
METHODOLOGY ARTICLE Open Access

Fast and accurate protein substructure searching
with simulated annealing and GPUs
Alex D Stivala1*, Peter J Stuckey1,2, Anthony I Wirth1

Abstract

Background: Searching a database of protein structures for matches to a query structure, or occurrences of a
structural motif, is an important task in structural biology and bioinformatics. While there are many existing
methods for structural similarity searching, faster and more accurate approaches are still required, and few current
methods are capable of substructure (motif) searching.

Results: We developed an improved heuristic for tableau-based protein structure and substructure searching using
simulated annealing, that is as fast or faster and comparable in accuracy, with some widely used existing methods.
Furthermore, we created a parallel implementation on a modern graphics processing unit (GPU).

Conclusions: The GPU implementation achieves up to 34 times speedup over the CPU implementation of tableau-
based structure search with simulated annealing, making it one of the fastest available methods. To the best of our
knowledge, this is the first application of a GPU to the protein structural search problem.

Background
Searching a database of protein structures for structures
that are similar to, or contain substructures that are
similar to, a query structure is a significant problem in
structural biology and bioinformatics. We can classify
methods for protein structural searches into four cate-
gories. First, methods that align proteins directly at the
level of residues. Dali and DaliLite [1,2] fall into this
category. Second, methods that align proteins at the
level of secondary structure elements (SSEs). Tableau-
Search [3], ProSMoS [4], and the TOPS-based methods
[5,6] fall into this category. Third, methods that perform
an initial alignment at the level of SSEs, and then extend
it to a residue level alignment. VAST [7,8], SSM [9],
LOCK2 [10], and SARF2 [11] fall into this category.
Fourth, methods that do not perform an alignment at
all, but use some other means of providing a similarity
score. YAKUSA [12] and PRIDE [13-15] fall into this
category. Methods in the first category tend to be the
slowest, since they are not necessarily designed solely or
primarily for database scanning, but also to provide a
set of correspondences between residues. Since the

number of residues is naturally much larger than the
number of SSEs, these methods must solve problems of
a larger size than SSE-based methods.
SHEBA [16] and YAKUSA both use a one-dimen-

sional representation of protein structure to accelerate
structural searching. SHEBA uses “environmental pro-
files” containing information about sequence homology
and residue-dependent information such as solvent
accessibility, hydrogen bonds, and side-chain packing,
which is then refined for three-dimensional geometry by
dynamic programming. YAKUSA is a fast method that
uses a one-dimensional representation based on protein
internal angles.
We note that the classification just described is not

strict or even exclusive. For example, we place SHEBA
in the first category since it provides a residue-level
alignment, but it does not do so directly (using its
“environmental profiles” as a first step), so it could be
considered as partly belonging to the fourth category,
with an extra stage bringing it into the first category.
However SHEBA certainly does not belong to the sec-
ond or third categories since it does not perform match-
ing at the SSE level. Note also that any method in the
second category (SSE alignment) can be transformed
into a method in the third category by adding to it

* Correspondence: a.stivala@pgrad.unimelb.edu.au
1Department of Computer Science and Software Engineering, The University
of Melbourne, Victoria 3010, Australia
Full list of author information is available at the end of the article

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

© 2010 Stivala et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:a.stivala@pgrad.unimelb.edu.au
http://creativecommons.org/licenses/by/2.0

some method of extending the SSE alignment to a resi-
due alignment.
Some recent methods use information about SSE

orientation to match proteins by global geometric infor-
mation. TableauSearch and IR Tableau [17] make use of
tableaux [18] to perform rapid and accurate comparison
of whole protein structures. QP Tableau Search [19],
another tableau-based method, is closer to the original
quadratic integer programming (QIP) formulation
defined by Konagurthu et al. [3] and (unlike the other
methods mentioned previously) allows substructure
(motif) searching and non-sequential matchings. The
latter refers to sets of correspondences between SSEs in
which the sequential order of corresponding SSEs is not
preserved. It is, however, considerably slower than most
other (non-alignment) methods. ProSMoS [4] also
makes use of SSE orientations, but takes quite a differ-
ent approach from most other methods. It does not
compare structures against each other, but rather a
query motif is defined by the user as a “meta-matrix”,
which is then used to find structures that contain a sub-
structural motif which matches the query motif thus
defined.
Methods that use SSEs require some method for

assigning secondary structure to proteins. That is, some
method to classify residues in the protein as belonging
to helices (of various kinds) or strands (as part of a b-
sheet), or not part of an SSE. This can be done by a
variety of methods, such as pattern recognition of
hydrogen bonds and geometrical features, as in probably
the best-known method, DSSP [20], or by hydrogen
bonds and statistically derived backbone torsional angle
information as in STRIDE [21]. Assignment of second-
ary structure is not an exact procedure, with various
methods disagreeing about the exact beginning and end
of SSEs, and particular SSEs depart significantly from
the “ideal” model of Pauling and Corey [22-24]. In addi-
tion, using only SSEs means that regions of protein
structure not defined as being part of an SSE are not
used at all, which can lead to less sensitive results. In
some cases, this excludes a structure from being pro-
cessed at all, if the method of assignment determines
that it contains no SSEs. At least a partial solution to
this can be to use a method of defining SSEs that
assigns a larger fraction of the structure to SSEs, as is
done by ProSMoS, which uses the PALSSE method [25],
specifically designed for use in protein structure similar-
ity searching.
Another protein structure comparison method is max-

imum contact map overlap (MAX-CMO), which consists
of finding an alignment of residues in two proteins that
maximizes the overlap between their contact maps. That
is, it maximizes the number of contacts where residues
that are in contact in one protein are aligned with

residues that are also in contact in the other [26]. Since
MAX-CMO operates at the level of residues, it belongs
to the first of the four categories we have described.
MAX-CMO has been solved exactly by various meth-

ods including Lagrangian relaxation [27,28] and branch-
and-bound [29], but these methods are often impracti-
cally slow and so heuristics have been used to approxi-
mate the solution [30]. However, compared to the
MSVNS4MaxCMO heuristic [30], it has been shown
that a tableau-based method is faster and has equal or
greater accuracy in ranking protein similarity [19].
In this paper, we demonstrate SA Tableau Search, a

new heuristic for tableau-based protein structural and
substructure searching based on simulated annealing
[31], and a parallel implementation of it on a modern
general-purpose graphics processing unit (GPGPU). We
compare its accuracy as a fold classification method
with the existing methods DaliLite, SHEBA, VAST,
YAKUSA, SARF2, LOCK2, TOPS, TableauSearch, QP
Tableau Search, and IR Tableau on three different data
sets: a set of 200 queries in the ASTRAL SCOP 1.75
95% sequence identity non-redundant database [32,33],
all-against-all queries in the Fischer data set [34], and
the COPS benchmark [35]. Because SA Tableau Search
has a parameter, the number of restarts of its simulated
annealing schedule, that can be adjusted as a tradeoff
between speed and accuracy, we perform these compari-
sons with a number of different values of this parameter.
Three of the methods we compare SA Tableau Search

with are also tableau-based methods: TableauSearch, QP
Tableau Search, and IR Tableau. Although the tableau-
based methods generally belong to the second category
described above, since tableaux are defined in terms of
SSEs, IR Tableau is an exception, belonging instead to
the fourth class. By reducing the tableau representation
to feature vectors which consist of counts of the number
of different SSE orientation relationships in a structure’s
tableau, IR Tableau can compare structures by cosine
similarity, that is, just the cosine of the angle between
the feature vectors. This is extremely fast, but results in
no alignment of SSEs, only a similarity score. Tableau-
Search is described in the original tableau-based protein
structure searching paper as an approximation to the
maximally-similar subtableaux extraction problem,
which is an NP-hard problem [3]. It uses an alignment-
like approach with two phases of dynamic programming,
and is fast (but not as fast as IR Tableau), but is inher-
ently sequential (it cannot find non-sequential structural
matchings), and cannot find substructure matchings
(motifs). Unlike IR Tableau, however, TableauSearch is
capable of providing a set of correspondences between
SSEs. QP Tableau Search is another method of approxi-
mating a solution to this problem, by relaxing the origi-
nal QIP to a quadratic program (QP) [19]. This means

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 2 of 17

that some of the desirable properties of the original
(exact) formulation are retained, specifically that non-
sequential and substructure matches can be found. In
addition, QP Tableau Search introduces an additional
constraint, that the difference in the distances between
matched SSEs cannot exceed a threshold, which is
found to increase accuracy when used as a protein
structural database scanning method assessed on fold
classification.
Of the methods described so far, only ProSMoS,

TOPS, QP Tableau Search and SA Tableau Search are
capable of substructure (motif) queries, and in fact
ProSMoS is designed specifically to search for manually
defined motifs in a database of structures, rather than
structure similarity searching. In both these cases the
motifs are defined at the SSE (not residue) level. None
of the residue-based methods (such as DaliLite and
SHEBA) are designed to allow a motif (substructure)
query, as they assess structural similarity to find com-
mon regions between two structures and find an opti-
mal superposition. As discussed in the description of
ProSMoS [4], motifs, in contrast, are defined by “the
main-chain topology, and general orientation and pack-
ing of secondary structural elements” [[4], p. 1331].
TOPS allows specification of such motifs, but operates
on topological similarity only, while the QP Tableau
Search and SA Tableau Search algorithms use tableaux,
which are based on SSE orientation, and distance
matrices. ProSMoS makes use of “meta-matrices” which
include information on SSE orientation and contacts
including hydrogen-bonding. Graphics processing units

(GPUs) have recently been used for several bioinfor-
matics applications, such as sequence alignment [36-39],
molecular dynamics [40,41], microarray data analysis
[42], mass spectrometry data analysis [43], and phyloge-
netics [44]. However, despite the large variety of protein
structural search methods and their computationally
intensive nature, to the best of our knowledge this is the
first use of GPUs to accelerate protein structural or sub-
structural searching.

Results and Discussion
Protein structure search (fold classification)
Figure 1 shows the AUC (area under the ROC curve –
see Methods section) and Table 1 shows AUC and
elapsed time for several methods run on a set of 200
queries in the ASTRAL SCOP 1.75 95% sequence iden-
tity non-redundant subset. Run with 128 restarts, SA
Tableau Search is one of the faster methods even on the
host CPU, taking approximately the same time as
YAKUSA: only TableauSearch, TOPS, and (especially)
IR Tableau are faster. Run with 4096 restarts, SA
Tableau Search is one of the most accurate methods,
with AUC not statistically significantly different from
that of SHEBA (Table 2), but considerably slower. Note
that the results for SARF2 are not included for this data
set as it is unable to process a data set this large, and
DaliLite results are omitted, as it exceeds a CPU time
limit of 400 hours.
Considering now the GPU implementation of SA

Tableau Search, we can see that on average the GTX
285 card provides a 33 times speedup (34 times for

Figure 1 AUC for different methods for 200 queries in the ASTRAL 95% data set. Area under the ROC curve (AUC) for different methods
on the 200 query set against the ASTRAL SCOP 95% sequence identity non-redundant database, excluding comparisons of a structure against
itself. Each AUC value is shown with a 95% confidence interval. SA refers to SA Tableau Search (followed by number of restarts) and QP refers to
QP Tableau Search. SARF2 is not present in this graph, as it is unable to process a data set this large, and DaliLite is not present as it exceeds
the CPU time limit.

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 3 of 17

4096 restarts), and the Tesla C1060 card provides on
average a 24 times speedup. SA Tableau Search run
with 4096 restarts on the GTX 285 takes 4 hours and
11 minutes, making it not only one of the most accurate
methods considered, but also one of the fastest. Figure 2
shows that, while elapsed time obviously increases line-
arly with the number of restarts (above 128, the number
run in parallel), the accuracy as measured by the AUC
figure increases much more slowly, and there is no

significant difference between the value for 4096 and for
8192 restarts (Table 2). Hence, although changing the
number of restarts allows a user-selectable tradeoff
between accuracy and speed, one runs into rapidly
diminishing returns for numbers of restarts beyond a
certain point; on this evaluation data set, using more
than 4096 restarts does not increase the AUC, and 512
restarts (taking therefore approximately 1/8 the time of
4096 restarts) is enough to achieve the same accuracy
(within statistical significance at p-value 0.05) as SHEBA
but in just 31 minutes 25 seconds on the GTX 285. On
the host CPU, this takes 17 hours 53 minutes, and
SHEBA takes over 25 hours.
Figure 3, Table 3, and Table 4 show the AUC and

elapsed time for all-against-all queries in the Fischer data
set. This data set is much smaller, but was constructed
specifically to benchmark fold recognition and so contains
structurally similar proteins with very low sequence simi-
larity [34]. In this data set, QP Tableau Search, SHEBA,
DaliLite and LOCK2 all have statistically significantly
higher AUC values than SA Tableau Search, although the
latter when run on a GPU card is considerably faster than
these methods. We find that IR Tableau works particularly
well on this data set, with an AUC not statistically signifi-
cantly different from that of SA Tableau Search, and faster
(on the host CPU) than even SA Tableau Search on the
GTX 285 card (the fastest available to us).
Figure 4, Table 5, and Table 6 show the AUC and

elapsed time for the queries in the COPS benchmark
[35]. DaliLite, SHEBA, YAKUSA, and SARF2 have the
best AUC values for this data set, followed by SA Tableau
Search which has an AUC value not significantly different

Table 1 AUC and elapsed time for 200 queries in the ASTRAL 95% data set

95% confidence interval

Method Platform Restarts Elapsed time AUC Standard error lower upper

SHEBA CPU - 25 h 22 m 0.931 0.004 0.924 0.938

SA Tableau Search CPU 4096 142 h 42 m 0.930 0.004 0.923 0.937

SA Tableau Search GTX 285 4096 4 h 11 m 0.930 0.004 0.923 0.937

SA Tableau Search Tesla C1060 4096 5 h 40 m 0.930 0.004 0.923 0.937

SA Tableau Search CPU 128 4 h 18 m 0.921 0.004 0.913 0.929

SA Tableau Search GTX 285 128 0 h 08 m 0.920 0.004 0.912 0.927

SA Tableau Search Tesla C1060 128 0 h 11 m 0.920 0.004 0.912 0.927

QP Tableau Search CPU - 157 h 51 m 0.914 0.004 0.906 0.922

LOCK2 CPU - 208 h 09 m 0.912 0.004 0.904 0.920

TableauSearch CPU - 1 h 11 m 0.858 0.005 0.848 0.867

TOPS CPU - 1 h 11 m 0.855 0.005 0.845 0.864

VAST CPU - 14 h 26 m 0.855 0.005 0.846 0.865

IR Tableau CPU - 0 h 01 m 0.854 0.005 0.844 0.864

YAKUSA CPU - 4 h 14 m 0.827 0.005 0.816 0.837

Area under the ROC curve (AUC) and elapsed time for different methods on the 200 query set against the ASTRAL SCOP 95% sequence identity non-redundant
database. The table is sorted by AUC descending.

In the Platform column, either a GPU card is described, or CPU, which is a single core of an AMD Quad Core Opteron (2.3 GHz, 32 GB RAM) running Linux.

SARF2 is not present in this table, as it is unable to process a data set this large, and DaliLite is not present as it exceeds the CPU time limit.

Table 2 ΔAUC relative to SA Tableau Search for 200
queries in the ASTRAL 95% data set

Method(s) ΔAUC

SA Tableau Search 4096, SHEBA, SA Tableau Search 8192 0.000

SA Tableau Search 2048 0.0007

SA Tableau Search 1024 0.0012

SA Tableau Seach 512 0.0023

SA Tableau Search 256 0.0039

SA Tableau Search 128 0.0090

QP Tableau Search 0.0160

LOCK2 0.0183

TableauSearch 0.0723

VAST 0.0746

TOPS 0.0756

IR Tableau 0.0761

YAKUSA 0.1034

Difference in AUC relative to SA Tableau Search (4096 restarts) for different
methods on the 200 query set against the ASTRAL SCOP 95% sequence
identity non-redundant database. The table is sorted by ΔAUC, so that
methods with lower AUC than SA Tableau Search (ΔAUC > 0, with p-value <
0.05) are at the bottom of the table. Methods for which there is no
statistically significant difference in AUC from SA Tableau Search (4096
restarts) at p-value 0.05 are shown in a single row with ΔAUC = 0.000.

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 4 of 17

from that of VAST and LOCK2. Although it is the best
performing on AUC, DaliLite is by a considerable margin
the slowest program. In this benchmark, TOPS and the
other tableau based methods have significantly lower
AUC than the other methods.
The Fischer and COPS data sets have quite different

properties. The Fischer data set was designed to bench-
mark fold recognition methods, independent of the
structural similarity score being tested. That is, it was
originally constructed to benchmark methods for assign-
ing a sequence of unknown structure to a known fold.

Part of this benchmark consists of an assignment of pro-
tein sequences to their most compatible fold, on purely
structural criteria, independent of the protein represen-
tation and similarity scores used by the fold recognition
methods to be assessed [34]. This benchmark has since
been used, as we do here, for the somewhat different
purpose of benchmarking methods that compare two
known protein structures, for example in Pelta et al.
[30]. No two proteins in the data set have sequence
similarity over 35% [34], and it is quite small, consisting
of only 68 structures. We perform all-against-all queries

Figure 2 AUC versus elapsed time for SA Tableau Search. AUC versus elapsed time for SA Tableau Search on different platforms for the 200
query set against the ASTRAL SCOP 95% sequence identity non-redundant database. Each data point is an AUC value, and is labelled with the
number of restarts that SA Tableau Search is run with.

Figure 3 AUC for different methods in the Fischer data set. Area under the ROC curve (AUC) for different methods for all-against-all
comparisons in the Fischer data set, excluding comparisons of a structure against itself. Each AUC value is shown with a 95% confidence
interval. SA refers to SA Tableau Search (followed by number of restarts) and QP refers to QP Tableau Search.

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 5 of 17

in this data set, resulting in 4624 pairwise comparisons.
The COPS benchmark, in contrast, was designed to
benchmark sequence similarity database searches, and
true positives in this benchmark are defined by the
COPS classification [35,45]. This classification is defined
by structural similarity according to the TopMatch
structural alignment algorithm [46,47], and so the COPS
benchmark in fact assesses a method according to its
agreement with TopMatch.
We note that in these last two benchmark data sets

(Fischer and COPS), in both cases, four methods have a
statistically significantly higher AUC than SA Tableau
Search. However, it is a different set of four methods in
the two cases, with SHEBA and DaliLite in common.
Hence, given the different purposes of the Fischer and
COPS benchmarks, it would seem that SHEBA and
DaliLite are superior for both “difficult” (distantly
related and low sequence similarity) and “easy” (more
closely related) database searching tasks. YAKUSA and
SARF2 perform better only on the more closely related
searches (or, to be precise, agree more closely with Top-
Match), and LOCK2 and QP Tableau Search perform
better on the more distantly related searches.
In summary, over the three benchmark data sets we

tested, no one method is consistently the best perform-
ing, although SHEBA is consistently in the top two
methods measured by AUC, and it is considerably faster
than DaliLite, the only method that has a higher accu-
racy on one of the benchmarks. All the other methods
tested appear at different ranks in different benchmarks.
SHEBA and SA Tableau Search are the top two ranking

methods, with no statistically significant difference in
AUC (at p-value 0.05), in the ASTRAL 95% 200 query
benchmark. This data set is the largest one, but it also
contains many similar structures and sequences. In all
three benchmark data sets, SA Tableau Search has a
(statistically significantly) higher AUC than TOPS and
TableauSearch, and in all but COPS (where it has a not
significantly different AUC), it has a higher AUC than
VAST.

Table 3 AUC and elapsed time in the Fischer data set

95% confidence interval

Method Platform Restarts Elapsed time AUC standard error lower upper

SHEBA CPU - 03 m 47 s 0.877 0.016 0.845 0.909

DaliLite CPU - 113 m 34 s 0.876 0.016 0.845 0.908

LOCK2 CPU - 32 m 12 s 0.874 0.016 0.842 0.907

IR Tableau CPU - < 1 s 0.859 0.015 0.830 0.888

QP Tableau Search CPU - 52 m 10 s 0.848 0.018 0.813 0.882

SA Tableau Search CPU 4096 12 m 07 s 0.837 0.018 0.801 0.872

SA Tableau Search Tesla C1060 4096 00 m 55 s 0.836 0.018 0.800 0.871

SA Tableau Search GTX 285 4096 00 m 40 s 0.829 0.018 0.792 0.865

SA Tableau Search CPU 128 00 m 25 s 0.822 0.019 0.786 0.859

SA Tableau Search GTX 285 128 00 m 02 s 0.809 0.019 0.771 0.846

SA Tableau Search Tesla C1060 128 00 m 02 s 0.804 0.019 0.767 0.842

SARF2 CPU - 19 m 34 s 0.797 0.020 0.759 0.835

YAKUSA CPU - 00 m 02 s 0.741 0.021 0.700 0.782

TOPS CPU - 01 m 05 s 0.692 0.022 0.649 0.734

TableauSearch CPU - < 1 s 0.662 0.022 0.619 0.705

VAST CPU - 02 m 33 s 0.600 0.022 0.557 0.643

Area under the ROC curve (AUC) and elapsed time for different methods for all-against-all comparisons in the Fischer data set. The table is sorted by AUC
descending. In the Platform column, either a GPU card is described, or CPU, which is a single core of an AMD Quad Core Opteron (2.3 GHz, 32 GB RAM) running
Linux.

Table 4 ΔAUC relative to SA Tableau Search in the
Fischer data set

Method(s) ΔAUC

QP Tableau Search -0.0533

SHEBA -0.0409

DaliLite -0.0399

LOCK2 -0.0379

SA Tableau Search 4096, IR Tableau 0.000

SA Tableau Search 1024 0.0055

SA Tableau Search 128 0.0143

SARF2 0.0398

YAKUSA 0.0954

TOPS 0.1449

TableauSearch 0.1744

VAST 0.2365

Difference in AUC relative to SA Tableau Search (4096 restarts) methods for
all-against-all comparisons in the Fischer data set. The table is sorted by
ΔAUC, so that methods with higher AUC than SA TableauSearch (ΔAUC < 0,
with p-value < 0.05) are at the top of the table, and those with lower AUC
than SA tableau search (ΔAUC > 0, with p-value < 0.05) are at the bottom of
the table. Methods for which there is no statistically significant difference in
AUC from SA Tableau Search (4096 restarts) at p-value 0.05 are shown in a
single row with ΔAUC = 0.000.

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 6 of 17

It is worth noting that QP Tableau Search and SA
Tableau Search use exactly the same formulation of the
protein substructure search problem as the extraction of
maximally-similar subtableaux first described by Kona-
gurthu et al. [3], enhanced by distance difference con-
straints introduced in Stivala et al. [19]. The difference
is in the method of approximation: QP Tableau Search
relaxes the problem to a QP to find a (locally) optimal
solution, while SA Tableau Search, described here, uses
simulated annealing. Not only is the latter method faster
and often more accurate (with sufficient restarts) on the

host CPU than QP Tableau Search, but its simplicity
allows parallelization on GPU cards, which are currently
quite restricted in some respects, such as availability of
sophisticated math libraries. For example, the complex-
ity of QP Tableau Search in its use of an interior point
solver makes it impossible for us to implement a GPU
version. As will be described in detail in the Methods
section, there are two levels of parallelization in our
implementation: first, each restart of the simulated
annealing schedule for a single comparison of two struc-
tures is run in parallel, and second, multiple

Figure 4 AUC for different methods in the COPS benchmark data set. Area under the ROC curve (AUC) for different methods for the COPS
benchmark data set. Each AUC value is shown with a 95% confidence interval. SA refers to SA Tableau Search (followed by number of restarts)
and QP refers to QP Tableau Search.

Table 5 AUC and elapsed time in COPS benchmark data set

95% confidence interval

Method Platform Restarts Elapsed time AUC standard error lower upper

DaliLite CPU - 123 h 29 m 47 s 0.992 0.002 0.989 0.996

SHEBA CPU - 6 h 04 m 16 s 0.978 0.003 0.971 0.984

YAKUSA CPU - 0 h 02 m 25 s 0.975 0.003 0.969 0.982

SARF2 CPU - 13 h 57 m 34 s 0.972 0.004 0.964 0.978

SA Tableau Search CPU 4096 8 h 41 m 18 s 0.957 0.004 0.949 0.966

SA Tableau Search GTX 285 4096 0 h 26 m 59 s 0.957 0.004 0.949 0.966

SA Tableau Search Tesla C1060 4096 0 h 30 m 30 s 0.957 0.004 0.948 0.965

LOCK2 CPU - 72 h 11 m 06 s 0.954 0.005 0.945 0.962

SA Tableau Search CPU 128 0 h 15 m 17 s 0.951 0.005 0.942 0.960

VAST CPU - 1 h 37 m 53 s 0.950 0.005 0.941 0.959

SA Tableau Search Tesla C1060 128 0 h 03 m 00 s 0.948 0.005 0.939 0.958

SA Tableau Search GTX 285 128 0 h 03 m 02 s 0.947 0.005 0.938 0.957

QP Tableau Search CPU - 74 h 47 m 43 s 0.925 0.006 0.914 0.936

TOPS CPU - 0 h 18 m 25 s 0.881 0.007 0.868 0.894

IR Tableau CPU - < 1 s 0.845 0.008 0.831 0.860

TableauSearch CPU - 0 h 18 m 07 s 0.840 0.008 0.825 0.855

Area under the ROC curve (AUC) and elapsed time for different methods on the COPS benchmark data set. The table is sorted by AUC descending. In the
Platform column, either a GPU card is described, or CPU, which is a single core of an AMD Quad Core Opteron (2.3 GHz, 32 GB RAM) running Linux.

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 7 of 17

comparisons between a single query and multiple data-
base structures are run in parallel. Any database scan-
ning method can be trivially parallelized in the second
way, since each pairwise comparison is independent; to
implement this at all on a GPU requires that the
method is capable of being implemented within the lim-
ited computational and fast memory resources of the
GPU. Since there is no recursion and no dynamic mem-
ory allocation in the NVIDIA CUDA programming
model [48], this can make implementing sophisticated
algorithms such as those required for pattern searching
in YAKUSA [12], for example, extremely difficult, if not
impossible. Even where this is possible, since the GPU is
essentially a data-parallel architecture [48], efficient
implementations require that essentially the same code
path is run simultaneously in a large number of threads,
just with different data. The more threads diverge in
their code path, the less efficient the parallelization will
be, another reason why very simple algorithms are more
suited to such parallelization. An efficient parallel imple-
mentation on a GPU requires in addition a “fine-
grained” level of parallelization, in order to maximize
the usage ("occupancy”) of the thread multiprocessors
[48] and the small amount of fast shared memory that
this finer level of parallelization has access to. SA
Tableau Search is ideally suited to this architecture
since its data (tableaux and distance matrices) are
shared between the threads running each restart of the
simulated annealing schedule independently, and are
usually small enough to fit in the fast shared memory. It
may be possible to parallelize SHEBA in a similar man-
ner. However, assuming a similar two-level paralleliza-
tion, where the coarser level is to run multiple
comparisons independently in parallel, and the finer

level is to parallelize each comparison, this would
require a parallelization of both the dynamic program-
ming procedure and the three-dimensional translation
and rotation procedure used iteratively by SHEBA [16].
This is a much more challenging task than simply run-
ning the multiple restarts of SA Tableau Search in
parallel.

Substructure queries
Evaluating the accuracy of substructure (motif) queries
in a quantitative and objective way such as AUC is quite
challenging; there is no database such as SCOP to pro-
vide a set of all true occurrences of a motif in general.
We therefore provide two examples where we can pro-
vide such an evaluation: the b-grasp motif from ubiqui-
tin [49], and the serpin (serine protease inhibitor) B/C
sheet substructure [50]. We perform these queries in
the ASTRAL SCOP 1.75 95% sequence identity non-
redundant database.
In evaluating the accuracy of a substructure query for

the b-grasp motif, we use the data from Table 1 of Shi et
al. [4] as the gold standard. A hit is considered a true
positive if it is in the same SCOP superfamily as the
exemplars listed in Table 1 of Shi et al. [4] for the b-
grasp core and gregarious fold [51] categories, or if it is
one of the structures considered by Shi et al. [4] to con-
tain the b-grasp motif by structural drift [52]. We
demonstrate two queries for this test. First we use ubiqui-
tin (SCOP identifier d1ubia_), an exemplar of the b-
grasp fold, as the query. Second, we use a subset of the
SSEs, namely the four largest strands and the a-helix in
d1ubia_, chosen to represent the essential part of the
b-grasp motif. This motif query is based on that defined
by Shi et al. [4] as a “meta-matrix” for ProSMoS. These
query structures are illustrated in Figure 5.
The serpin B/C sheet substructure (see Figure 5) is

such a large and specific structure that we can be confi-
dent it is truly present only in instances of the serpin
fold. Therefore, in evaluating the accuracy of a substruc-
ture query for this substructure, we consider a hit a true
positive if it is a member of the serpin fold in SCOP,
and a false positive otherwise. We choose the B/C sheet
of the canonical active serpin, a1-antitrypsin, PDB id
1QLP[53] as the query structure.
Of the protein structure comparison methods bench-

marked in this paper, only QP Tableau Search, SA
Tableau Search, TOPS and ProSMoS are also substruc-
ture (motif) finding methods. However, comparison
using AUC with ProSMoS is not possible as ProSMoS
does not rank all database structures. Instead, it returns
a set of structures that contain the query motif. The
web server version [54] provides a ranking within this
set only, the downloadable version provides no scores or
ranking.

Table 6 ΔAUC relative to SA Tableau Search in the COPS
benchmark data set

Method(s) ΔAUC

DaliLite - 0.0349

SHEBA - 0.0201

YAKUSA - 0.0180

SARF2 - 0.0140

SA Tableau Search 4096, VAST, LOCK2 0.000

SA Tableau Search 128 0.0064

QP Tableau Search 0.0325

TOPS 0.0764

IR Tableau 0.1120

TableauSearch 0.1172

Difference in AUC relative to SA Tableau Search (4096 restarts) methods on
the COPS benchmark data set. The table is sorted by ΔAUC, so that methods
with higher AUC than SA Tableau Search (ΔAUC < 0, with p-value < 0.05) are
at the top of the table, and those with lower AUC than SA tableau search
(ΔAUC > 0, with p-value < 0.05) are at the bottom of the table. Methods for
which there is no statistically significant difference in AUC from SA Tableau
Search (4096 restarts) at p-value 0.05 are shown in a single row with ΔAUC =
0.000.

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 8 of 17

Table 7 shows the results of these substructure
queries. We can see that, compared to QP Tableau
Search, SA Tableau Search has similar accuracy, and is
up to 6 times faster on the CPU implementation. The
GPU implementation (on the GTX 285 card) is faster
still, providing a speedup of up to 26 times over the
CPU implementation of the same algorithm.
It should be noted that (as described in the Methods

section), d1ubia_ is one of the queries used in tuning
the simulated annealing parameters. For that purpose it
was evaluated as a fold recognition task, rather than as a

substructure query. Hence SA Tableau Search could not
be expected to perform badly on the d1ubia_ query as
it has been in some part optimized for this query. This
is not the case, however, for the serpin B/C sheet
substructure.

Conclusions
We have demonstrated a simulated annealing heuristic
for tableau-based protein structure and substructure
searching, that is as fast or faster, and comparable in
accuracy, with some widely used existing methods when

Figure 5 substructure (motif) queries. d1ubia_ (all SSEs) and b-grasp motif query (darker shaded SSEs only) structures (left), and 3D
structure of the canonical active serpin, a1-antitrypsin, PDB id 1QLP, showing the B/C sheet used as the substructure query as the darker shaded
SSEs (right). Images created with PyMOL [81].

Table 7 AUC and elapsed time for some motif (substructure) queries

95% confidence interval

Query Method Platform Restarts Elapsed time AUC standard error lower upper

d1ubia_ SA GTX 285 128 00 m 03 s 0.918 0.011 0.896 0.940

d1ubia_ SA CPU 128 01 m 17 s 0.912 0.011 0.890 0.935

d1ubia_ QP CPU - 05 m 11 s 0.902 0.012 0.879 0.926

d1ubia_ TOPS CPU - 00 m 10 s 0.894 0.012 0.870 0.918

b-grasp SA CPU 128 01 m 11 s 0.939 0.010 0.920 0.958

b-grasp QP CPU - 02 m 01 s 0.938 0.010 0.918 0.957

b-grasp SA GTX 285 128 00 m 03 s 0.934 0.010 0.914 0.954

b-grasp TOPS CPU - 00 m 09 s 0.847 0.014 0.819 0.875

serpin B/C sheet SA GTX 285 128 00 m 03 s 0.993 0.013 0.968 1.019

serpin B/C sheet SA CPU 128 01 m 19 s 0.991 0.015 0.962 1.021

serpin B/C sheet QP CPU - 08 m 16 s 0.986 0.019 0.949 1.023

serpin B/C sheet TOPS CPU - 00 m 24 s 0.491 0.054 0.385 0.597

Area under the ROC curve (AUC) and elapsed time for some motif (substructure) queries on the ASTRAL SCOP 95% sequence identity non-redundant database.
In the Method column, QP refers to the QP Tableau Search method, SA refers to SA Tableau Search. In the Platform column, either a GPU card is described, or
CPU, which is a single core of an AMD Quad Core Opteron (2.3 GHz, 32 GB RAM) running Linux. The results for each query are sorted by AUC descending.

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 9 of 17

run on a standard CPU. In addition, we have provided a
parallel implementation on modern GPU cards that
achieves a speedup of up to 34 times over the CPU
implementation, making it one of the fastest available
methods. To the best of our knowledge, this is the first
application of GPUs to the protein structural search
problem.
There may well be scope for application of this techni-

que to other optimization problems in bioinformatics
that can be approximated by relatively simple optimiza-
tion heuristics capable of being parallelized by imple-
mentation on a GPU. For example, the multistart
variable neighborhood search (VNS) heuristic for maxi-
mum contact map overlap [30], or some other heuristic
such as simulated annealing for the same problem,
could benefit from parallelization on the GPU. Another
candidate problem of much current interest is biological
network alignment, a highly computationally intensive
problem that has previously been solved by quadratic
programming [55], and has recently been approximated
by local search heuristics [56] amongst other methods.

Methods
Tableaux and distance matrices
A tableau is a discrete encoding of the orientation
matrix for a protein structure, originally defined by Lesk
[18]. Other work has shown that tableaux can accurately
differentiate folds [57], and can be used for rapid pro-
tein structural comparison [3,17] and for protein sub-
structural search [19].
The orientation matrix is a square symmetric matrix

describing the relative orientation of secondary structure
elements (SSEs) in the protein. Each element ωij, 1 ≤ i, j
≤ N of the orientation matrix for a structure with N
SSEs is the relative angle between SSEs i and j, num-
bered from the N- to the C-terminus. This matrix is
computed by fitting axes to each SSE, and, for every
pair of SSEs, computing the relative angles between
their axes. This interaxial angle is defined as the smallest
angle required to reorient one axis vector so that it
eclipses the other, around the mutual perpendicular
between the two vectors; or, equivalently, the angle
between the two vectors projected onto a plane normal
to their mutual perpendicular [3].
The tableau is derived from the orientation matrix by

means of a double-quadrant encoding scheme whereby
the angles are classified into quadrants in two different
ways that differ in orientation by π/4. This prevents a
small variation in angle resulting in two completely dif-
ferent encodings [18], illustrated in Figure 6. For exam-
ple, consider two SSEs that are anti-parallel; they may
have an interaxial angle of, say, 143° The first part of
the encoding scheme gives the tableau code as O (anti-

parallel), and the second part as T, resulting in a tableau
code OT for this angle.
We will denote the N × N tableau for a structure with

N SSEs by T , with elements tij , 1 ≤ i, j ≤ N being
tableau codes such as PE or OS. Because the tableau is
symmetric, only the bottom triangle is stored, and since
the main diagonal is redundant (the angle between an
SSE and itself), it is used to store the type of the SSE for
that row and column. Consider the two helices in Figure
7: they are anti-parallel, and have the tableau code OT.
This can be seen by finding the two helix codes (xa) on
the main diagonal. The helices in this structure are the
2nd and 5th SSEs, so the angles relative to these two
SSEs are in row (and column) 2 and 5 of the tableau.
Hence the entry for the angle between these two helices
is their common row and column, which is OT. In fact,
they have an interaxial angle of approximately 143°.
For a structure with N SSEs, the distance matrix is a

square symmetric matrix D = (dij), 1 ≤ i,j ≤ N where
each element is the distance (in Ångströms) between
the centroids of the Ca atoms in SSEs i and j. As with
tableaux, these distance matrices apply to SSEs, not
residues.
As originally defined by Lesk [18], and Kamat and

Lesk [57], tableaux only contain entries for SSEs that
are “in contact” with each other, that is, the correspond-
ing entry in the distance matrix is below some thresh-
old. In this paper, as in Konagurthu et al. [3] and Stivala
et al. [19], we use a version of tableaux in which every
entry has a value, regardless of the distance between the
two SSEs.

The tableau matching problem
The problem of finding a common (maximally-similar)
substructure between two protein structures was formu-
lated as a quadratic integer problem (QIP) of extracting
maximally-similar subtableaux by Konagurthu et al. [3].
We use the same formulation here, using only the dis-
crete tableau, not the continuous orientation matrix,
and, as in our previous work [19], we also incorporate a
distance matrix difference constraint (Equation 7).
Define Boolean variables xij , 1 ≤ i ≤ NA, 1 ≤ j ≤ NB

where xij = 1 indicates that the ith SSE in structure A is
matched with the jth SSE in structure B. Let T tA ij

A= ()
and T tB ij

B= () be tableaux for protein structures A and
B with NA and NB SSEs, respectively. Define a scoring
function as:

 (,)

,

,

, .

t t

t t

t tik
A

jl
B

ik
A

jl
B

ik
A

jl
B=

≡

−

⎧

⎨
⎪⎪

2

1

2

if

if

otherwise



⎩⎩
⎪
⎪

(1)

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 10 of 17

where t tik
A

jl
B≡ means the two tableau codes are iden-

tical, and t tik
A

jl
B means they differ in only one

quadrant.
Then the QIP is:
maximize

f x t t xik
A

jl
B

ij klX

i k NA j l NB

() (,)

, , ,

=
≤ ≤ ≤ ≤

∑ 
1 1

(2)

subject to

x i Nij

j

N

A

B

=
∑ ≤ ≤ ≤

1

1 1, (3)

x j Nij

i

N

B

A

=
∑ ≤ ≤ ≤

1

1 1, (4)

Constraints (3) and (4) ensure that each SSE in one
tableau is matched with at most one SSE in the other.
We introduce a further condition: that two SSEs of dif-
ferent types (for example an a-helix and a b-strand)
should not be matched, for which we use the SSE type
information encoded on the diagonal of the tableau. We
may optionally avoid non-sequential matchings by for-
bidding matches between SSEs whose indices i, k in one
structure and j, l in the other satisfy both of the follow-
ing inequalities:

1 ≤ < ≤i k N A (5)

Figure 6 Double-quadrant encoding of orientations. The relative orientation of any two SSEs is encoded as a two-character string with the
two quadrant schemes shown, which differ in orientation by 45° in order to prevent small variations resulting in completely different encodings.
The first quadrant encoding is labelled P, O, L, R for parallel, anti-parallel, crossing-left, and crossing-right, respectively, and the second arbitrarily
E, D, S, T[18]. For example, two SSEs that are anti-parallel would be encoded as either OS or OT.

Figure 7 Cartoon (left) and tableau (right) for acylphosphatase, PDB identifier 1APS. The main diagonal denotes the SSE type by e, xa,
xi, or xg for b-strands, a-helices, π-helices, and 310-helices, respectively. The cartoon was created with PyMOL [81].

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 11 of 17

1 ≤ < ≤l j NB (6)

Without this condition, non-sequential matchings can
be found.
In order to avoid false positives when SSEs in two

structures have similar orientations relative to other
SSEs in their respective structures, but are at very differ-
ent distances from those other SSEs, we use a distance
difference constraint [19], disallowing matches between
SSEs where the difference in distances between the SSEs
exceeds a threshold distance τ :

x x d d
i k N

j l Nij kl ik
A

jl
B A

B
+ ≤ − >

≤ ≤
≤ ≤

1
1

1
if | | ,

,

,
 (7)

where D d i k NA
ik
A

A= ≤ ≤(), ,1 and D d j l NB
jl
B

B= ≤ ≤(), ,1

are SSE midpoint distance matrices. We show here a
heuristic for approximating an optimal solution of this
problem that retains the capability, like QP Tableau
Search, of finding substructure and non-sequential
matchings, but is as fast or faster than many existing
methods, and is capable of parallelization on appropriate
hardware for even greater speed.
We use the well-known and relatively simple techni-

que of simulated annealing, whereby the system has a
global “temperature” that controls the probability of
accepting a state change that does not improve the cur-
rent objective function value. This helps prevent the sys-
tem from becoming trapped in a local maximum. The
temperature is decreased as the simulation progresses,
so that such non-improving moves become less likely
over time.

CUDA
Modern graphics processing units (GPUs), often
referred to as general-purpose GPUs (GPGPUs) in the
context of applications other than graphics rendering,
are highly parallel multithreaded processors, which can
greatly accelerate data-parallel applications. We use
here the NVIDIA CUDA programming model [48],
which provides extensions to the C programming lan-
guage in order to make use of NVIDIA GPUs. The
CUDA model allows C functions called kernels to run
in parallel on the GPU as threads. The threads are
arranged in a hierarchy such that a fixed number of
threads makes up a block of threads, and in turn a
fixed number of blocks makes up a grid. Each block
has a small (16 KB on the cards used in this paper)
amount of shared memory, accessible by threads in
that block only, which is as fast as register access. In
contrast, the (large) global memory of the GPU, acces-
sible by all threads, has very high latency. The local
memory for each thread, not shared by any other, also
has high latency. There is also a (small) constant

memory, which all threads can read with low latency.
It is therefore important to optimize the memory
access pattern of kernels, and make the best use of the
limited shared memory [48,58].

Application of simulated annealing to the problem
Each structure in the database to be searched, and each
query, is represented by its tableau and distance matrix.
These tableaux and distance matrices are generated in
advance.
We now describe the application of simulated anneal-

ing to the problem of extracting maximally-similar
subtableaux.
The state (or configuration) of the system for match-

ing structure A with NA SSEs and structure B with NB

SSEs, represented by tableaux TA and TB , respectively,
is represented by a vector v of dimension NA, where vi
= j, 1 ≤ i ≤ NA, 0 ≤ j ≤ NB indicates that the ith SSE in
structure A is matched with the jth SSE in structure B,
or, if vi = 0, that the ith SSE in A is not matched with
any SSE in B. The nonzero elements of v, regarded as a
set, are constrained to be a subset of {1,..., NB}, so that
each SSE in a structure is matched with at most one
SSE in the other. This is achieved by constraints (3) and
(4) in the QIP formulation. We can (optionally) forbid
non-sequential matchings by ensuring that the nonzero
elements of v, considered as a sequence, are strictly
increasing, that is, i <k ⇒ vk = 0 ∨ vi <vk, 1 ≤ i, k ≤ NA.
Then, also incorporating the distance difference con-

straint, the objective function g(v), that we seek to maxi-
mize, becomes

g v
t tik
A

jl
B

d d

v j v l

ik
A

jl
B

i k

() =
()⎧

⎨
⎪

⎩⎪
− ≤

= ∧ = ∧


, ,

,

if

otherwise01≤≤ ≤
≤ ≤

∑
i k N
j l N

A
B

,
,1

(8)

Note that this can then be computed efficiently, in
O()NA

2 time, by a nested iteration over the v vector,
since the summand is nonzero only when vi = j Λ vk =
l, that is, we need only consider values of j and l that
are actually present in the v vector.
We set a random initial state of the system by match-

ing, with probability pm, each SSE in structure A with
the first SSE of the same type (helix or strand) in struc-
ture B, in sequence from 1 ... NA and 1 ... NB . At each
iteration, the “move” to a neighbor state is generated by
choosing uniformly at random an SSE, i, in structure A
and changing its mapping to a random SSE, j, in struc-
ture B, from the set of such SSEs that satisfy the type
and (optionally) ordering constraints on the mapping,
giving a new state v’ If no SSE in structure B that meets
the constraints can be found, the SSE that was chosen is
removed from the mapping, that is we set ′ =vi 0 .

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 12 of 17

The simulated annealing algorithm proceeds by effi-
ciently computing the new value of the objective func-
tion (Equation 8) and accepting the new state if the new
value of the objective g(v’) is greater than the maximum

so far found, or if exp()
g v g v

T p
’()− () > where p is a ran-

dom number in [0,1] and T is the current temperature
of the system. The temperature is multiplied by the con-
stant a for the next iteration. After the maximum num-
ber of iterations is reached, the state with the maximum
value of the objective function found is returned as the
best state.
The recomputation for a new state of the value of the

objective function is computed in only O(NA) time by
computing the difference in the value caused by the
new SSE matching, rather than directly recomputing
Equation 8. That is, the contribution to the score of the
previous matching of the SSE i that was chosen to be
changed is subtracted, and the contribution of its new
mapping (or 0, if it is removed from the mapping) is
added.
We optimize the simulated annealing parameters by

using the eight folds in Table 1 of Stivala et al. [19] as
queries against the ASTRAL SCOP 1.75 95% sequence
identity non-redundant database as a training set, manu-
ally adjusting them to maximize the average AUC of
these queries. We find that suitable values for these
parameters are initial temperature T0 = 10, temperature
multiplier a = 0.95, number of iterations 100, and initial
SSE matching probability pm = 0.5. In addition, the
entire simulated annealing process is run M times (by
default, M = 128), and the best solution over all runs is
returned. We use the same value τ = 4.0Å for the dis-
tance difference threshold as in Stivala et al. [19].
Tableau search implementations produce unnorma-

lized scores, namely, a (locally) optimal value of the
tableau scoring function. For comparing sets of pairwise
scores between proteins of different sizes, a normaliza-
tion function is required. We use the normalization
function norm2 from Pelta et al. [30], which we found
in our previous work [19] to be the best of the three
normalization functions defined there:

norm
score

size size
2 2(,)

(,)

() ()
P P

Pi Pj
Pi Pj

i j = ⋅
+

(9)

where score is the tableau matching score and size is
the number of SSEs (tableau dimension).

Parallel implementation on a GPU
As well as its simplicity, another advantage of a simu-
lated annealing heuristic such as that just described is
that it is easily parallelizable. We run the M restarts of

the simulated annealing schedule in parallel rather than
serially. In addition, since in a structural database search
the query is compared to many structures in the data-
base, another level of parallelization is to compare the
query to many database structures simultaneously. This
two-level parallelization maps well to the CUDA pro-
gramming model: each thread in a block of B threads
runs the simulated annealing schedule, each from an
independent random initialization, for a single compari-
son of the query to a database structure, and the grid of
G blocks therefore executes G such comparisons simul-
taneously. That is, the query structure is compared to G
database structures in parallel. If M > B then the B par-
allel executions of the simulated annealing process are
repeated until all M restarts of the simulated annealing
schedule have been run.
The entire database of tableaux and distance matrices

is loaded into the (large) global memory, and the query
structure (tableau and distance matrix) is loaded into
the constant memory where it can be quickly read by all
threads. Each block of B threads first parallel copies
(that is, each thread copies one or more memory loca-
tions in parallel) the database tableau and distance
matrix into shared memory for fast access during the
actual simulated annealing process. The G blocks in the
grid perform comparison of the query against G data-
base structures simultaneously. For databases with more
than G structures, this process is repeated until the
whole database has been processed. By using the CUDA
occupancy calculator [[58], Ch. 4] and some experimen-
tation, we determine good values for G and B of 128
(for both), that is, a total of 16384 threads.
Because the size of the constant and shared memory is

so small (16 KB on the graphics cards we used for this
paper), structures in which the combined size of the
tableau and distance matrix exceed this limit present a
problem. We solve this problem by compiling two ver-
sions of the kernel, one of which uses shared memory
for database structures and constant memory for query
structures, and the other which leaves them both in the
global memory. The shared memory is still used for the
vector of maximum scores found in each thread, and
the vector of SSE types (helix, strand) copied from the
main diagonal of the tableau. The latter kernel is slower
than the kernel using shared and constant memory, but
removes any limitation on the size of structures that can
be processed. A third version of the kernel is compiled
for execution on the host CPU, running the same code
as the kernel but without any GPU extensions and
purely single-threaded.
An alternative solution is to process the structures too

large for the shared memory on the host CPU simulta-
neously with the GPU processing the smaller structures.
However we find that it is faster to run the two kernels

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 13 of 17

serially on the GPU, even though of 16602 tableaux and
distance matrices in the ASTRAL SCOP 1.75 95%
sequence identity non-redundant database, only 668 are
too large for the shared memory. Because the CUDA
library does not contain an equivalent of the standard C
library function rand() or similar, we use the CUDA SDK
implementation [59] of the Mersenne Twister [60] pseu-
dorandom number generator. We use the dynamic crea-
tion program [61] to create parameters to enable 16384
different Mersenne Twister pseudorandom number gen-
erators (one for each of the maximum number of threads
we use on the GPU). Because the use of double precision
floating point causes a considerable performance penalty
on the GPU [58], we use only single precision.
An additional technique we use to increase the

speedup on the GPU is to presort the tableau and dis-
tance matrix database by size, so that structures of simi-
lar size are processed simultaneously, thereby ensuring
that the running times of blocks in the grid are as close
as possible. A similar technique was used successfully by
Manavski and Valle [37] for their CUDA acceleration of
the Smith-Waterman [62] algorithm.

Evaluation
We compute tableaux and distance matrices for all
16712 domains in the 95% sequence identity non-redun-
dant subset of the ASTRAL SCOP 1.75 database [32,33].
This results in 16602 structures in our database, since
110 are omitted as DSSP [20] finds no SSEs for them.
We define a set of 200 queries chosen from the

ASTRAL SCOP 1.75 95% sequence identity non-redun-
dant data set. The queries are chosen at random, so that
each class (a, b, a/b, a + b) is represented in the query
set in the same ratio as it is in the database. This set is
based on that defined in Stivala et al. [19] for ASTRAL
SCOP 1.73; 14 structures in that set are no longer pre-
sent in ASTRAL SCOP 1.75 and are replaced by others
in the same superfamily. The list of queries is available
with the source code and other data as described in the
Availability section.
The Fischer data set, described in Table 2 of [34],

consists of 68 proteins, from the classes a, a/b, b, a +
b, and “other” (mixed a and b, and small proteins). We
choose to benchmark on this data set as it contains pro-
teins of very low sequence similarity and was con-
structed specifically to benchmark fold recognition
methods, although it has since been used to benchmark
protein structural comparison methods as well (for
example in Pelta et al. [30]). All the major super families
are included in the benchmark [34]. Several PDB identi-
fiers in this table have since been obsoleted, and we
replace these with their new versions according to the
RCSB PDB website [63,64]. We perform an all-against-
all comparison in this data set.

The COPS Benchmark 2009/6 data set [35] consists of
a database of 1056 structures and a query set of 176
structures. The queries are not present in the database,
and each query has exactly six true positives, structurally
similar according to the COPS classification [45], but
lacking a high degree of sequence similarity. This bench-
mark is designed to benchmark sequence similarity
database searches, and true positives in this benchmark
are defined by structural similarity according to the
TopMatch structural alignment algorithm [46,47].
Comparisons of a query against itself are excluded

from the results. Note that this can only occur where
the query structures are also present in the database, as
in the ASTRAL 95% 200 query set and the Fischer data
set. It does not occur in the COPS benchmark, where
the query structures are not present in the database.
Comparisons for which a method can provide no score
are assigned an arbitrary value which is at least as low
as the lowest provided score for that method.
In the ASTRAL 95% 200 query set, we evaluate the

accuracy of structural search by counting a hit (a score
above the threshold) as a true positive if the structure is
in the same SCOP fold as the query structure, and a
false positive otherwise. For the Fischer data set, a true
positive is counted when the score is above the current
cutoff and the two structures are in the same fold
according to Table 2 of [34]. For the COPS benchmark
data set, the true positives are defined by COPS as
described above.
For substructure search, true positives are defined by

Table 1 of Shi et al. [4] for the b-grasp query, and by
counting a hit as true positive only when it is to a struc-
ture in the “Serpins” fold according to SCOP for the ser-
pin B/C sheet query.
We can then compute the true positive rate (TPR), or

sensitivity, as TPR TP
N= where TP is the number of

true positives and N is the number of structures that
match the query according to the gold standard. The
false positive rate (FPR), which is equal to 1 - specificity,

is FPR FP
TN FP= + where FP is the number of false posi-

tives and TN is the number of true negatives. We then
construct a ROC curve by plotting the TPR against the
FPR for all values of the score threshold. The area
under the ROC curve (AUC) is an overall measure of
the quality of a classification method; a perfect classifier
has AUC = 1.0, and a random classifier has AUC = 0.5.
When multiple queries, such as the 200 query set, are

being evaluated in one ROC curve, all the scores are
combined together (after normalization, if required),
with each labelled as either a positive or negative
according to the appropriate gold standard. That is,
each individual query has a list of scores, one for each

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 14 of 17

entry in the database. Each one of these entries is either
positive or negative according to the relevant gold stan-
dard, that is, each individual database entry either is, or
is not, in the same fold as the query. So each query has
a set of tuples (s, P) where s is the score for that pair-
wise comparison and P is a Boolean variable that is
True if the query and that database entry are in the
same fold according to the gold standard for the data-
base being used, and otherwise False. Each of these sets
of tuples (one for each query) are then all combined
into one large set. The ROCR package [65] in R [66] is
then used to plot ROC curves and compute the Area
Under the ROC Curve (AUC). 95% confidence intervals
for the AUC values are calculated by the Hanley-McNeil
method [67]. The statistical significance of ΔAUC values
at p-value 0.05 are calculated with a nonparametric
approach [68] using the StAR program [69].

Implementation
We use the CUDA C compiler nvcc version 2.3, CUDA
SDK version 2.3, and GNU C compiler gcc version
4.3.4. Host code is run on an AMD Quad Core Opteron
(2.3 GHz, 2 processors, 32 GB RAM) running Linux.
We use two GPU cards: an NVIDIA Tesla C1060 (4 GB
global memory, 30 multiprocessors, 240 cores, 1.30
GHz) and an NVIDIA GeForce GTX 285 (1 GB global
memory, 30 multiprocessors, 240 cores, 1.48 GHz). Both
run the CUDA Driver and Runtime version 2.30. Scripts
for generating tableaux and distance matrices and build-
ing the database, evaluating results against SCOP, and
processing output for visualization are written in
Python. We use the BioPython library [70] and the Bio.
PDB file parsing and structure class [71] to parse PDB
files and the Bio.SCOP interface [72] to read SCOP and
ASTRAL data. For comparisons with other methods,
SHEBA version 3.1.1, VAST downloaded from [73],
YAKUSA downloaded from [74], the TOPS matching
software downloaded from [75], DaliLite version 2.4.5,
LOCK2 [10] downloaded from [76], and SARF2 [11]
downloaded from [77] are used. We build the TOPS
database for the ASTRAL SCOP 1.75 95% sequence
identity non-redundant subset using TOPS downloaded
from [78] (July 2007). A version of QP Tableau Search
which uses the MA57 sparse symmetric solver [79,80] is
used; this is considerably faster than the original imple-
mentation. The QP Tableau Search implementation is
compiled with the Intel Fortran compiler (version 11.0).
Default parameters are used for all programs, except
that the -n option is used on YAKUSA to output a
score for all database structures rather than just the top
50 hits. In computing the ROC curve, YAKUSA and
DaliLite results are ranked by their Z-scores, SHEBA
results by the SHEBA m value, LOCK2 results by native
LOCK2 score, VAST results by Pcli value, TOPS results

by native ("compression”) score, and IR Tableau results
by cosine similarity score. Normalization is only
required for SA Tableau Search, QP Tableau Search and
TableauSearch; results from these methods are ranked
according to their scores normalized by Equation 9.
SARF2 does not provide a matching score as such, but
rather the number of residues aligned and the RMSD of
the aligned residues. To combine these into a matching
score, we use the SSM Q score [9]:

Q
Nalign

R N N
=

+

2

1 0
2

1 2((/))RMSD
(10)

where Nalign is the number of residues aligned, RMSD
is the root mean square deviation (in Ångströms)
between these residues, and R0 = 3.0Å is an empirical
parameter taken from [9].
We re-implement the IR Tableau [17] algorithm in

Fortran 77, and compile it with the same compiler as
QP Tableau Search.
For substructure (motif) queries with TOPS, the motif

queries are constructed by editing the TOPS cartoons
with the EditTops program and manually editing the
resulting TOPS string.

Availability and Requirements
• Project name: SA Tableau Search.
• Project home page: http://www.csse.unimelb.edu.
au/~astivala/satabsearch
• Operating system(s): Linux, with NVIDIA CUDA
Driver and Runtime version 2.30.
• Programming language: C, with NVIDIA CUDA
extensions using the CUDA C compiler nvcc ver-
sion 2.3 and CUDA SDK version 2.3, and GNU C
compiler gcc version 4.3.4.
• Licence: None. This software can be used freely for
any purpose.
• Any restrictions to use by non-academics: None.

Acknowledgements
This research made use of the Victorian Partnership for Advanced
Computing HPC facility and support services. AS is supported by an
Australian Postgraduate Award. NICTA is funded by the Australian
Government as represented by the Department of Broadband,
Communications and the Digital Economy and the Australian Research
Council.

Author details
1Department of Computer Science and Software Engineering, The University
of Melbourne, Victoria 3010, Australia. 2National ICT Australia Victoria
Laboratory at The University of Melbourne, Victoria 3010, Australia.

Authors’ contributions
All authors contributed to the algorithm and evaluation design. AS
implemented the algorithm and evaluation software, performed the tests,
and prepared the manuscript and figures. All authors read and approved the
final manuscript.

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 15 of 17

http://www.csse.unimelb.edu.au/~astivala/satabsearch
http://www.csse.unimelb.edu.au/~astivala/satabsearch

Received: 27 May 2010 Accepted: 3 September 2010
Published: 3 September 2010

References
1. Holm L, Sander C: Mapping the Protein Universe. Science 1996,

273(5275):595-602.
2. Holm L, Park J: DaliLite workbench for protein structure comparison.

Bioinformatics 2000, 16(6):566-567.
3. Konagurthu AS, Stuckey PJ, Lesk AM: Structural Search and Retrieval using

a Tableau Representation of Protein Folding Patterns. Bioinformatics 2008,
24(5):645-651.

4. Shi S, Zhong Y, Majumdar I, Krishna SS, Grishin NV: Searching for three-
dimensional secondary structural patterns in proteins with ProSMoS.
Bioinformatics 2007, 23(11):1331-1338.

5. Gilbert D, Westhead D, Nagano N, Thornton J: Motif-based searching in
TOPS protein topology databases. Bioinformatics 1999, 15(4):317-326.

6. Torrance GM, Gilbert DR, Michalopoulos I, Westhead DW: Protein structure
topological comparison, discovery and matching service. Bioinformatics
2005, 21(10):2537-2538.

7. Madej T, Gibrat JF, Bryant SH: Threading a Database of Protein Cores.
Proteins 1995, 23:356-369.

8. Gibrat JF, Madej T, Bryant SH: Surprising similarities in structure
comparison. Curr Opin Struct Biol 1996, 6(3):377-385.

9. Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for
fast protein structure alignment in three dimensions. Acta Crystallogr
2004, D60:2256-2268.

10. Shapiro J, Brutlag D: FoldMiner: Structural motif discovery using an
improved superposition algorithm. Prot Sci 2004, 13:278-294.

11. Alexandrov NN: SARFing the PDB. Protein Eng 1996, 9(9):727-732.
12. Carpentier M, Brouillet S, Pothier J: YAKUSA: A Fast Structural Database

Scanning Method. Proteins 2005, 61:137-151.
13. Carugo O, Pongor S: Protein Fold Similarity Estimated by a Probabilitistic

Approach Based on Ca - Ca Distance Comparison. J Mol Biol 2002,
315:887-898.

14. Gáspári Z, Vlahovicek K, Pongor S: Efficient recognition of folds in protein
3D structures by the improved PRIDE algorithm. Bioinformatics 2005,
21(15):3322-3323.

15. Kirillova S, Carugo O: Progress in the PRIDE technique for rapidly
comparing protein three-dimensional structures. BMC Res Notes 2008,
1:44.

16. Jung J, Lee B: Protein structure alignment using environmental profiles.
Protein Eng 2000, 13(8):535-543.

17. Zhang L, Bailey J, Konagurthu AS, Ramamohanarao K: A fast indexing
approach for protein structure comparison. BMC Bioinformatics 2010,
11(Suppl 1):S46, [The Eighth Asia Pacific Bioinformatics Conference (APBC
2010)]..

18. Lesk AM: Systematic representation of folding patterns. J Mol Graph 1995,
13:159-164.

19. Stivala A, Wirth A, Stuckey P: Tableau-based protein substructure search
using quadratic programming. BMC Bioinformatics 2009, 10:153.

20. Kabsch W, Sander C: Dictionary of Protein Secondary Structure: Pattern
Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers
1983, 22:2577-2637.

21. Frishman D, Argos P: Knowledge-Based Protein Secondary Structure
Assignment. Proteins 1995, 23:566-579.

22. Pauling L, Corey RB, Branson HR: The structure of proteins: two hydrogen-
bonded helical configurations of the polypeptide chain. Proc Natl Acad
Sci USA 1951, 37:205-211.

23. Pauling L, Corey RB: Configurations of polypeptide chains with favored
orientations around single bonds: two new pleated sheets. Proc Natl
Acad Sci USA 1951, 37:729-740.

24. Martin J, Letellier G, Marin A, Taly JF, de Brevern AG, Gibrat JF: Protein
secondary structure assignment revisited: a detailed analysis of different
assignment methods. BMC Structural Biology 2005, 5:17.

25. Majumdar I, Krishna SS, Grishin NV: PALSSE: A program to delineate linear
secondary structural elements from protein structures. BMC Bioinformatics
2005, 6:202.

26. Lancia G, Carr R, Walenz B, Istrail S: 101 Optimal PDB Structure
Alignments: a Branch-and-Cut Algorithm for the Maximum Contact Map
Overlap Problem. Proceedings of the Fifth Annual International Conference
on Computational Molecular Biology (RECOMB ‘01) 2001, 193-202.

27. Caprara A, Lancia G: Structural Alignment of Large-Size Proteins via
Lagrangian Relaxation. Proceedings of the Sixth Annual International
Conference on Computational Molecular Biology (RECOMB ‘02) ACM Press
2002, 100-108.

28. Caprara A, Carr R, Istrail S, Lancia G, Walenz B: 1001 Optimal PDB Structure
Alignments: Integer Programming Methods for Finding the Maximum
Contact Map Overlap. J Comput Biol 2004, 11:27-52.

29. Xie W, Sahinidis NV: A Branch-and-Reduce Algorithm for the Contact Map
Overlap Problem. In Proceedings of the Tenth Annual International
Conference on Computational Molecular Biology (RECOMB ‘06), Lecture Notes
in Bioinformatics. Edited by: Apostolico A, Guerra C, Istrail S, Pevzner P,
Waterman M. Venice, Italy: Springer; 2006:3909:516-529.

30. Pelta DA, González JR, Vega MM: A simple and fast heuristic for protein
structure comparison. BMC Bioinformatics 2008, 9:161.

31. Kirkpatrick S, Gelatt CD, Vecchi MP: Optimization by Simulated Annealing.
Science 1983, 220(4598):671-680.

32. Chandonia JM, Hon G, Walker NS, Conte LL, Koehl P, Levitt M, Brenner SE:
The ASTRAL Compendium in 2004. Nucleic Acids Res 2004, , 32 Database:
D189-D192.

33. Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJP,
Chothia C, Murzin AG: Data growth and its impact on the SCOP
database: new developments. Nucleic Acids Res 2008, , 36 Database:
D419-D425.

34. Fischer D, Elofsson A, Rice D, Eisenberg D: Assessing the performance of
fold recognition methods by means of a comprehensive benchmark. Pac
Symp Biocomput 1996, 300-318.

35. Frank K, Gruber M, Sippl MJ: COPS Benchmark: interactive analysis of
database search methods. Bioinformatics 2010, 26(4):574-575.

36. Schatz MC, Trapnell C, Delcher AL, Varshney A: High-throughput sequence
alignment using Graphics Processing Units. BMC Bioinformatics 2007,
8:474.

37. Manavski SA, Valle G: CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics
2008, 9(Suppl 2):S10.

38. Trapnell C, Schatz MC: Optimizing data intensive GPGPU computations
for DNA sequence alignment. Parallel Comput 2009, 35:429-440.

39. Liu Y, Maskell DL, Schmidt B: CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing
units. BMC Res Notes 2009, 2:73.

40. Roberts E, Stone JE, Sepúlveda L, Hwu WMW, Luthey-Schulten Z: Long
time-scale simulations of in vivo diffusion using GPU hardware. IPDPS ‘09
Proceedings of the 2009 IEEE International Symposium on Parallel &
Distributed Processing 2009, 1-8.

41. Friedrichs MS, Eastman P, Vaidynathan V, Houston M, Legrand S, Beberg AL,
Ensign DL, Bruns CM, Pande VS: Accelerating molecular dynamic
simulation on graphics processing units. J Comput Chem 2009,
30(6):864-872.

42. Buckner J, Wilson J, Seligman M, Athey B, Watson S, Meng F: The gputools
package enbales GPU computing in R. Bioinformatics 2010, 26:134-135.

43. Hussong R, Gregorius B, Tholey A, Hildebrandt A: Highly accelerated
feature detection in proteomics data sets using modern graphics
processing units. Bioinformatics 2009, 25(15):1937-1943.

44. Suchard MA, Rambaut A: Many-core algorithms for statistical
phylogenetics. Bioinformatics 2009, 25(11):1370-1376.

45. Suhrer SJ, Wiederstein M, Gruber M, Sippl MJ: COPS – a novel workbench
for explorations in fold space. Nucleic Acids Res 2009, , 37 Web Server:
W539-W544.

46. Sippl MJ, Wiederstein M: A note on difficult structure alignment
problems. Bioinformatics 2008, 24(3):426-427.

47. Sippl MJ: On distance and similarity in fold space. Bioinformatics 2008,
24(6):872-873.

48. NVIDIA: NVIDIA CUDA Programming Guide 2009, [Version 2.3].
49. Walters KJ, Goh AM, Wang Q, Wagner G, Howley PM: Ubiquitin family

proteins and their relationship to the proteasome: a structural
perspective. Biochimica et Biophysica Acta 2004, 1695:73-87.

50. Law RHP, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W,
Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC: An overview of
the serpin superfamily. Genome Biol 2006, 7:216.

51. Harrison A, Pearl F, Mott R, Thornton J, Orengo C: Quantifying the
Similarities within Fold Space. J Mol Biol 2002, 323:909-926.

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 16 of 17

http://www.ncbi.nlm.nih.gov/pubmed/8662544?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10980157?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18175768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18175768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17384423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17384423?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10320400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10320400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15741246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15741246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8710828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8804824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8804824?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8888137?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16049912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16049912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11812155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11812155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11812155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11812155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914542?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18710497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18710497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20122220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20122220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7577843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19450287?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19450287?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6667333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6667333?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8749853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8749853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14816373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14816373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16578412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16578412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16164759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16164759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16164759?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16095538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16095538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15072687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15072687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15072687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18366735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18366735?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17813860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18000004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18000004?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9390240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9390240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20080504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20080504?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18070356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18070356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18387198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18387198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20161021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20161021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19191337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19191337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19850754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19850754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19447788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19447788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19447788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19369496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19369496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19465386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18174182?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18174182?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18227113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15571810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15571810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15571810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16737556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16737556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417203?dopt=Abstract

52. Krishna SS, Grishin NV: Structural drift: a possible path to protein fold
change. Bioinformatics 2005, 21(8):1308-1310.

53. Elliott PR, Pei XY, Dafforn TR, Lomas DA: Topography of a 2.0 Å structure
of a1 -antitrypsin reveals targets for rational drug design to prevent
conformational disease. Prot Sci 2000, 9:1274-1281.

54. Shi S, Chitturi B, Grishin NV: ProSMoS server: a pattern-based search using
interaction matrix representation of protein structures. Nucleic Acids Res
2009, , 37 Web Server: W526-W531.

55. Li Z, Zhang S, Wang Y, Zhang XS, Chen L: Alignment of molecular
networks by integer quadratic programming. Bioinformatics 2007,
23(13):1631-1639.

56. Chindelevitch L, Liao CS, Berger B: Local Optimization for Global
Alignment of Protein Interaction Networks. Pac Symp Biocomput 2010,
15:123-132.

57. Kamat AP, Lesk AM: Contact Patterns Between Helices and Strands of
Sheet Define Protein Folding Patterns. Proteins 2007, 66:869-876.

58. NVIDIA: NVIDIA CUDA C Programming Best Practices Guide 2009, [CUDA
Toolkit 2.3].

59. Podlozhnyuk V: Parallel Mersenne Twister NVIDIA 2007, [CUDA SDK 2.3].
60. Matsumoto M, Nishimura T: Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator. ACM
Transactions on Modeling and Computer Simulation (TOMACS) 1998, 8:3-30.

61. Matsumoto M, Nishimura T: Dynamic Creation of Pseudorandom Number
Generators. Monte Carlo and Quasi-Monte Carlo Methods 2000, 56-69,
[Proceedings of a conference held at the Claremont Graduate University,
Claremont, California, USA, June 22-26, 1998].

62. Smith TF, Waterman MS: Identification of Common Molecular
Subsequences. J Mol Biol 1981, 147:195-197.

63. The RCSB Protein Data Bank. [http://www.pdb.org].
64. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,

Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000,
28:235-242.

65. Sing T, Sander O, Beerenwinkel N, Lengauer T: ROCR: visualizing classifier
performance in R. Bioinformatics 2005, 21(20):3940-3941.

66. The R Project for Statistical Computing. [http://www.r-project.org].
67. Hanley JA, McNeil BJ: The Meaning and Use of the Area under a Receiver

Operating Characteristic (ROC) Curve. Radiology 1982, 143:29-36.
68. DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the Areas under

Two or More Correlated Receiver Operating Characteristic Curves: a
Nonparametric Approach. Biometrics 1988, 44(3):837-845.

69. Vergara IA, Norambuena T, Ferrada E, Slater AW, Melo F: StAR: a simple
tool for the statistical comparison of ROC curves. BMC Bioinformatics
2008, 9:265.

70. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I,
Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ: Biopython: freely available
Python tools for computational molecular biology and bioinformatics.
Bioinformatics 2009, 25(11):1422-1423.

71. Hamelryck T, Manderick B: PDB file parser and structure class
implemented in Python. Bioinformatics 2003, 19(17):2308-2310.

72. Casbon JA, Crooks GE, Saqi MAS: A high level interface to SCOP and
ASTRAL implemented in Python. BMC Bioinformatics 2006, 7:10.

73. VAST. [http://migale.jouy.inra.fr/outils/mig/vast].
74. YAKUSA. [http://bioserv.rpbs.jussieu.fr/Yakusa/download/].
75. TOPS Services at Glasgow University. [http://balabio.dcs.gla.ac.uk/tops/

software.html].
76. FoldMiner. [http://motif.stanford.edu/distributions/foldminer/

FoldMinerDistribution.tar.gz].
77. SARF2. [ftp://ftp.ncifcrf.gov/pub/SARF2/].
78. Topology of Protein Structures. [http://www.tops.leeds.ac.uk].
79. Duff IS: MA57 – a code for the solution of sparse symmetric definite and

indefinite systems. ACM Transactions on Mathematical Software 2004,
30(2):118-144.

80. HSL: A Collection of Fortran codes for large-scale scientific computation.
2007 [http://www.hsl.rl.ac.uk].

81. DeLano WL: The PyMOL Molecular Graphics System. 2002 [http://www.
pymol.org], [DeLano Scientific].

doi:10.1186/1471-2105-11-446
Cite this article as: Stivala et al.: Fast and accurate protein substructure
searching with simulated annealing and GPUs. BMC Bioinformatics 2010
11:446.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Stivala et al. BMC Bioinformatics 2010, 11:446
http://www.biomedcentral.com/1471-2105/11/446

Page 17 of 17

http://www.ncbi.nlm.nih.gov/pubmed/15604105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15604105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19420061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19420061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17468121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17468121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17206659?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17206659?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.pdb.org
http://www.ncbi.nlm.nih.gov/pubmed/10592235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16096348?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16096348?dopt=Abstract
http://www.r-project.org
http://www.ncbi.nlm.nih.gov/pubmed/7063747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7063747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3203132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3203132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3203132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18534022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18534022?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14630660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14630660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16403221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16403221?dopt=Abstract
http://migale.jouy.inra.fr/outils/mig/vast
http://bioserv.rpbs.jussieu.fr/Yakusa/download/
http://balabio.dcs.gla.ac.uk/tops/software.html
http://balabio.dcs.gla.ac.uk/tops/software.html
http://motif.stanford.edu/distributions/foldminer/FoldMinerDistribution.tar.gz
http://motif.stanford.edu/distributions/foldminer/FoldMinerDistribution.tar.gz
ftp://ftp.ncifcrf.gov/pub/SARF2/
http://www.tops.leeds.ac.uk
http://www.hsl.rl.ac.uk
http://www.pymol.org
http://www.pymol.org

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Protein structure search (fold classification)
	Substructure queries

	Conclusions
	Methods
	Tableaux and distance matrices
	The tableau matching problem
	CUDA
	Application of simulated annealing to the problem
	Parallel implementation on a GPU
	Evaluation
	Implementation

	Availability and Requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

