is a fra-
mework for coexpression analysis. Identification of coex-
pression modules with WGCNA follows three steps: first
an adjacency matrix is defined between all the genes
under consideration based on pair-wise correlations.
Then the generalized topological overlap measure [16] is
computed from the adjacency matrix and converted into
a dissimilarity measure. Finally, using this dissimilarity
measure, hierarchical clustering is applied, followed by

tree cutting using either a static or a dynamic height cut.
The resulting clusters form modules of genes in which all
members are strongly inter-correlated.
The principle of DiffCoEx is to apply WGCNA to an

adjacency matrix representing the correlation changes
between conditions. DiffCoEx clusters genes using a
novel dissimilarity measure computed from the topolo-
gical overlap [16] of the correlation changes between
conditions. Intuitively, the method groups two genes
together when their correlations to the same sets of
genes change between the different conditions. The
complete process of our differential coexpression analy-
sis comprises five steps, described below. The notation
X designates a square matrix with the dimension of the
number of genes considered and xij is used to define the
element of X at row i and column j.

Step 1
Build adjacency matrix C[k] within each condition k as
the correlation for all pair of genes (i,j):

C c gene genek
ij
k

i j
[ ] [ ]: cor( , )=

In this step, different correlation measures can be
used, such as the Pearson or Spearman coefficient.

Step 2
Compute matrix of adjacency difference:

D d c c c cij ij ij ij ij: sign( )*( ) sign( )*( )[ ] [ ] [ ] [ ]= −
⎛

⎝
⎜

⎞

⎠

1
2

1 1 2 2 2 2 ⎟⎟


In this matrix, high values of dij indicate that the
coexpression status of genei and genej changes signifi-
cantly between the two conditions. The correlation
change is quantified as the difference between signed
squared correlation coefficients so that changes in corre-
lation which are identical in terms of explained variance
(r2) are given the same weight. This adjacency matrix is
defined such that it only takes values between 0 and 1.
The soft threshold parameter b is taken as a positive
integer and is used to transform the correlation values
so that the weight of large correlation differences is
emphasized compared to lower, less meaningful, differ-
ences. b should be regarded as a tuning parameter, and
in practice it is advisable to try different values of b. In
WGCNA, it is recommended to choose b so that the
resulting coexpression network follows an approximate
scale-free topology [14]. However the “scale-free” topol-
ogy nature of biological networks has been disputed
[17], and another way is to consider the soft threshold
parameter as a stringency parameter: using high values
of b means putting less emphasis on smaller changes in
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correlation, and therefore being more statistically strin-
gent. Accordingly, since larger sample sizes come with
higher statistical significance of small correlation
changes, smaller values of the soft threshold can be
used as the sample size increases. In practice, we view
the soft threshold parameter as a tuning parameter, and
we always check the significance of the result afterwards,
both statistically and using biological criteria relevant in
each specific study.

Step 3
Derive the Topological Overlap [16] based dissimilarity
matrix T from the adjacency change matrix D.

T t

d d d

d d d

ij

ik kj ij

k

ik

k

jk

k

ij

:

min ,

= −
( ) +
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⎜
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+ −

∑

∑ ∑
1

1

The use of the topological overlap measure to con-
struct a dissimilarity metrics allows the identification of
genes that share the same neighbors in the graph
formed by the differential correlation network as defined
by the adjacency matrix created in Step 2. Intuitively, a
low value of tij (high similarity) means that genei and
genej both have significant correlation changes with the
same large group of genes. This group of genes consti-
tutes their “topological overlap” in the differential corre-
lation network and may, or may not, include genei and
genej. This property allows DiffCoEx to satisfy both cri-
teria (i) and (ii) as stated earlier. On the one hand, if
genei and genej are part of a module of genes coex-
pressed in only one condition (criterion (i), illustrated in
Figure 1A), then the topological overlap between genei
and genej in the difference network consists of all the
genes within that module. On the other hand, if genei
and genej are equally inter-correlated in both conditions
but correlate with the genes in a distinct module in only
one condition (criterion (ii), illustrated in Figure 1B),
then the topological overlap between genei and genej in
the difference network consists of the genes in that
other module. In both cases genei and genej will there-
fore be grouped together: in the first case forming a dif-
ferentially correlated module, and in the second case
forming a module with differential module-to-module
correlation with another group of genes.
We note that since the adjacency matrix takes values

between 0 and 1, the dissimilarity matrix computed here
also takes values between 0 and 1, as shown in [14].

Step 4
The dissimilarity matrix T is used as input for clustering
and modules are identified.

The clustering can be done using standard hierarchical
clustering with average linkage, followed by module
extraction from the resulting dendrogram, either using a
fixed cut height or with more elaborate algorithms such
as the dynamicTreeCut [18]. Alternative clustering tech-
niques, such as Partitioning Around Medoids (PAM)
[19], may be used in this step.

Step 5
Assess the statistical significance of coexpression
changes.
This is necessary because DiffCoEx uses user-defined

parameters: the soft threshold b used to transform the
adjacency matrix in Step 2 and the clustering para-
meters in Step 4 (tree cutting settings, for example).
Unsuitable settings may lead to the detection of clusters
with non-significant differential coexpression.
The statistical significance of differential coexpression

can be assessed using a measure of the module-wise
correlation changes such as the dispersion statistic [9],
the t-statistic [12], or the average absolute correlation.
Permutations or simulations of the data can be used to
generate a null distribution of those statistics by provid-
ing estimates of the extent of differential correlation
that can be expected to occur by chance. An example of
implementing a permutation procedure to assess the sig-
nificance of differential coexpression using the disper-
sion statistics is presented in Additional File 1.

Variants
Extending the DiffCoEx method to multiple conditions
This method can easily be extended to the study of dif-
ferential coexpression over more than two conditions.
The only required change is in Step 2, where the matrix
of adjacency differences should be replaced with the fol-
lowing: supposing we have calculated C[1],...,C[k],...,C[n]

the correlation matrices for gene pairs in each of the n
different conditions:

D d
n
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c
n
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k
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k

k

[ ] [ ] [ ]sign( )*( )0 21= ( )∑
For two conditions, one can verify that this formula-

tion is equivalent to that proposed earlier in Step 2.
A less sensitive variant to detect more striking patterns
If one is interested in picking up only coexpression
changes that affect genes forming highly coexpressed
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modules in at least one of the conditions, the formula in
Step 2 can be adapted so that the method uses the dif-
ference between the two transformed correlation
matrices (with the soft threshold parameter b) as shown
below:

D d c c c cij ij ij ij ij: sign( )*( ) sign( )*( )[ ] [ ] [ ] [ ]= −1
2

1 1 2 2 

This will make the method less sensitive to subtle
coexpression changes, but may help in extracting more
strikingly differentially coexpressed modules.
Variant without the topological overlap
As with WGCNA, the use of a topological overlap-based
metrics makes the approach very sensitive, since it con-
siders the correlation changes to all other genes to
determine the similarity between two genes. The
method can be simplified by replacing the dissimilarity
matrix T of Step 4 by a dissimilarity measure derived
directly from the adjacency matrix D:

T Dalt = 1–

This will make DiffCoEx focus only on within-module
differential coexpression (criteria (i)) and not on mod-
ule-to-module differential coexpression (criteria (ii)).
This variant is computationally more efficient since the
topological overlap computation is omitted.

Results
We present here the results of our method as used on a
previously published dataset. We identify modules of
genes that are differentially coexpressed and, by using
gene set enrichment analysis, we provide evidence for
their biological relevance.

Dataset
Our dataset (Gene Expression Omnibus GEO GSE5923)
contains Affymetrix gene expression profiles of renal
cortex outer medulla in wild-type- and Eker rats treated
with carcinogens. The dataset is a time course as the
rats were treated with Aristolochic Acid (AA) or Ochra-
toxin A (OTA), respectively, for 1, 3, 7 or 14 days. In
total, the dataset consists of 84 arrays measuring 15,923
probe sets. Details about the experimental settings are
available in the original paper [13].
Eker rats are predisposed to renal tumor because they

are heterozygous for a loss-of-function mutation in the
tuberous sclerosis 2 (Tsc2) tumor suppressor gene.
Stemmer et al. [13] compared the transcriptional
responses of the rats to the carcinogens and found that
the expression levels of genes belonging to a number of
cancer-related pathways were affected differently in the
mutant compared to the wild-type rats. In our

re-analysis of the data, we switched the focus from dif-
ferential expression to differential coexpression in an
attempt to identify functional modules responding to
carcinogen treatment with a different coexpression sig-
nature in mutant Eker rats compared to wild type rats.

Analysis
We applied the DiffCoEx method to the quantile nor-
malized data [20]. A duplicate set of 12 controls present
only for Eker rats was discarded in order to have a sym-
metric experimental setting among wild-type- and Eker
rats. We used the Spearman rank correlation in order to
reduce sensitivity to outliers, and the hierarchical clus-
tering and module assignment was performed using
dynamicTreeCut [18]. The detailed algorithm and R
code used in this analysis are given in Additional File 1.

Findings
The results of the analysis are summarized in Figure 2A.
We identified a total of 8 differentially coexpressed
modules comprising a total of close to 1800 genes (1887
probe sets, 1796 unique genes). The modules were given
color names as indicated in Figure 2A. Four of these
modules (totaling 1361 genes) were significantly more
highly correlated in the mutant Eker rats than in the
wild-type rats, while only the red module (36 genes)
and, to a lesser extent, the green module (116 genes)
follow the opposite pattern. This striking asymmetry
might reflect the greater fragility of the Eker rats to car-
cinogens: in Eker rats, treatment with carcinogens leads
to much more coordinated perturbation of the tran-
scriptome than in wild-type rats.
The cases of the black, orange and green modules

illustrate an interesting characteristic of DiffCoEx: the
method is able to identify module-to-module correlation
changes. Interestingly, the black module is not differen-
tially correlated in the wild-type rats compared to the
Eker rats. Instead, what qualifies the black module as a
differentially coexpressed module is its very significant
drop in correlation with the genes in the blue and pur-
ple modules in the wild-type rats compared to the Eker
mutants (see Figure 2A). Similar patterns can be
observed for the orange and green modules. This prop-
erty makes DiffCoEx a sensitive approach for detecting
any type of large-scale correlation change.
Following Choi et al. [9], significance of the coexpres-

sion differences was assessed by comparing the disper-
sion index values of each module in the data with the
null distribution obtained from permuted (scaled) data
(see Additional File 1 for details and Additional File 2:
Figure S1 for an overview of the permutation results).
In 1000 permutations, none of the blue, brown, purple,
red or yellow modules obtained as high a dispersion
value as that obtained from the non-permuted data,
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Figure 2 Differentially coexpressed modules between carcinogen-treated Eker rats and wild-type rats. Panel A: Comparative correlation
heat map. The upper diagonal of the main matrix shows a correlation between pairs of genes among the Eker mutant rats (the red color
corresponds to positive correlations, blue to negative correlations). The lower diagonal of the heat map shows a correlation between the same
gene pairs in the wild-type controls. Modules are identified in the heat map by black squares and on the right side of the heat map by a color
bar. The brown bands on the right side indicate the mean expression of the modules in the Eker rats (first column) and the wild-type rats
(second column); darker colors indicate higher mean expression levels. Panel B: Expression variation (scaled) in the Eker mutants (left) and the
wild-type rats (right) of the genes in the yellow module which are annotated in KEGG with “pancreatic cancer”. In the Eker rats the variation of
these genes is tightly correlated, whereas for the wild-type rats it is much more random.
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indicating a significance p-value < 0.001. Module-to-
module coexpression changes were tested by assessing
the significance of the correlation changes between the
genes from each possible module pair, using a similar
“module-to-module” dispersion measure and generating
null distributions from the same permutation approach.
Additional File 2: Figure S1 shows that the coexpression
change between the black and blue modules, for exam-
ple, is highly significant since no permutation yielded as
high a dispersion value.
In the next step, the biological significance of the

modules was surveyed using gene-set enrichment analy-
sis. We submitted each of the modules to GeneTrail
[21] and identified many significantly over-represented
GO or KEGG terms among the gene annotations. A
subset of some of the most interesting findings is pre-
sented in Table 1, while complete lists are available as
Additional File 3. Interestingly, the black module was
enriched for genes involved in “response to xenobiotics”,
while the blue module contained many genes associated
with “metabolic processes”. Finally, the yellow module
was strongly enriched for genes known to be involved in
cancer pathogenesis.
In Figure 2B, the expression data for the 13 genes of

the yellow module, which were associated with the “pan-
creatic cancer” KEGG annotation, illustrate what differ-
ential coexpression is: a difference in the coordination
of the variation of a group of genes between two condi-
tions. In the Eker rats, these cancer genes show

coordinated variation, whereas in the wild-type rats this
coordination is absent.

Implementation
This analysis was carried out using the R statistical
package with the WGCNA [15] library, on a Linux com-
puter with 128 GB physical memory. Large memory
(around 10 GB) is required to compute correlation
matrices for over 10,000 genes. For module definition,
hierarchical clustering was combined with dynamicTree-
Cut [18] using a minimum size of 20 genes. Details of
the process and code can be found in Additional File 1.

Discussion and conclusions
The method we present here has the advantage of com-
paring two (or more) datasets in a global, unbiased and
unsupervised manner. It represents a major improve-
ment over earlier two-way comparisons, in which clus-
tering was first performed in one condition and the
coexpression of the genes in the resulting clusters was
then assessed in the other condition. Moreover, Diff-
CoEx is very sensitive because (i) it does not require dif-
ferentially coexpressed modules to be detected as
coherent, coexpressed modules in one of the two condi-
tions; instead, only the difference in coexpression is con-
sidered to define the module; and (ii) it can identify all
types of large-scale correlation changes, including mod-
ule-to-module correlation changes. Using a simulation
study (see Additional File 4), we demonstrate examples

Table 1 Annotations enriched in differentially coexpressed modules

Module Category Subcategory Expected Observed fdr

Black

KEGG Metabolism of xenobiotics by cytochrome P450 1.367 12 <0.001

KEGG Metabolic pathways 22.494 40 <0.001

GO Glutathione transferase activity 0.364 9 <0.001

Blue

KEGG Lysosome 3.373 12 0.008

KEGG Metabolic pathways 31.541 48 0.026

GO Mitochondrion 35.764 67 <0.001

Brown GO Intracellular transport 8.481 22 0.038

Green
GO Mitochondrion 10.234 26 0.003

GO Oxidation reduction 4.015 15 0.003

Orange GO Xenobiotic metabolic process 0.079 5 <0.001

Purple No significant enrichment

Red KEGG Endometrial cancer 0.201 3 0.015

Yellow

KEGG Pancreatic cancer 3.344 14 <0.001

KEGG Renal cell carcinoma 3.702 10 0.043

KEGG Pathways in cancer 14.75 27 0.022

GO Protein localization 33.676 64 <0.001

GO Melanosome 2.995 11 0.009

GO Cell projection 33.886 59 0.002

GO Small GTPase mediated signal transduction 14.342 31 0.003

Selected annotations enriched among the genes of each differentially coexpressed modules and associated false discovery rates (fdr). The over-representation
analysis was conducted using GeneTrail. The complete results are available in Additional File 3.
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of differential coexpression patterns that can be uncov-
ered using DiffCoEx but that were missed by existing
approaches.
Differential coexpression provides information that

would be missed using classical methods focusing on
the identification of differentially expressed genes. For
example, as Figure 2A shows, many of the differentially
coexpressed clusters display few differences between the
two conditions in terms of mean overall expression.
This indicates that the changes in correlation that we
observed cannot be explained by the genes being not
expressed, and therefore not correlated in one of the
two conditions.
Differential coexpression may be caused by different

biological mechanisms. For example, a group of genes
may be under the control of a common regulator (e.g. a
transcription factor or epigenetic modification) that is
active in one condition, but absent in the other condi-
tion. In such a case, the correlation structure induced
by variation in the common regulator would only be
present in the first condition. Another possible interpre-
tation relates to the presence or absence of variation in
some factors driving a gene module. To observe correla-
tion of a group of genes responding to a common fac-
tor, this factor needs to vary. In the absence of variation
of the driving factor, no correlation can be observed,
even though the actual biological links that form the
network are not altered. It is therefore important to
ensure that the perturbations which give rise to varia-
tion within each condition are: (i) biologically relevant
(as opposed to batch effects, for example) and (ii) com-
parable in nature and amplitude.
DiffCoEx provides a simple and efficient approach to

study how different sample groups respond to the same
perturbations. These perturbations can be either well
characterized and controlled, or stochastic and
unknown. In our example analysis, on top of random
physiological fluctuations present in any dataset, there
was a controlled perturbation induced by the time-
course treatment with different carcinogens present.
Since the carcinogen treatment is a controlled experi-
mental factor, it is possible to use classical methods to
study the transcriptomic changes it induces rather than
using DiffCoEx. However, a fundamental advantage of
using DiffCoEx in such a case is that it requires no
model assumptions and is a quick and efficient
approach. Differential coexpression approaches are even
more useful when the variation among the samples in
one condition is caused by uncontrolled factors, whose
effects cannot easily be dissected. A typical example
would be genetic variation present in a natural popula-
tion or an experimental cross. DiffCoEx constitutes a
valuable tool of broad applicability now that such

genetic studies are becoming increasingly important for
studying gene regulatory networks [22-24].

Additional material

Additional file 1: Step-by-step R analysis for applying DiffCoEx. This
file contains the documented R source code used to perform the
analysis described in the main text as well as the simulation study
described in Additional file 4.

Additional file 2: Significance assessment of module-to-module
coexpression changes using permutations. This figure summarizes the
results of the significance analysis. 1000 permutations of the samples
between the two conditions were performed, and for each of the
permuted datasets, the dispersion value (a measure of correlation
change for groups of genes) was computed for each module, and for
every possible module pair. The number of permutations yielding a
higher dispersion value than that of the original data was recorded and
is displayed in this figure. The figure, for example, indicates that the
within-module dispersion value for the black module reached a higher
value with permuted data than with original data 249 times. The within-
module coexpression change was therefore not significant (p = 0.249) for
the black module and this is indicated with a light grey shading.
Similarly, the figure shows that no permutations reached as high a value
as the original data for the purple to black dispersion, meaning that the
black module was significantly differentially coexpressed with the purple
module, and this is indicated with dark grey shading.

Additional file 3: Differentially coexpressed modules and
enrichment analysis results. This Excel file has separate sheets for the
gene lists for each of the differentially coexpressed modules and the
results of the enrichment analysis conducted using GeneTrail.

Additional file 4: Simulation study showing the sensitivity of
DiffCoEx. This file details the result of a simulation study performed to
illustrate a scenario in which DiffCoEx will outperform other, less
sensitive, methods.
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