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Abstract

incorrect shape recognition.

not require any prior knowledge of the flexible regions.

Background: Many molecules are flexible and undergo significant shape deformation as part of their function, and
yet most existing molecular shape comparison (MSC) methods treat them as rigid bodies, which may lead to

Results: In this paper, we present a new shape descriptor, named Diffusion Distance Shape Descriptor (DDSD), for
comparing 3D shapes of flexible molecules. The diffusion distance in our work is considered as an average length
of paths connecting two landmark points on the molecular shape in a sense of inner distances. The diffusion
distance is robust to flexible shape deformation, in particular to topological changes, and it reflects well the
molecular structure and deformation without explicit decomposition. Our DDSD is stored as a histogram which is a
probability distribution of diffusion distances between all sample point pairs on the molecular surface. Finally, the
problem of flexible MSC is reduced to comparison of DDSD histograms.

Conclusions: We illustrate that DDSD is insensitive to shape deformation of flexible molecules and more effective
at capturing molecular structures than traditional shape descriptors. The presented algorithm is robust and does

Background

The geometrical shape of a molecule is a key factor for
biological activity in computer aided molecular design,
rational drug design, molecular docking and function
prediction [1]. To exploit the shape similarity between
molecules, a useful tool is molecular shape comparison
(MSC) that compares the shapes of two or more mole-
cules and identifies common spatial features [1-4]. In
computer aided drug design, for instance, an alternative
process of virtual screening takes advantage of such
comparison for searching a molecular database for com-
pounds that most closely resemble a given query mole-
cule [2,3,5,6]. The underlying assumption is that the
molecules similar to the active query molecule are likely
to share similar properties. One main advantage of MSC
is that the molecules with shape similarity can be found
without any specification of chemical structure. How-
ever, the efficient MSC is still a challenge [1-4] due to
the high complexity of 3D molecular shapes.
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Although many researchers have proposed various
methods for shape comparison of molecules [2,3,7-11],
most of them only concerned comparison of 3D rigid
objects, little attention has been paid on the deformed
shapes of flexible objects. Nevertheless, many molecules
are flexible, and this flexibility is often part of their
function, which may lead to significant shape changes.
Shape similarities between molecules can be missed
when different conformations of the same molecule are
compared to each other as rigid bodies. Several recent
methods [12,13] were proposed for addressing this pro-
blem by regarding molecules as flexible shapes, but
these methods can not handle well shape deformation
of molecules with topological changes. In this paper we
developed a new technique for comparing molecular
shapes, which is insensitive to shape deformation of
flexible molecules, in particular to topological changes.

Methods of molecular shape comparison

The MSC methods can be roughly divided into two
categories [2,3]. One category of MSC, called superposi-
tion methods, relies on finding the optimal superposi-
tion/alignment of two or more molecules compared
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[1,4,14-16]. The superposition methods usually compare
molecular shapes in a particular coordinate system by a
priori superposition/alignment, which is non-trivial to
achieve robustly. Another category of MSC, called
descriptor methods, are independent of molecular orien-
tation and position by using descriptor to represent the
shape of molecule. The descriptor methods compute the
similarity score by comparing the corresponding
descriptors between two molecular shapes without any
superposition. A 3D shape descriptor, or named signa-
ture, is a compact representation for some essence of
the shape. The shape descriptor is often used as an
index in a database of shapes and it enables fast queries
and retrieval.

The descriptor methods are simpler and much faster
than the traditional superposition methods. Several
recent works related to MSC using shape descriptors
have been developed such as shape distribution, spheri-
cal harmonic descriptor, and 3D Zernike descriptor
[5,7,9,17-22]. These descriptors are rigid-body-transfor-
mation invariant, and they are often effective for captur-
ing rigid objects. Nevertheless, most of these methods
are not deformation invariant and they can not support
flexible molecular shape comparison. Deformation invar-
iant representation of nonrigid or flexible shape is a
challenging problem in the field of shape analysis.
Several recent works focus on the problem of comparing
non-rigid shapes [23-27] in computer vision, computer
graphics, and pattern recognition. However, these exist-
ing descriptors do not perform well for flexible mole-
cules due to their complex shape deformation. It is
beyond the scope of the presented paper to give a
detailed review of all the existing work; we will only
review those most relevant results. The reader may con-
sult [2,3,13] for a general introduction to the MSC
problem.

Methods based on distance descriptors

The distance descriptor between sampling point pairs
on shape surfaces may be the simplest and most widely
used shape descriptor in 3D shape retrieval. The pre-
sented paper also belongs to this category. We first
introduce three representative distance descriptors:
Euclidean distance (ED), geodesic distance (GD) and
inner distance (ID).

Euclidean distance

The ED descriptor [20] (also called D2) is usually repre-
sented by a histogram of distance values. It consists of
three steps for computing the ED descriptor. First, some
point pairs are randomly selected on the shape surface,
and the Euclidean distances between all sampled point
pairs are computed, finally the histogram of all distance
distribution is built. The similarity scores between
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shapes are measured as the differences between their
corresponding histograms. The ED descriptor has sev-
eral advantages. It is both rotation and translation invar-
iant, is computationally cheap (both for generating the
descriptor and comparing two descriptors), and
describes the overall shape, which means that it is not
easily affected by minor shape distortions. Nevertheless,
the ED histogram can not capture the shape similarity
of flexible objects.

Geodesic distance

To overcome the drawback of ED, one can simply apply
the GD [23] as the shape descriptor instead of the ED.
The GD between two points on a surface is measured as
the length of the shortest path along the boundary
surface. Although the GD is invariant to surface bending,
it is not enable to capture shape articulation deformation
well [28], that exists commonly in macromolecular
movements (such as the popular hinge motion).

Inner distance

In order to overcome the disadvantages of ED and GD,
we recently proposed a new shape descriptor based on
inner distance (ID) for comparing the shapes of flexible
molecules [13]. The ID is the length of the shortest path
between landmark points within the molecular shape
and it reflects the molecular structure and deformation
much better than other distance measures. However, the
above distances only measure the shortest path between
two points in a sense of the single path, and they may
be significantly affected by topological changes of shape
deformation.

In order to deal with shape deformation of flexible
molecules, possibly with topological changes, we pro-
pose to use the diffusion distance (DD) as a new shape
descriptor. The diffusion distance is related to the prob-
ability of travelling on the surface from one point to
another in a fixed number of random steps [29-31]. The
diffusion distance is an average length of paths connect-
ing two points on the shape, while the GD or ID is the
length of a shortest path. This naturally makes the diffu-
sion distance less sensitive to topological changes. In
our implementation, we combine diffusion distances
with the help of inner distances for constructing a new
shape descriptor, called Diffusion Distance Shape
Descriptor (DDSD), which leads to an average length of
paths in a sense of inner distances. The new descriptor
is insensitive to shape deformation of flexible molecules,
in particular to topological changes, and it is more effec-
tive at capturing molecular structures than traditional
shape descriptors. Our DDSD is stored as a histogram
which is a probability distribution of diffusion distances.
Our approach reduces the 3D shape comparison
problem of flexible molecules to comparison of DDSD
histograms. The core procedure can be divided into four
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Figure 1 Flowchart of our method. Given a molecular shape, four independent steps contain sampling (red points), calculating inner distances
(green line segments) between all sample point pairs, computing diffusion distances based on diffusion maps, and building the descriptor (blue
histogram). Here the input shape is the volumetric data with the simulated 8 A resolution density map for GroEL (PDB code: TAON).

A\

steps: sampling, calculating inner distances, computing
diffusion distances based on diffusion maps, and build-
ing descriptors (see Figure 1).

Figure 2 illustrates comparison among three methods:
DD, ID, and rigid methods (ED). The first row shows the
input four molecules (A, B, C and D) with the same main
chain orientation but with different surface shapes. Two
source molecules are two conformations of rat DNA
polymerase beta: 1BPD (molecule A) and 2BPG (mole-
cule D). Two middle molecules (B and C) are the morph
deformation between the two conformations. The defor-
mation between four molecules can be explained by a
movement that fixes the top domain of molecule A and
bends its bottom domain. Imagine the regions high-
lighted by arrows. If the surfaces of two domains are not
touching, then both inner distance and diffusion distance
between two points on the two regions travel throughout
the whole molecular shapes. Yet, if the bottom domain is
bent so that the surfaces on two domains touch each
other, as highlighted in molecule D, the minimal inner
distance will “re-route” itself through the “shortcut”
across the highlight region instead of going though the
whole molecular shapes, leading to a significant change
in the inner distance. For the diffusion distance, the new
path added as a result of the topological change is aver-
aged with the other paths, which reduces the effect of
such a change. The second row in Figure 2 shows com-
parison among three descriptors: DD, ID and ED. The
ED is strongly sensitive to shape deformation, so it is not
suitable for flexible molecular shape comparison.
Although the ID descriptors can keep almost consistent
histogram for the first three deformed molecules, but it is
sensitive to shape topological changes, leading to a

significant change for molecule D. Note that our DD
descriptors reduce the effect of topological changes and
remains largely consistent for the four deformed confor-
mation shapes of the same protein.

Methods
In this section, we first review diffusion distances and
inner distances. By combining them, we then present a
new method for computing the DDSD of flexible
molecules.

Review of diffusion distances

We recall diffusion distances as described in [29-35].
Coifman et al. introduced diffusion maps and diffusion
distances as a method for data parametrization and
dimensionality reduction. A 3D shape can be embedded
into the Euclidean space via diffusion maps. The diffu-
sion distance is equal to the Euclidean distance in the
embedding space corresponding to diffusion maps.
Informally, the diffusion distance is considered as an
average length of all the paths connecting two points on
the shape, and it is related to the probability of arriving
from one point to another in a random walk with a
fixed number of steps. This makes the diffusion distance
a bending invariant function of the path length and the
shape width between two points. Since this distance
does not rely on just the single path between two points,
it is robust to topological changes.

For the exposition simplicity, we regard the 3D shape
as a finite set of 3D points. In the diffusion framework, a
nonnegative symmetric diffusion kernel function k(x, y),
which reflects the similarity between two points x and y,
is first constructed over all pairs of points on the shape.



Liu et al. BMC Bioinformatics 2010, 11:480
http://www.biomedcentral.com/1471-2105/11/480

Page 4 of 15

Diffusion Distance

\,_wt ",

w e ‘jl-«
(et ‘?” @m BT
P St AW
Ao Loy

Euclldean Dlstance

—A

— B

—_—C
D

—_—

—A

——B —B

—iC —C
D D

Figure 2 Our diffusion distance (DD) descriptor is compared to inner distance (ID) and Euclidean distance (ED). The first row shows the
input four molecules with the same main chain orientation but with different surface shapes, where the arrows mark topological changes. The
second row shows the DD, ID and ED descriptors. In each plot, the horizontal x-axis denotes pairwise distances, the vertical y-axis represents
distance distributions, and the scale is normalized for the comparison process. Note that DD is not sensitive to shape deformation, in particular to
topological changes, so four histograms are closed; in contrast, ED is strongly sensitive to deformation and ID is sensitive to topological changes.

The kernel function can lead to a n x n matrix K, where
n is the number of available points. The matrix is sym-
metric and has non-zero values. Next, we define

x,y)
x)

Where v(x) = X, k(x, y) is the sum of the elements in
each row. Since we have that p(x, y) 2 0 and ¥, p(x, y) =
1, p(x, y) can be interpreted as the probability for a ran-
dom walker (Markov process) on the shape to jump from
x to y in a single time step. The corresponding matrix
P = {p(x, y)} is the transition matrix of this Markov chain
in a single time step. Note that p(x, y) is not symmetric
any longer, therefore, we define a symmetric version

px,y) = FOT) W

v(x)
v(y)
k(x,y)

~ o)

p(x,y) = p(x,y)

The corresponding matrix P = {p(x,y)} is symmetric.

Using the random walk formulation, the transition prob-
ability from x to y in m time steps is given by the m-th

power of the matrix p. The element ﬁ(m)(x, ) of the

matrix pm can be thought of as a “bump” centered at x

and of width proportional to m.
Then, the diffusion distance between two points x and
y is defined as

dnxy)= Y|P 2) - p"(2) P, 3)
zeX

where d2(x,y) can be thought of as a distance

between two bumps. Using eigen decomposition of p,

we can expand p(x,y) as

Bl = D AH(I80), @

i=1
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where {4;} is the sequence of eigenvalues of p (with
A1 =12 |A3]2 ... |A,]) and ¢; are the corresponding
eigenvectors. Therefore, for the elements of the matrix
pm we obtain

Py = Y 2900 (5)

i=1

Lastly, the eigenmap

M1 (%)
q)m(x): }“En¢2(x) ’ (6)

defined by the eigenvalues and eigenvectors of p, is
diffusion map in m time steps. The link between diffu-
sion maps and distances can be summarized by the
spectral identity

| () =@, (V)] =d2(xy), %

which means that the diffusion map ®,, embeds the
data into a Euclidean space in which the Euclidean dis-
tance is equal to the diffusion distance d,, in Eq. (3).
Diffusion kernels
The diffusion framework is essentially based on a Mar-
kov random walk on graphs. The first step views all
data points on the shape as being the nodes of a graph
G, in which two nodes x and y are connected by an
edge. Once the graph is built, the weight of the edge in
G is measured by the diffusion kernel k(x, y). In essence,
the diffusion distance represents an average length of all
the paths connecting node x and node y through G in a
measure of k(x, y). Note that k(x, y) describes the rela-
tionship between x and y, and its choice should be
guided by the application. Typically, the following Gaus-
sian kernel is used

k(x,y) = exp(=dg(x,y) [ o*), (8)

where dg(x, y) = ||« - y|| denotes the length of Eucli-
dean distance between x and y, and o indicates the var-
iance of the Gaussian.

It is intuitive that if two nodes x and y are closer
(more similar) in a sense of Euclidean distances, they
are more likely transmitted to each other. However, as
discussed in [13], the Euclidean distance as well as geo-
desic distance can not capture well the flexible molecu-
lar structures. It is easy to see that the Euclidean
distance is sensitive to shape deformation. For instance,
in Figure 3, the Euclidean distance, that is defined as
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the length of the line segment between two landmark
points x and y (the black bold line), does not consider
whether the line segment crosses shape boundaries.

Inner distances

To overcome the disadvantage of the Euclidean distance
used in the diffusion kernel k(x, y), we utilize the inner
distance metric, as introduced in our previous studies
[13]. Let O be a 3D shape as a connected and closed
subset of R®. We denote the boundary surface of O by
00. Given two points x, y € 90, the inner distance
between x and y is defined as the length of the shortest
path connecting x and y within O. For example, in Fig-
ure 3, the red dashed line denotes the inner distance,
which is the shortest path within the shape boundary
surface that connect two landmark points x and y. The
right molecule is one deformation to the left one, and
the relative change of the inner distances between the
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Figure 3 lllustration of the inner distance. The red dashed line
denotes the inner distance, which is the shortest path within the
shape boundary surface that connect two landmark points x and y.
The right molecule is one deformation to the left one, and the
relative change of the inner distances between the corresponding
pair of points (e.g. x and y) during shape deformation are small. In
contrast, the black bold line denotes the Euclidean distance defined
as the length of the line segment between two landmark points x
and y. Note that the Euclidean distance does not have the property
of deformation invariant in contrast to the inner distance. This is
because, the Euclidean distance does not consider whether the line

segment crosses shape boundaries.




Liu et al. BMC Bioinformatics 2010, 11:480
http://www.biomedcentral.com/1471-2105/11/480

corresponding pair of points (e.g. x and y) during shape
deformation are small. Note that the Euclidean distance
does not have the property of deformation invariance in
contrast to the inner distance.

Based on the above observation, we use the inner
distance instead of the Euclidean distance dg(x, y) in Eq.
(8) as follows

k(x,y) = exp(=d;(x,y) [ o*), ©)

where dj(x, y) measures the length of inner distance
between x and y. In other words, p(x,y) based on Eq.

(9) defines the transition probability from x and y in a
sense of inner distances.

Figure 4 illustrates the variation of inner distance for
shape deformation with topological changes, where the
red dashed line segments denote the inner distance
paths between two landmark points x and y. Note that
the object B is a shape deformation of the object A.
Intuitively, this example shows that the inner distance is
insensitive to deformation, while the Euclidean distance
does not have this property. The main advantage of
inner distance is that it reflects shape structure and
deformation without explicitly decomposing the shape
into parts. Note that, although the object C in this figure
is also a shape deformation of the object A, the topolo-
gical change leads to a significant change of inner dis-
tance. The new diffusion distance could resolve the
topology sensitivity problem for molecular shape defor-
mation with the help of inner distances.

Representations of molecular shapes

Molecular representations have various capabilities in
terms of applications [36]. The surface-based representa-
tion of molecular shape is faithful to the actual physics
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of molecules and convenient for our application.
A molecule can be defined by a set of spherical atoms
whose exposed surface represents a molecular surface
that defines the boundary of the molecular volume. In
this paper, we consider the input molecule as a volu-
metric representation that is popularly used in biological
research fields [9,37]. The volumetric model is com-
posed of a uniform 3D lattice and it can be built in
three steps as follows [12,38]. First we compute the
Connolly surface (triangle mesh) of the molecule using
the MSROLL program [39] with default parameters.
Second, we place the triangle mesh in a 3D cubic grid
of (such as 64 x 64 x 64) compactly. Third, each lattice
point is assigned either 1 or 0; 1 for point inside the
surface and 0 for outside. The inside point is denoted as
object point and the outside point is denoted as back-
ground point. For each lattice point, there is a set of
26 neighbor points. An object point lies on the boundary
if at least one of its 26 neighbors is a background point.

Algorithm of DDSD

The DDSD algorithm for computing the diffusion dis-
tance shape descriptor of a volumetric object O is given
as follows.

1. Sample uniformly # points S = {g1, g3, ..., 4,} on
the boundary surface dO of O using Lloyd’s algo-
rithm of k-means clustering.

2. Calculate inner distances of all sample point pairs
in S.

3. Calculate diffusion distances of all sample point
pairs in S.

3.1. First, we define a weighted graph G over all
sample points by connecting points g;, g; € S. Set
edge weights equal to k(g; g;) using Eq. (9).

\

Figure 4 lllustrating variation of inner distances for shape deformation with topological changes. The red dashed lines denote the shortest
paths within the shape boundary surface that connect two landmark points x and y. The object B is the deformation to the one A, and the relative
changes of the inner distances between the corresponding pair of points (e.g. x and y) during the shape deformation are small. In contrast,
although the object C is also a shape deformation of the object A, the topological change leads to a significant change for inner distance.
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3.2. Construct the transition probability matrix p of
the Markov chain by Eq. (1) and Eq. (2).

3.3. Compute the diffusion map ®@,, at diffusion time
m using Eq. (6).

3.4. Compute the Euclidean distance in ®,, equal to
the diffusion distance d,,,.

4. Build the descriptor of the shape O as the histo-
gram of values of diffusion distances using 128 bins.

The implementation details of algorithm will be given

next.

Sampling the boundary surface

The volumetric shape of a molecule can be considered
as a point array. The full boundary point set is too large
to compute shape descriptor effectively. In order to save
storage and computation costs, we choose a subset of of
boundary points but preserve the characteristics of the
shape in the same way to [13]. We compared two sam-
ple methods: random sampling and uniform sampling
methods. With random sampling, every point in the
boundary point set has an equal chance of inclusion in
the sample set. The points picked out by the random
sampling method can not yield an informative sample
set. In this paper, we utilize the Lloyd’s algorithm of
k-means clustering for obtaining uniform sampling
points on a molecular surface.

Calculating inner distances

In the second step, we compute inner distances of all
sample point pairs in S using our recent work [38].
Here the inner distance is approximated by finding the
shortest path distance in the graph, which is resolved
using Dijkstra’s algorithm. Dijkstra’s algorithm is a
graph search algorithm that solves the single source
shortest path problem for a graph. In order to imple-
ment Dijkstra’s algorithm more efficiently, Fibonacci
heap is used as a priority queue. The code package of
Dijkstra’s algorithm was implemented in [40].

Computing diffusion distances

In the third step, our algorithm includes two parameters:
o and m. In our implementation, o is the average of
inner distances between all pairs of points in the shape;
the time constant m = 50 is used for diffusion time.

The diffusion distance is considered as an average
length of paths connecting two points on the shape
within m steps (i.e. times). In fact, the diffusion distance
is computed by embedding a 3D shape into a Euclidean
space (i.e. diffusion map) in which the Euclidean dis-
tance is equal to the diffusion distance d,,. The para-
meter m intuitively specifies the amount of “diffusion
time” during which paths are explored to discover con-
nectivity between sample points. If m is chosen too
large, then only the eigenvector(s) with the lowest eigen-
values are considered during diffusion map, and the
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result is a distance measure with nice global geometry
properties, but poor local geometry properties. On the
other hand, if m is too small, then the diffusion process
runs for only a short time, and the resulting distance is
useful locally, but exhibits unexpected global geometry
behavior [41]. For our application, the time constant m
is suggested to be 50 for comparing molecular shapes.
This selection (i.e. m = 50) has been used in [34,35] for
non-rigid shape matching, which results in good results.

Building descriptors

A challenging aspect of measuring the similarity
between two 3D shapes is to find a suitable shape
descriptor that can be constructed and compared
quickly, while still discriminating between similar and
dissimilar shapes. Shape distribution [20] is the simplest
and most widely used shape descriptor, which represents
the shape descriptor of a 3D model as a probability dis-
tribution sampled from a shape function measuring geo-
metric properties of the 3D model. In particular, the
distance histogram, also called D2, is one example shape
distribution, which represents the distribution of Eucli-
dean distances between pairs of randomly selected
points on the surface of a 3D model. The key idea of
shape distribution is to transform an arbitrary 3D model
into a parameterized function that can easily be com-
pared with others. In our case, the domain of the shape
function provides the parameterization (e.g., the D2
shape distribution is a function parameterized by dis-
tance), and random sampling provides the transforma-
tion. The primary advantage of shape distribution is its
simplicity, where the shape matching problem is
reduced to sampling, normalization, and comparison of
probability distributions. In spite of its simplicity, the
shape distribution is expected to be useful for discrimi-
nating the whole objects with different gross shapes,
including invariance, robustness, efficiency, and general-
ity. In general, the D2 histogram is computed by
employing stochastic methods and it is formed by three
steps: (1) first sampling uniformly random points from
the shape surface, then (2) computing the Euclidean dis-
tance between the sampled point pairs, and finally (3)
constructing a distance histogram by counting how
many samples fall into each of fixed sized bins. From
the histogram, we reconstruct a piecewise linear func-
tion which forms our representation for the shape distri-
bution. In this paper, the main difference between our
method and the original D2 is that we use diffusion dis-
tance in a sense of diffusion distance instead of Eucli-
dean distance in [20].

After finishing computation of diffusion distances, we
now convert a set of diffusion distances defined on the
boundary of the object to a shape descriptor. This is
done in a similar manner as D2 of shape distribution in
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[20]. Given n sample points, the number of diffusion
distances of the shape is at most #*/2. We evaluate spe-
cifically #*/2 diffusion distance values from the shape
distribution and construct a histogram by counting how
many values fall into each of n,;, fixed sized bins. In
our experiments, we have found that using » = 500
samples and #n,;, = 128 bins yields shape descriptors
with low enough variance and high enough resolution.
Note that our distance histogram includes the step of
normalization by aligning the maximum and minimal
diffusion distance values, which yields invariance under
rigid motions (e.g. scaling).

Measuring similarity

A shape descriptor can be used as an index in a data-
base of shapes and it allows for very fast retrieval.
Therefore, we have to choose an appropriate similarity
measurement between two shape histograms to achieve
accurate results. Osada et al. [20] investigated many
standard ways of comparing two histograms, which
include L, (p = 1, 2, ..., ) norms, Bhattacharyya dis-
tance, and the ){2 measurement. In our work, we have
found that using different metrics on different descrip-
tors may affect lightly the query results. Although in our
experiments we tested all different types of metrics for
each descriptor when possible, the metrics L; and L,
norms are simple and usually give better results, where
L, norm is known as the Manhattan distance and L,
norm is the familiar Euclidean distance.

Results

The DDSD algorithm presented in this paper has been
implemented and incorporated into a shape search sys-
tem of flexible molecules. The assistant program for
computing inner distances is available from https://engi-
neering.purdue.edu/PRECISE/IDSS. To demonstrate the
abilities of DDSD, we test it on a benchmark containing
abundant conformational changes of molecules.

Deformation invariance of shapes

In our first experiment, we select some representative
molecules with conformational changes to show that the
DD descriptor is insensitive to the shape deformation of
flexible molecules. Figure 5 illustrates comparison
among two methods: DD and ID. The first row shows
the input four molecules (A, B, C and D) with the same
main chain orientation but with different surface shapes.
The four molecules are the morph deformation between
two conformations of GroEL: 1IAON and 1KP8. The
regions in topological changes are highlighted. The sec-
ond row shows the histogram comparison. Although the
ID descriptors can keep almost consistent histogram for
the first three deformed molecules, it is sensitive to
shape topological changes for molecule D, which leads

Page 8 of 15

to the significant difference in histogram. In contrast,
our DD descriptors remain largely consistent for the
four deformed conformation shapes of the same protein.
Figure 6 illustrates another comparison of DD and ID
for the input four molecules with the same main chain
orientation but with different surface shapes. The four
molecules are the morph deformation between two con-
formations of Ran: 1BYU and 1RRP. The second row
shows the histogram comparison. The ID descriptors is
sensitive to topological changes of shapes, while our DD
descriptors keep largely consistent for the four deformed
conformation shapes of the same protein.

MolMovDB benchmark

In order to evaluate the efficiency of the DDSD descrip-
tor, we have incorporated our method into a simple
search system for molecular shape comparison [13]. The
presented method is tested on a benchmark of flexible
molecules with conformations. This benchmark can be
found in the Database of Macromolecular Movements
(MolMovDB) [42]. MolMovDB contains a diverse set of
molecules that display large conformational changes in
proteins and other macromolecules (http://www.mol-
movdb.org/), also including the intermediate morphs.
The original benchmark data set has the total 2,695
PDB files that are classified into 214 groups. The Mol-
MovDB benchmark has been applied to molecular shape
comparison, predicting protein structures, and so on
[12,13,38,43]. The developed search system retrieves the
tested database for molecules that most closely resemble
the shape of a given query molecule in terms of their
geometrical shapes. In the current search system, the
user first chooses a query molecule and the program
computes the similarity scores for all molecules in the
tested database using the DDSD method described in
this paper. The program then ranks all molecules in the
database according to their similarity scores. The search
system also contains our recent works [12,13], and the
corresponding program and database are available. For
the MolMovDB benchmark we have pre-computed all
DD descriptors of queries on the database. The DD
descriptors allow rapid search on the system because a
molecular shape is compactly represented by a one-
dimensional histogram. The query time to the data set
of MolMovDB benchmark takes under a second if a
query molecule is already transformed into the DD
descriptor. For larger databases, more sophisticated
indexing methods can further accelerate the perfor-
mance. Even though this simple search system of flex-
ible molecules is rather simple, it shows the potential of
DDSD for flexible molecular shape comparison using a
single computer and without the need of aligning the
molecules before testing for similarity.


https://engineering.purdue.edu/PRECISE/IDSS
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Figure 5 The DD descriptor is compared to ID for the morph deformations between two conformations of GroEL: TAON and 1KP8.
The first row shows the input four molecules with the same main chain orientation but with different surface shapes, where the arrows mark
topological changes. The second row shows the DD and ID descriptors. Note that DD is not sensitive to shape deformation with topological
changes, so four histograms are almost consistent; in contrast, ID is sensitive to topological changes.

Evaluation

To evaluate the effectiveness of the proposed descriptors,
we compared the DD shape descriptor with some other
shape descriptors in terms of the performance on retriev-
ing similar molecular structures. In addition to three dis-
tance descriptors: ID, GD and ED, we also compare our
descriptor to several known descriptors, which have been
applied to search rigid shapes in many areas, such as
engineering domain, computer graphics, and molecular
shape comparison. They are as follows.

Spherical Harmonic Descriptor (SHD) [8,44] is a rota-
tion invariant shape descriptor based on spherical
harmonics.

Solid Angle Histogram (SAH) [45,46] measures the
concavity and the convexity of a molecular surface. His-
tograms are computed based on a complete partitioning
of the 3D space into disjoint cells which correspond to
the bins of the histograms.

Shape Distribution (SD) [20] represents the shape
descriptor as a probability distribution sampled from a
shape function measuring the geometric properties of a

3D model. Here, we use the D2 shape measure for the
triangle surface of a molecule.

Precision-recall curve

The standard evaluation procedures from information
retrieval, namely precision-recall curves [9,47], are often
used for evaluating the various shape distance descrip-
tors, but other evaluation criteria also exist [24]. Preci-
sion-recall (PR) curves describe the relationship between
precision and recall for an information retrieval method.
Precision is a measure of exactness or fidelity, and it is
the ratio of the relevant models retrieved to the retrieval
size. Recall is a measure of completeness, and it is the
fraction of the relevant models retrieved for a given
retrieval size. Precision and recall are defined as follows:

precision = P (10)
TP+FP
recall = P , (11)
TP+FEN
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Figure 6 Comparison between DD and ID. The first row shows the four morph deformations between two conformations of Ran: 1BYU and
1RRP. The second row shows the DD and ID histogram. Note that DD is not sensitive to shape deformation with topological changes, so four
histograms are almost consistent; however, ID is sensitive to topological changes.

where TP, the number of true positives, is the number
of molecules that are included in the group that are the
same as the query molecule correctly retrieved in the
search; FN, the number of false negatives, is the number
of molecules that included in the group same as the
query molecule but missed in the search; FP, the num-
ber of false positives, is the number of molecules that
are included in a different group from the query mole-
cule but inaccurately retrieved in the search. Thus, the
denominator in Eq. (10) is the total number of all mem-
bers in a group and the denominator in Eq. (11) is the
retrieval size. A perfect retrieval retrieves all relevant
models consistently at each recall level, producing a hor-
izontal line at precision = 1.0. However, in practice, pre-
cision decreases with increasing recall. The closer a
precision-recall curve tends to the horizontal line at pre-
cision = 1.0, the better the information retrieval method.
For more details, the reader can refer to [9,12,47].

Figure 7 shows the precision-recall curves for a subset
of of the MolMovDB database by extracting the groups
with topological changes. For precision-recall plots, the
precision for each molecule or group is averaged using
linear interpolation over the recall range. The results
show that the DD method performs better than other
descriptors for the MolMovDB database with vastly
different conformation variations and topological
changes.

Other measures

In addition to the precision-recall curves, we also evalu-
ate other quantitative statistics for evaluation of
retrieved results for the MolMovDB benchmark. Specifi-
cally, we compute E-measure and F-measure. E-measure
is a composite measure of the precision and recall for a
fixed number of retrieved results [25,48]. The intuition
is that a user of a search engine is more interested in
the first page of query results than in later pages, so this
measure only considers the first 64 retrieved models for
every query and calculates the precision and recall over
those results. The E-measure [48] is defined as

2
E_l 1’

f-{_
precision  recall

where the maximum score is 1.0 and higher values
indicate better results.

F-measure (also F-score) is a measure of a test’s accu-
racy, and it is the harmonic mean of precision and
recall. The F-measure is defined as

_» precision-recall

F .
precision+recall

This is also known as the F; measure, because recall
and precision are evenly weighted. We summarize the
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Precision

DD method performs better than other shape descriptors.

Figure 7 Precision-recall curves compared with some existing shape descriptors for the MolIMovDB database. The results show that the

retrieval statistics in Table 1 for each method. Examin-
ing the results, we can see that the DD descriptor is
higher in performance compared to other descriptors.

Discussion

Sampling rate

In the first step of the DDSD algorithm, we sample uni-
formly # points on the molecular surface for computing
diffusion distances. Figure 8 demonstrates the variation
of precision-recall curves with increasing sampling rates
n for the MolMovDB benchmark, where n € {50, 100,
200, 300, 400, 500, 1000}. The results suggest that the
high sampling rate performs better than the low one. In
this paper, we choose n = 500 sample points which yield
shape descriptors with low enough variance and high
enough resolution to be useful for our experiments. The
higher sampling rate (e.g. n = 1000) could be used for
pursuing the more accuracy. In addition, some other
non-uniform sampling techniques such as curvature-
adaptive clustering can also be applied to our work by
restricting different stopping criteria, while this leads to
an increase in computation time.

Comparison with other work

Commute time

The diffusion distance metric introduced in this paper is
similar to the average commute time by proposed in
recent studies [32], in which Chennubhotla and Bahar
presented the Markovian stochastic model of informa-
tion diffusion developed for exploring the inter-residue
communication in proteins. The process in [32] is

controlled by transition probabilities for the passage/
flow of information across the nodes, which in turn is
based on the internode affinities derived from atom-
atom contacts in the folded structures. Its key idea is to
measure two basic quantities: hitting time and commute
time, during Markov process of information transfer
across the network of residues. Hitting time H(j, i) is
the expected number of steps it takes to send informa-
tion from residue v; to residue v;, and this may not be
the same as H(i, j). Commute time C(i, j) is by definition
the sum: H(i, j) + H(j, i). Hitting time has directionality,
while commute time does not.

The diffusion distance is based on the eigenvalue
decomposition of the Markov transition matrix, whereas
the hit/commute times are derived from the graph
Laplacian. Although both our work and [32] are essen-
tially based on a Markov random walk on graphs, there

Table 1 Various quantitative measures evaluated on the
MolMovDB database for different methods

Methods F-measure E-measure
DD 41.87% 37.04%
D 39.90% 35.83%
ED 31.04% 28.81%
GD 27.75% 26.42%
SD 31.11% 28.40%
SHD 26.06% 23.93%
SAH 27.86% 25.69%

The results show that our descriptor is higher in performance compared to
others.
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Variation with sampling rate

sampling rate performs better than the low one.
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Figure 8 Variation with increasing sampling rates for the MolMovDB database. The precision-recall curves vary with n uniform sample
points on the molecular surface for testing our method, where n e {50, 100, 200, 300, 400, 500, 1000}. The results suggest that the high

are still some differences between the two works. They
are as follows.

1. The application is different. The diffusion distance
discussed in our paper deals with the surface-based
representation of molecular shape, which is faithful to
the actual physics of molecules and convenient for
our application. We take advantage of diffusion dis-
tances for description of flexible molecular shape.
Our goal is to discern the similarity between mole-
cules for flexible molecular shape comparison, which
is a challenging problem in query-retrieval in molecu-
lar databases. In contrast, the commute times in [32]
deal with elastic network models for describing pro-
tein dynamics. It provides a tool for insights on the
topological basis of communication in proteins and
design principles for efficient signal transduction.

2. The definition is different. The diffusion distance
in our work is defined by an average length of paths
connecting two landmark points on the molecular
surface in a sense of inner distances. In contrast, the
commute times in [32], also named resistance dis-
tance, provide a metric with a means of estimating
effective communication distances between residues
v; and v; for the mean-square distance travelled by a
random walk.

3. The methods are different. Our work is most
related to Coifman’s work [29], and the diffusion dis-
tance is based on the eigenvalue decomposition of

the Markov transition matrix. However the commute
times are derived from the graph Laplacian [32].

The central idea of our work is a combination of dif-
fusion distance with inner distance. As we argued before
in [13], the inner distance as a shape descriptor, is more
appropriate for flexible molecular shape comparison.
And by combing the inner distance and diffusion dis-
tance, we can define a new diffusion distance metric
which can be considered as an average length of paths
connecting two landmark points on the 3D shape in a
sense of inner distances (inside the molecular shape),
this can help resolving the topology sensitivity problem
for molecular shape deformation.
3D Zernike moments
More recently, Grandison et al. [22] proposed the use of
3D Zernike moments to compare molecular shapes. In
contrast to the previous work [9,17], which used 3D
Zernike moments for comparing the shapes of ligands
and proteins, the enhanced method in [22] shows that
not only molecular shapes but also that functions in 3D
space can be represented and compared using this 3D
Zernike technique. In particular, they explored the use
of atomic displacement parameters and the diffraction
precision index to build a 3D flexibility map of proteins
and presented a novel approach to capture this informa-
tion using 3D Zernike moments.

One appealing advantage in [22] is to capture the
varying degrees of flexibility within molecules, especially
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protein structures. Their approach works well for small
conformational changes in proteins, but performs poorly
for large domain movements during protein deforma-
tion. The reason is that the flexibility map of proteins
with small movements can be captured using 3D
Zernike moments, but large motion results in missing
density map [22].

In contrast, our method based on inner distance and
diffusion distance can deal with the comparison between
molecules even with large conformational changes. One
of the limitations of our implementation is that it only
utilizes geometry information of molecular shapes.
Nonetheless other chemistry features, including atomic
displacement parameters and the diffraction precision
index used in Grandison et al.’s work [22], might be
explored in the future. We will discuss the potential
application later.

Laplace-Beltrami operator

In [26], Rustamov introduced a deformation invariant
representation of surfaces, namely the GPS embedding,
using the eigenvalues and eigenfunctions of the Laplace-
Beltrami differential operator. The GPS representation
embeds a surface into a high dimensional space, com-
pared to geodesic multidimensional scaling (MDS)
embedding (i.e. canonical forms) in [23], without using
explicit geodesic distances. The GPS embedding pro-
vides a tool for processing of nonrigid shapes matching,
in particular to local topology changes that is the same
goal to our purpose. To demonstrate the application of
shape matching, Rustamov first computed the GPS
embedding of a given surface, and then found the D2
shape distribution in the embedding surface. Note that
D2 shape distribution is the histogram of pairwise dis-
tances between the points uniformly sampled from the
surface. In the way similar to Rustamov’s method, our
method also embeds a shape into a high dimensional
space based on diffusion map, and find the D2 shape
distribution in the embedding shape.

Although the core procedures (embedding + D2)
between our method and Rustamov’s method are simi-
lar, the embedding step in our method is different. In
Rustamov’s method, the GPS distance between two sam-
ple points can be considered as a particular diffusion
distance in a sense of geodesic distances without explicit
computation of geodesic distances. Bronstein et al. [49]
have shown the relation between Rustamov’s method
and diffusion distances. It is worthwhile to emphasize
our differences. The diffusion distance in our work is
considered as an average length of paths connecting two
landmark points on the molecular shape in a sense of
inner distances.

Our argument for choosing inner distance (ID) instead
of geodesic distance (GD) is that, like ID, GD is invar-
iant to shape articulation deformation, but it is also
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invariant to a broader classes of deformation (bends)
which preserves geodesic metric. The shape can be bent
drastically and ends up with significant structural
changes. Therefore, GD is weak in discriminating power
for handling molecular shapes. On the other hand, ID is
more appropriate since it reflects the essential invariant
property for 3D shape articulation deformation. Mean-
while, ID is also sensitive to concavity/convexity changes
of molecular shapes. This makes ID superior to GD as a
flexible molecular shape representation. Although GD is
insensitive to surface stretching or tearing, it remains
invariant to all inelastic deformations as long as the
deformation preserves geodesic (curve lengths) on the
object boundary. From our experiments we also found
that some molecules with one domain are often judged
as similar to some ones with two or three domains
when using GD descriptors. In the molecule database,
GD can not give good search results as well as com-
pared to ED.

Interior distance

It is worth noting that Rustamov et al. [27] more
recently proposed the interior distance that is an inter-
polation of boundary distance in terms of two points
inside the 3D shape. The interior distance is dependent
on the choosing of metric for pairwise boundary dis-
tance and it propagates the boundary distance into
inside using barycentric coordinate. The pairwise
boundary distance can be geodesic distance, diffusion
distance or even inner distance discussed in [13].

Applications of molecular shape comparison

Molecular shape comparison (MSC) are playing an
increasingly important role in a lot of biological activ-
ities, and DDSD presented in this paper can contribute
to several future applications. One application is to
search molecular databases for computer-aided drug
design [2,3]. Its main goal is to identify compounds that
are complementary to the site in molecular shape. An
alternative technique for mining the information con-
tained in these databases is MSC, which consists of
searching the molecular database for compounds that
most closely resemble the shape of a given query mole-
cule. Some rigid MSC methods have been presented for
this purpose [2,3,5]. For instance, Zauhar et al. [5] pro-
posed a shape signature method for searching the Tri-
pos fragment database and the NCI database. Ballester
et al. [2,3] applied their fast MSC method to retrieve
several compound databases, including the Vendor
Database and an independent benchmark from Drug-
Bank. However the molecular databases may include
some information about the flexibility of the molecule
with its possible conformations, the traditional rigid
methods can not capture the shape similarity of flexible
molecules well. The presented DDSD method may
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directly replace the existing rigid methods for search the
molecular databases.

Another application is protein structure retrieval.
There have been many protein structural comparison
methods presented by computing the similarity scores,
but most of them are based on protein structure align-
ment, such as DALI and CE. We recently presented a
structural comparison method of flexible proteins using
a robust statistics technique [38]. In contrast, the work
in this paper can be applied to a search for similar pro-
tein structures. The main advantage is that the shape-
based protein searching method does not produce any
alignment between two proteins (i.e. correspondence
between amino acids). The third application may be in
cryo-electron microscopy (cryo-EM), where sheer shape
comparison is important for example in discovery of
high resolution structural homologues from cryo-EM
maps [50,51]. The presented MSC method can over-
come the different resolutions by considering both the
geometrical shape and flexibility. For more explanation,
the reader can refer to [13,51].

Limitations

One of the limitations of our method is that it only utilizes
geometry information of molecular shapes. Nonetheless
chemistry features are also useful for matching as in pro-
tein-protein or protein-ligand (drug) docking/design. The
option of including chemistry will reduce the number of
false positive solutions and lead to better ranking. One pos-
sible solution is to combine other characteristics of a mole-
cular surface into the DDSD computation. For instance, we
can incorporate electrostatic potentials into the diffusion
distance descriptor by considering a high dimensional sam-
ple point coordinate. In particular, we can describe a mole-
cular boundary surface by a set of four-dimensional (4D)
points {g; = (x5 i 25 ¢;)}, where x;, ¥;, and z; denote three
geometry coordinates and ¢; is the corresponding charge
value. The inner distance can be computed as the length of
the shortest path between two 4 D points, so the diffusion
distance can be considered as an average length of paths
connecting two 4 D points on the molecular shape in a
sense of inner distances. We plan to consider more chemi-
cal features into our descriptor in the future.

Conclusions

In this paper, we describe a novel method, named
DDSD, for molecular shape comparison (MSC). It is
based on diffusion distances that is an average length of
paths connecting two landmark points on the molecular
shape in a sense of inner distances. The new method
does not require previous alignment of the molecules
being compared. We show that the new method is
robust to deformation of flexible molecules, in particular
to topological changes. In contrast, most existing MSC
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methods are effective for only comparing rigid objects
and they can not capture well shape deformation of flex-
ible molecules. We have evaluated and demonstrated the
effectiveness of our method within a molecular search
engine application for a benchmark on MolMovDB. Our
method achieves good performance and retrieval results
for different classes of flexible molecules. Furthermore,
several potential applications for DDSD were discussed
by replacing the conventional rigid shape descriptors.

We finally summarize the central idea of our work in
this paper. Essentially our work is an improvement of
inner distance with the additional step of calculating the
diffusion distance and utilizing it as a descriptor instead
of the inner distance. The merit of this article comes
from the fact that this descriptor is an improvement
over the inner distance, especially in the cases where
structural topological changes.

The work in this paper only considers the problem of
flexible molecular shape comparison using diffusion dis-
tance shape descriptor. However it is of interest to
address the bigger question of to what degree molecular
flexibility is involved in protein structural-functional
relationships based on the retrieval results, and we leave
this application to for our future work.
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