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Abstract

Background: Protein-protein interactions play essential roles in protein function determination and drug design.
Numerous methods have been proposed to recognize their interaction sites, however, only a small proportion of
protein complexes have been successfully resolved due to the high cost. Therefore, it is important to improve the
performance for predicting protein interaction sites based on primary sequence alone.

Results: We propose a new idea to construct an integrative profile for each residue in a protein by combining its
hydrophobic and evolutionary information. A support vector machine (SVM) ensemble is then developed, where
SVMs train on different pairs of positive (interface sites) and negative (non-interface sites) subsets. The subsets
having roughly the same sizes are grouped in the order of accessible surface area change before and after
complexation. A self-organizing map (SOM) technique is applied to group similar input vectors to make more
accurate the identification of interface residues. An ensemble of ten-SVMs achieves an MCC improvement by
around 8% and F1 improvement by around 9% over that of three-SVMs. As expected, SVM ensembles constantly
perform better than individual SVMs. In addition, the model by the integrative profiles outperforms that based on
the sequence profile or the hydropathy scale alone. As our method uses a small number of features to encode the
input vectors, our model is simpler, faster and more accurate than the existing methods.

Conclusions: The integrative profile by combining hydrophobic and evolutionary information contributes most to
the protein-protein interaction prediction. Results show that evolutionary context of residue with respect to
hydrophobicity makes better the identification of protein interface residues. In addition, the ensemble of SVM
classifiers improves the prediction performance.

Availability: Datasets and software are available at http://mail.ustc.edu.cn/~bigeagle/BMCBioinfo2010/index.htm.

Background
In living cells, proteins interact with other proteins in
order to perform specific biological functions, such as
signal transduction or immunological recognition, DNA
replication and gene translation, as well as protein
synthesis [1]. These interactions are localized to the
so-called “interaction sites” or “interface residues”.
Identification of these residues will allow us to under-

stand how proteins recognize other molecules and to
gain clues into their possible functions at the level of
the cell and at the organism. It can also improve our

understanding on disease mechanisms and further
advance pharmaceutical design [2,3]. 3D (three-dimen-
sional) structures of proteins are the basis for the identi-
fication. However, resolving 3D protein structures by
experimental methods, such as X-ray crystallography
and nuclear magnetic resonance, is much more time-
consuming than sequencing proteins. This is the reason
why less than 62300 protein structures are available in
PDB databank [4] while more than ten million proteins
are sequenced in the UniProtKB/TrEMBL database [5],
as of Jan. 2010. To narrow the huge gap, various com-
putational methods have been developed to predict pro-
tein structures, assisted by the abundance of protein
information deposited in various biological databases.
Among them, methods to identify protein-protein
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interface residues have attracted research attention for a
long time.
The pioneering work by Kini and Evans addressed the

issue of protein interaction site prediction by a unique
predictive method based on the observation that “pro-
line” is the most common residue found in the flanking
segments of interaction sites [6]. Jones and Thornton
were aimed to analyze [7] and predict [8] surface
patches that overlap with interfaces by computing a
combined score that gives the probability of a surface
patch forming protein-protein interactions. Other works
have addressed various aspects of protein structure and
behavior, such as detecting patch analysis [9], solvent-
accessible surface area buried upon association [10], free
energy changes upon alanine-scanning mutations [11],
in silico two hybrid systems [12], sequence or structure
conservation information [13-17], and sequence hydro-
phobicity distribution [18].
Among them, many machine learning methods have

been developed or adopted, such as those using support
vector machine (SVM) [16,17,19-22], neural network
[13-15,23,24], genetic algorithm [25,26], hidden Markov
models [27], Bayesian networks [28,29], random forests
[30,31], and so on.
Numerous properties were used in previous work to

identify protein-protein interactions. They can be
roughly divided into two categories: sequence-based
properties and structure-based properties. Sequence-
based properties include residue composition and
propensity [7,22], hydrophobic scale [32], predicted
structural features such as predicted secondary struc-
tures [24], features from multiple sequence alignments
[17,33], and so on [34]. On the other hand structure-
based properties were also widely utilized, such as the
size of interfaces [7,35], shape of interfaces [36-38], clus-
tering of interface atoms [39,40], B-factor [21], electro-
static potential [19,21], spatial distribution of interface
residues [39,40], and others [41]. The existing methods
using these properties showed good performance in the
prediction of protein-protein interactions. However,
those properties that are specifically significant for parti-
cular protein complexes have not been fully assessed.
Furthermore, a large set of properties do not always
perform well.
Since the amount of protein structures is significantly

smaller than those of protein sequences determined by
large-scale DNA sequencing methods, it is important to
identify protein-protein interaction sites from amino
acid sequences alone. It is also valuable to use
sequence-based features without experimental 3D struc-
ture information. Actually, predicted structure features
such as secondary structure can still be helpful to the
identification of interaction sites [34]. However,
sequence based approaches to identify protein

interaction sites are still more difficult to those based on
structure information. The reasons are in that: (1) the
relationship between sequence-based features and pro-
tein-protein interactions are not fully understood; (2)
how to represent each residue in a protein by a series of
sequence-based features is difficult; (3) the unbalanced
data between interaction samples and non-interaction
samples may worsen the interface identification [30].
This work addresses these issues by integrative fea-

tures and by adopting an SVM ensemble method based
on balanced training datasets. Since identification of
interaction sites in hetero-complexes are much more
difficult and more interesting than that in homo-com-
plexes, in this work we focus on hetero-complexes. We
first design a schema to represent each residue that inte-
grates hydrophobic and evolutionary information of the
residue in a complex. Then an ensemble of SVMs is
developed, where SVMs train on different pairs of posi-
tive (interface samples) and negative (non-interface sam-
ples) subsets. The subsets having roughly the same sizes
are grouped in the order of accessible surface area
change (ΔASA) before and after complexation. A self-
organizing map (SOM) technique [42] is applied to
group similar training samples. This is aimed to make
more accurate the identification of interface residues.
An ensemble of ten-SVMs achieves an MCC improve-
ment by around 8% and F1 improvement by around 9%,
compared to those by three-SVMs. We also found that
the SVMs ensemble always performs better than indivi-
dual SVMs. Moreover, using SOM technique achieves
an increase of MCC by 1.3 and an increase of F1 by 2%.

Results
We calculated amino acid composition in our dataset to
show the propensity information of the 20 amino acid
types between interface and non-interface regions. The
propensities for the 20 amino acid types in a logarithm
(log2) scale are shown in Additional file 1. Results show
that amino acids with smaller propensity values, such as
‘A’, ‘G’, and ‘V’, representing hydrophobicity, are always
involved in non-interface regions. Conversely, hydrophi-
lic amino acids ‘R’, ‘Y’, ‘W’, and ‘H’ often present in
interface regions. Some of these discoveries are consis-
tent with other literature [18,43]. Interestingly, Arginine
is the most frequently occurring residue in interface
regions while Cysteine and Alanine appear in non-inter-
face regions mostly.

Determination of the sliding window length
A sliding window technique is used to represent each
target residue in this study, where the most challenging
issue is to represent each residue by a feature vector
and further to construct a predictor. Our first step is
the determination of a good sliding window length since
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prediction performance is usually varied with window
length L. The tradeoff between prediction performance
and the algorithm complexity is also concerned. In this
work three individual SVMs were selected from the ten-
SVMs without SOM and therefore 120 possible combi-
nations were obtained. The average performance of
those SVMs was used to determine the window length.
Here five levels of window length, 5, 11, 15, 19, and 27
were attempted. Results show that a sliding window
with 19 residues is sufficient to train and test our
model, although the model with a window length 27
performed a little better than that with a window length
19. However, the model performed faster than that with
the window length 27. The comparison of sensitivity-
precision under different window lengthes is illustrated
in Additional file 2. Note that using a window length 5
leads to the worst performance. If not otherwise stated
in this work, we adopt the window length 19 to evaluate
our model and identify protein-protein interface
residues.

Prediction performance without SOM
Additional file 3 shows the performance comparison
among the combined SVMs as discussed above with
three thresholds. Because none of single measures can
fully evaluate prediction performance, we just show all
the evaluations on our predictor under six measure-
ments. In this work, MCC and F1 are used as the main
measures to evaluate our method. Actually using MCC
as a benchmark measurement may lead to cover less
positive samples, while using F1 to achieve balanced

performance between sensitivity and precision measures
may lead to truly identify less positive samples. From
this figure, SVM with threshold 3 performs better than
those with thresholds 1 and 2, and achieves a sensitivity
of 31.39%, precision of 81.12%, specificity of 96.74%,
accuracy of 76.6%, and F1 of 45.27% when reaching the
largest MCC of 0.4009. In the case of benchmark mea-
surement of F1, additionally, our model with threshold
3 achieve s a sensitivity of 78.44%, precision of 46.79%,
specificity of 60.26%, accuracy of 65.86%, MCC of
0.3576, when reaching the largest F1 of 58.62%.
To fully understand the power of our method, we

investigate the combination of all the ten-SVMs. Figure
1 shows the performance comparison of the ten com-
bined SVMs with different thresholds. The two types of
performance curves illustrate the performance of sensi-
tivity-precision and that of sensitivity-MCC, respectively.
Results from Figure 1 show that the 5-th combined
SVM outperforms models with other thresholds.
Furthermore, combined SVMs with thresholds from
1 to 5 perform better than those with thresholds from
6 to 10 (particularly when achieving sensitivity of less
than 55%), while individual combined SVM within the
former or the latter groups yields similar prediction per-
formance. However, combined SVMs yield similar preci-
sions but different MCCs when achieving sensitivities of
more than 55%. Table 1 shows performance comparison
of the ten-SVMs before and after the combination. As
for the ten-SVMs before combination, the first five
SVMs perform better than the latter five ones probably
because the differences of the average ΔASAs between

Figure 1 Performance by our model without SOM. The figure illustrates the performance curves of sensitivity-precision and sensitivity-MCC
after combining the ten-SVMs. Numbers in the legend stand for SVM with different thresholds. Note that curves with the same color correspond
to the model with the same threshold.
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training positive samples and negative samples for the
former ones (66.9Å2) are larger than those for the latter
ones (14.5Å2). It probably suggests that the larger the
difference of the average ΔASAs between training posi-
tive samples and negative samples, the better prediction
the model yields. In this case, our method also achieves
a good prediction. The best MCC among the ten-SVMs
is 0.3828 (shown in italics in Table 1). Statistically, the
model with threshold 5 makes a good prediction and
obtains the highest MCC of 0.4842 (shown in italics in
Table 1) after combining the ten-SVMs, comparatively,
the 4-th combined SVM achieves the best F1 of 54.62%
(shown in bold in Table 1).
It is interesting to note that all models perform simi-

larly if the training positive and negative subsets are
respectively constructed by random selection without
overlap. The details are shown in Table 2 which lists
the performance comparison of the ten-SVMs before
and after the combination. In this case, the differences
of the performance before combining the ten-SVMs
are rather small probably due to containing similar
average ΔASAs between training positive and negative
subsets. Comparison of such performance is meaning-
less but just listing them here not for ranking. Actually
these models also yield good predictions before

combining them. In the case of random sample selec-
tion, the best MCC among the ten-SVMs is 0.4363
(shown in italics in Table 2). After combining the ten-
SVMs, the model with threshold 5 performs better
than other models and obtains an MCC of 0.4809
(shown in italics in Table 2), comparatively, the 4-th
combined SVM achieves the best F1 of 54.47% (shown
in bold in Table 2). Comparison between Table 1 and
Table 2 shows that the model with sample selection in
the order of ΔASA and that with random sample
selection perform similarly after the combination.
Moreover, when combining the SVMs, the model per-
forms better and better with threshold from 1 to 5
and, becomes worse and worse with threshold from 6
to 10 as shown in both Table 1 and Table 2.
However, another issue we would like to address is

that why the models with random sample selection
perform better than those with ΔASAs-sorted sample
selection before the combination of classifiers and, sur-
prisingly, why they perform similarly after the combi-
nation of classifiers. The reason is probably in that
models have been trained efficiently with feasible
ΔASAs distribution of training data compared to that
of test data. Furthermore, our results suggest that if
the ΔASAs distribution of the training data is consis-
tent with that of test data, a good prediction can be
yielded.

Table 1 Performance comparison by samples selection by
ΔASA

SVM Sen Spec Acc MCC Prec F1 ΔΔASA

1 24.18 98.31 77.85 0.3728 84.51 37.6

2 24.11 98.28 77.81 0.3712 84.27 37.5

3 23.87 98.19 77.67 0.3656 83.41 37.12 66.9Å2

4 24.62 98.48 78.09 0.3828 86.04 38 28

5 23.91 98.21 77.7 0.3666 83.57 37.18

6 20.75 97 75.95 0.2944 72.51 32.26

7 20.53 96.92 75.83 0.2892 71.75 31.92

8 20.49 96.9 75.81 0.2883 71.61 31.87 14.5Å2

9 21.02 97.1 76.1 0.3003 73.44 32.68

10** 20.42 96.87 75.77 0.2866 71.35 31.75

1*** 44.58 91.52 78.56 0.4161 66.71 53.45

2 43.73 93.05 79.44 0.4367 70.59 54

3 43.03 94.4 80.21 0.4571 74.54 54.56

4 42.09 95.41 80.69 0.4703 77.77 54.62

5 39.76 96.91 81.14 0.4842 83.07 53.78

6 6.84 99.17 73.68 0.1726 75.88 12.55

7 6.16 99.39 73.66 0.1717 79.52 11.44

8 5.57 99.53 73.59 0.168 81.93 10.41

9 4.83 99.71 73.52 0.1646 86.37 9.15

10 4.28 99.82 73.45 0.1611 90.07 8.17

*The subtraction between average ΔASA for positive samples and that for
negative samples.

**The above ten numbers from 1 to 10 stand for the ten-SVMs.

***The following ten ones stand for the combined SVMs with thresholds from
1 to 10.

Table 2 Results of predictions by random sample
selection

SVM Sen Spec Acc MCC Prec F1

1 34.64 96.77 79.62 0.4338 80.37 48.42

2 34.5 96.72 79.54 0.431 80.03 48.21

3 32.68 97.41 79.54 0.4316 82.78 46.86

4 34.75 96.81 79.68 0.4358 80.62 48.57

5 34.78 96.82 79.7 0.4363 80.68 48.6

6 34.65 96.78 79.63 0.4339 80.39 48.43

7 34.51 96.72 79.55 0.4312 80.06 48.23

8 34.69 96.79 79.65 0.4347 80.48 48.48

9 34.77 96.83 79.7 0.4363 80.69 48.6

10* 34.62 96.77 79.61 0.4334 80.32 48.39

1** 38.49 95.21 79.54 0.4334 75.75 50.93

2 40.61 94.77 79.8 0.4433 74.86 52.6

3 42.47 94.66 80.25 0.4577 75.24 54.26

4 41.79 95.6 80.74 0.4715 78.32 54.47

5 40.21 96.62 81.05 0.4809 81.86 53.92

6 29.72 97.7 78.93 0.4107 83.06 43.76

7 28.86 98.12 79 0.414 85.21 43.1

8 28.3 98.33 79 0.4149 86.39 42.62

9 28.13 98.45 79.04 0.4167 87.12 42.52

10 27.72 98.66 79.08 0.4192 88.48 42.2

*The above ten ones are for the ten individual SVMs.

**The following ten ones stand for the combined SVMs with thresholds from
1 to 10.
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In addition, the performance comparison under
three levels of combined SVMs is listed in Table 3.
Among them, the model of combining ten SVMs out-
performs that of combining three-SVMs and achieves
improvement of MCC by 8.3% and F1 by 8.5%, while
the best individual SVM performs the worst among
the three cases. It can be concluded that combining
outputs of a number of independent classifiers can
indeed improve classification rate since the errors
made by a classifier can be corrected by the others.
However, the best threshold needs to be thoroughly
investigated and can be changed in different cases. In
this study, the best threshold for 3-combined model
is 3 and, 10-combined model with threshold 5 per-
forms the best, when using MCC as a benchmark
measurement.

Prediction performance with the use of SOM
Due to the limitation of residue amount in proteins,
adopting more neurons in SOM is not always a good
idea to cluster the similar input vectors for residues.
Therefore in this work three kinds of SOMs, 3 × 3, 5 ×
5, and 7 × 7 SOMs, were investigated. Handling by the
two modifications, the relatively less important neurons
associated with a small number of samples and those
neurons with relatively larger entropies were removed.
In the experiments by using the 5 × 5 SOM and the

combination SVM classifiers, we constructed the same
2 × 5 SVM ensembles, trained and tested our model as
above. We obtained 25 clusters in total. Clusters from
13 to 17 and clusters from 22 to 25 were retained. Per-
formance by averaging the retained clusters is shown in
Figure 2. Results show that the model with threshold 5
outperforms others and achieves the largest MCC of
0.4946 and F1 of 55.95%. Furthermore, it can be found
that the 5-th combined SVM performs the best when
precision is larger than 50% and, the model with thresh-
old 9 makes the best prediction when sensitivity is larger
than 50%. The tendencies of Sensitivity-MCC curves are
almost the same as those of Sensitivity-Precision curves.
The model with the 7 × 7 SOM were also constructed

and evaluated on the same dataset. A very small

Table 3 Prediction results of combined SVMs

SVM Sen Spec Acc MCC Prec F1

Individual* 24.62 98.48 78.09 0.3828 86.04 38.28

3-combined** 31.39 96.74 76.6 0.4009 81.12 45.27

10-combined 39.76 96.91 81.14 0.4842 83.07 53.78

*The best SVM among the ten individual SVMs.

**Average performance when combining three-SVMs selected from the
ten-SVMs.

Figure 2 Performance by our model when using 5 × 5 SOM. The figure illustrates performance curves of sensitivity-precision and sensitivity-
MCC after combining the ten-SVMs. Numbers in the legend stand for SVM with different thresholds. Note that curves with the same color
correspond to the model with the same threshold.
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improvement was achieved in comparison to the model
with the use of 5 × 5 SOM. Table 4 demonstrates the
performance comparison among the combined SVMs by
the use of the three kinds of SOMs. The model with
7 × 7 SOM outperforms others. It should be noted that
the model without SOM also makes a good interface
prediction and yields the largest MCC of 0.4842 and F1
of 53.78% as illustrated in Figure 1. Additionally, the
case of 3 × 3 SOM by combining three-SVMs is also
shown in Table 4, where clusters 1, 2, 3, and 4 with
small number of vectors and clusters 5 and 6 with larger
entropies were removed. In this case, the model with
threshold 3 performs better than that of combining
three-SVMs without SOM and makes a small improve-
ment of F1 by 1%, however, it performs much worse (by
8.7% in MCC and 8.3% in F1) than the models with the
same SOM by combining the ten-SVMs.

Improvement by using evolutionary context of residues
with respect to hydrophobicity
Kauzmann [44] first pointed out that hydrophobic effect
is the most significant property of protein folding and
stability. As for the interface prediction, it is often a
major contributor to stabilize protein complexes [32].
Gallet et al. proposed a fast method to predict protein
interaction sites by analyzing hydrophobicity distribution
[18]. This work suggested that interface residues can be
identified by using the mean hydrophobicity and the
mean hydrophobic moment. However, it appears that
the hydrophobic effect alone is insufficient to the pro-
tein interface prediction [45] or does not appear to be
useful for the interface prediction.
In this work, we used two feature profiles, sequence

profile and hydropathy scale. The former was extracted
from the HSSP database [46], where each amino acid is
represented by elements whose values are based on mul-
tiple alignments of protein sequences and their potential
structural homologs. The latter was adopted from Kyte-
Doolittle’s measurement [47]. Despite the two profiles
have been used before in interface prediction, the novel
integrative technique here can discover the residue’s
evolutionary context with respect to hydrophobicity in
protein-protein interacting sites. It can thus be helpful
to improve the interface prediction.

The difference between the integrative profile and
each individual profile is that in Equation 4, one profile
term would be removed for the model keeping only one
profile left. The three pictures in Figure 3 illustrate the
interaction identification results by the use of the three
profiles: hydrophobic scale, sequence profile, and the
integrative profile. From the Figure 3, results show that
the model with the integrative profile outperformed the
other two, and predicted interface sites more accurately.
In addition, the model with sequence profile alone per-
formed better than that with hydropathy scale alone.
To demonstrate the power of the integrative techni-

que, performance for the models with the three profiles
are also calculated as discussed above. Table 5 presents
the performance comparison for combined SVMs with
threshold 5. It can be found that SVM ensembles,
whose feature vectors integrate residue sequence profile
with hydropathy scale, outperforms the model based on
hydropathy scale or sequence profile alone (at least 28%
increase in MCC and 8% increase in F1). Moreover, the
model with hydropathy scale performs the worst and
therefore it cannot be applied to distinguish protein
interface residues alone. The performance improvements
here indicate that the information contained within the
residue sequence profile and the hydropathy scale may
be complementary, and that exploiting the complemen-
tarity is helpful for predicting protein interface residues.

A biological case of improvement by classifier ensemble
Classifier ensemble might perform well in many classifi-
cations. Combining the outputs of a number of indepen-
dent classifiers can improve classification rate since the
errors made by a classifier may be corrected by the
others [48-50]. Hansen and Salamon [48] denoted that
better performance can be achieved by using the optimi-
zational parameters and training different classifiers on
different portion of the dataset. In this work, we applied
the classifier ensemble technique to combine the out-
puts from the ten independent SVM classifiers whose
training datasets are non-overlapped and thus indepen-
dent to each other.
Figure 4 demonstrates the prediction comparison

among the ten classifiers and the classifier ensemble. In
the case of the model with threshold 5, since interface
site ASP-88 (colored in red) is correctly predicted by
eight SVM classifiers (except for SVM 1 and SVM 2),
the final prediction is correct for this site (see the sub-
graph (k) in Figure 4). Similarly, five classifiers predict
interface site GLU-7 (colored in red) as interface one,
thus the site is regarded as interface one finally. Con-
trastively, six classifiers identify non-interface site ARG-
22 (colored in blue) as non-interface site, thus the final
prediction for ARG-22 is non-interface site. Therefore,
in this case, the prediction errors made by some

Table 4 Evaluation with and without the use of SOM on
ensemble of the ten-SVMs

SOM Sen Spec Acc MCC Prec F1

none 39.76 96.91 81.14 0.4842 83.07 53.78

3 × 3* 32.2 96.82 77.2 0.4105 81.46 46.14

3 × 3 40.73 96.68 81.36 0.487 82.17 54.46

5 × 5 42.47 96.35 81.15 0.4946 82.02 55.95

7 × 7 42.84 96.35 81.39 0.4979 81.96 56.25

*Evaluation by combining three-SVMs.
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classifiers can be corrected by the others, resulting in an
improvement in performance.

Discussion
Comparison with other methods
Due to different datasets and definitions on interface
residues adopted by existing methods, it is very hard to
compare prediction performance among different meth-
ods. To compare with the current state of the art of
protein-protein interaction prediction, we tested on the
same dataset and adopted the same definition of inter-
face residues as literature [31], where the dataset was
from literature [15]. This dataset consists of 1134 chains
in 333 complexes. Figure 5 shows the comparison of
sensitivity-precision performance between our model
and the Sikic’s method based on sequence alone [31].
Additionally, the performance of a random predictor is
also affiliated in Figure 5 as reference. In the case of
precisions above 90%, our model achieves sensitivities
slightly below 30% while Sikic’s method achieved sensi-
tivities around only 5%. In the case of precisions from

70% to 80%, Sikic’s method achieved a sensitivity level
of about 25% while our model reaches sensitivities near
to 45%. In these cases our model performs better than
Sikic’s method based on sequence alone and even better
than its prediction based on both sequence and 3D
structure (broken line shown in Figure 5). For precisions
from 30% to 70%, our model also outperforms Sikic’s
method based on sequence alone and makes a little
worse prediction than that based on both sequence and
3D structure.
Actually, using true secondary structure information

and other real 3D structure information in Sikic’s
method may lead to overestimate the interface predic-
tions, although it obtained a little higher precision than
our model with sensitivities from 50% to 90%. There-
fore, we just show the performance curve of Sikic’s
method based on both sequence and real 3D structure,
with no purpose of comparison. However, as discussed
in Figure 2, our model with threshold 9 performs similar
to Sikic’s structure-based model when achieving sensi-
tivities from 50% to 90%. It should be noted that our
model and Sikic’s method share the same definition of
interface residues and therefore obtains approximately
the same ratio of interface residues to total residues,
27.56% in our dataset and 27.5% in Sikic’s method. As a
result, our method outperforms Sikic’s method based on
sequence information. Furthermore, our method based
on sequence alone performs similarly to Sikic’s method
based on both sequence and 3D structure.

Table 5 Prediction results of ensembles of ten-SVMs with
three profiles

Profile Sen Spec Acc MCC Prec F

integrative 42.84 96.35 81.39 0.4979 81.96 56.25

hydropathy scale 9.11 97.61 69.99 0.1505 63.37 15.93

Sequence profile 53.38 68.85 64.02 0.2121 43.74 48.08

Figure 3 Comparison between the three profiles on the complex of Bacillus pasteurii urease with acetohydroxamate anion(PDB id:
4UBP, chain A). (a) Prediction results for hydropathy scale; (b) Results for sequence profile; (c) Results for the integrative profile. True prediction
interface residues are in red, false predicted non-interface residues are shown in green, false predicted interface residues are in blue, while other
ones are in white.
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Next we discuss the comparison results with other
methods whose datasets have different interface frac-
tions, defined as percentages of the total number of pro-
tein residues. Table 6 shows the performance
comparison of these methods on hetero-complex data-
sets with sequence alone. In recent years, random

forests made a good performance in protein structure
prediction, especially in the protein-protein interaction
prediction, which is an ensemble method that combines
individual classification trees from several bootstrap
samples. Chen and Jeong applied random forests in
interface prediction and obtained a good F1 of 49% [30],

Figure 4 Performance improvement by the classifier ensemble on the complex of Bacillus pasteurii urease with acetohydroxamate
anion(PDB id: 4UBP, chain A). (a)~(j) Prediction results for the ten sub-classifiers; (k) Combined classifier with threshold 5. True prediction
interface residues are in red, false predicted non-interface residues are shown in green, false predicted interface residues are in blue, while other
ones are in white.
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while Sikic et al. used random forests and achieved an
F1 of 39.7% based on sequence alone and achieved an
F1 of 52% based on both sequence and 3D structure
information [31]. Our previous work also achieved a
good prediction of protein-protein interface residues
based on 69 proteins by the use of SVM and evolution-
ary rates of residues [17]. Note that the comparison
aims to demonstrate the development of the protein
interaction prediction tools, with no purpose to rank
them since predictors were developed based on different
datasets, different definitions of interface residues, and
different evaluation measurements. Although it is extra-
ordinarily difficult to compare among related methods,
our method outperforms others as shown in Table 6.

As a result the model by the integrative profile is a very
promising approach to predict interface sites.

Blind test
To show the potential of our model to practical pro-
blem, a CCD-IBD complex (PDB:2bgn) was taken as a
test case. Again the evaluation of this blind test is based
solely on sequence information without knowing
3D structure of the complex and the true interacting
residues.
The asymmetric unit of the complex PDB:2bgn con-

tains two molecules, a dimer of integrase (IN) catalytic
core domains (CCD) (chains A and B in Figure 6) and a
pair of human lens epithelium-derived growth factor
(LEDGF) IN-binding domain (IBD) molecules (chains C
and D in Figure 6 bound at the CCD dimer interface)
[51]. LEDGF binds HIV-1 IN via the small IBD within
its C-terminal region. Previous results showed that the
IBD is both necessary and sufficient for the interaction
with HIV-1 IN [51,52]. There are several key intermole-
cular contacts at the CCD-IBD interface. Residues
Ile365, Asp366, and Phe406 play critical roles in HIV-1
IN recognition as hotspot residues which are located at
the interhelical loops within IBD molecules (chain C or
D). The water molecule hydrogen-bonds link to the
main-chain carbonyl group of LEDGF residue Ile365
and IN residue Thr125. We correctly predict the hot-
spot residues Ile365 and Asp366. Overall, our method
achieves a good prediction performance with a sensitiv-
ity of 35.59%, precision of 80.77%, specificity of 96.93%,
accuracy of 80.63%, and F1 of 49.41% when achieving
the largest MCC of 0.4468. In order for more correct
predicted interface residues, our model can obtain a pre-
cision of 90.63% with a sensitivity of 27.88%, specificity
of 98.84%, accuracy of 78.45%, F1 of 42.65%, and MCC
of 0.426. In this case the hotspot residues Ile365 and
Asp366 are also predicted correctly.

Conclusions
This paper addresses the problem of identifying inter-
face residues in hetero-complexes by using an integra-
tive profiling. This novel profile combines residue
sequence profile with hydropathy scale and, therefore
obtains standard deviation value for each residue in pro-
teins. The deviation value may reveal the evolutionary
relationship of a residue in proteins and hydrophobicity
in water surroundings. The novel residue profile and an
ensemble of SVMs together achieves a good prediction
in protein-protein interactions with a sensitivity of
39.76%, precision of 83.07%, specificity of 96.91%, accu-
racy of 81.14%, and F1 of 53.78% when achieving the
largest MCC of 0.4842. In addition, SOM technique
is adopted to investigate the interacting relationship
of residues. When the SOM technique is used, the

Figure 5 Comparison with a method in literature [31] and a
random predictor. The red line is for our model and the green
line is for the prediction of a random predictor, while the blue line
and the blue broken line are for the Sikic’s method based on
sequence alone and based on both sequence and 3D structure,
respectively.

Table 6 Performance of methods on hetero-complexes
with sequence alone

Method Type Ratio Sen Prec F1

Our model SVM 27.56 42.84 81.96 56.25

Wang and Chen SVM 34.8** 61.4 45.8 52.5

Res et al. SVM 16 58.8 26.3 36.3

Koike and Takagi* SVM 20 28.8 27 27.87

Sikic et al. RF**** 27.5 26 84 39.7

Chen and Jeong RF 10 70 37.7*** 49

ISIS et al. NN***** 32* 20 61 30.1

Ofran and Rost NN 40* 0.5* 62* 0.1

*Based on homo-hetero mixed complexes dataset.

**The ratio of interface residues to surface residues.

***Estimated.

****Random Forests.

*****Neural Network.
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prediction performance increases to a sensitivity of
42.84%, precision of 81.96%, specificity of 96.35%, accu-
racy of 81.39%, and F1 of 56.25% when achieving the
largest MCC of 0.4979.
Moreover a residue in our work was represented as a

1-by-19 vector by using the sliding window with length
19. The scale is much smaller than most other methods.
The input vector for representing a residue used in Sikic
et al.’s method contained 9 × 20 = 180 elements and,
1050 features were used as input vector in Chen and
Jeong’s method. Therefore our model is very fast and
simple. More importantly, a larger number of features
in input vectors does not necessarily lead to a better
performance. As pointed out by previous work, a
machine learning algorithm adopting a simple represen-
tation of a sequence space could be much more power-
ful and useful than using the original data containing all
details [53]. Actually biological properties which may be
responsible for protein-protein interactions are not fully
understood. Therefore how to apply feasible features or
feature transformations in protein interaction prediction
remains an open problem. Additionally imbalanced data
of interface residues and non-interface residues is a very
challenging issue, which always causes classifier over-
fitting. The ensemble of classifiers may be a feasible
pathway to balance training data.
Finally, residue’s evolutionary context with respect to

hydrophobicity plays an important role in the interface
prediction. Above discussion appears to suggest that
integrating residue’s evolutionary context with other
properties of residues, such as residue volume or free
energy solution in water, is a plausible way to discover
the protein-protein interactions. In our future work, we
will investigate the inner relationships of interacting

residues, and make use of them for a more accurate
prediction.

Methods
Data set
The complexes used in this work were extracted from
the 3dComplex database [54], which is an database for
automatically generating non-redundant sets of com-
plexes. Only those proteins in hetero-complexes with
sequence identity ≤ 30% were selected in this work.
Meanwhile, proteins and molecules with fewer than 30
residues were excluded from our dataset. Protein
chains which are not available in HSSP database [46]
were also removed. As a result, our dataset contains
2499 protein chains in 737 complexes. There are
mainly two definitions for protein interface residues.
The first one is based on differences in ASA of the
residues before and after complexation, and the second
is based on distance between interacting residues. In
this article, the ASA change is used to extract interface
residues. We applied the PSAIA software to the extrac-
tion [55]. In our case, a residue is considered to be an
interface residue if the difference of its ASA in
unbound and bound form is > 1Å2. As a result, we
obtained 142410 interface residues (positive samples)
and 374346 non-interface residues (negative samples),
where the ratio of the number of positive samples to
that of all samples is 27.56%.
In this work we applied a 5-fold cross-validation test

to evaluate our proposed method. In this case, proteins
in the dataset are divided into 5 subsets which consist
of roughly the same number of proteins, one subset is
for the test process and the other ones are for the train-
ing process.

Figure 6 Visualization of the overall orientation and prediction results on CCD-IBD complex PDB:2b4j. (a) The overall orientation of CCD-
IBD complex; (b) Protein-protein interaction predictions of CCD-IBD complex. The orientation of the complex is illustrated by a smooth spline
between consecutive alpha carbon positions. Left graph denotes the natural orientation, while the right one illustrates the protein-protein
interaction prediction of the complex. In the right graph, blue sphere stands for TP residue, bluetint one stands for FP residue, and gold sphere
demonstrates FN residue. All other residues (not shown as colored spheres) are true negatives (TN). Note that the orientation of the complex in
the right graph is varied a little to clearly show the predictions of protein interface residues. Additionally each sphere represents an alpha-carbon
atom of each residue. We used RasTop http://www.geneinfinity.org/rastop/ software to display the structure of this complex.
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Sliding window technique
Similarly to previous works, a sliding window technique
is used here in order to involve the association among
neighboring residues. It should be noted that the target
residue centered on the sliding window plays important
role compared to its neighboring ones in the window.
Within a sliding window, it is assumed that the influ-
ence of residues on the target one fits a normal distribu-
tion. Therefore, a series of factors for residues in the
window are taken into account to explain how residues
affect the probability of the target one being interface
residue by using

p e i Li
xi= =− −0 5 2 2

1. ( ) / , ~  (1)

where i is residue separation between residue xi and
the target residue in sequence, pi denotes an influencing
coefficient of residue xi on the target residue, and L is
the length of window. μ and s are parameters for each
residue. In this work, μ is regarded as the position of
the central target residue and the value is (L + 1)/2, and
the standard deviation s2 of residue position is calcu-
lated by the following formula:

 2 2

1 1

21 1
1 2= − = − +
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Then Equation (1) can be rewritten as:

p ei
i L= − − +0 5 1 2 2 2. ( ( )/ ) / (3)

Generation of residue profiles
It is well known that hydrophobic force is often a major
driver to binding affinity. Moreover, interfaces bury a
large extent of non-polar surface area and many of
them have a hydrophobic core surrounded by a ring of
polar residues [56]. The hydrophobic force plays a sig-
nificant role in protein-protein interactions, however,
the hydrophobic effect alone does not represent the
whole behavior of amino acids [57]. Therefore, we inte-
grate a hydrophobic scale and sequence profile in the
identification of protein-protein interaction residues. In
this work, Kyte-Doolittle (KD) hydropathy scale of 20
common types of amino acids is used [47]. Therefore,
two vector types are ready for representing residue i,
one is the KD hydropathy scale vector KDi and the
other one is the corresponding sequence profile SPi,
which is a 1-by-20 vector evaluated from multiple
sequence alignment and the potential structural homo-
logs. Multiplying the two vectors can achieve another
1 × 20 vector for residue i. However, representing each
residue as a 1 × 20 vector is not always a good idea in
residue profiling schema. Here we use a standard

deviation of the multiplication to measure the fluctua-
tion of residue i in its evolutionary context with respect
to hydrophobicity. Then standard deviation value SDi

for residue i in a protein is shown as the following form:
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where SPi
k and KDi

k denote the k-th value of SPi and
KDi for residue i, respectively, and SP KD× denotes the
mean value of vector SP × KD. Note that Equation (4) is
an unbiased estimation of SP KDi

k
i
k× . In addition SPi

k

and KDi
k represent the same amino acid type. For

instance, KDi
1 and SPi

1 all represent residue ‘ALA’.
Furthermore, with a sliding window whose length is

an odd number L, each residue i can be represented as
a 1 × L vector. The final profile vector for residue i in
the protein is shown as,
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where vector vi for residue i is the multiplication of
the standard deviation value SDi by its influencing coef-
ficient pi. More details of generating the profile vectors
can be referred to an example in Figure 7. For each resi-
due in protein chains, in summary, the input of our
model is an array Vi, while the corresponding target Ti

is another state value 1 or 0 that denotes whether the
residue is located at interface or non-interface region.
Similar to most other machine learning methods, our
method aims to learn the mapping from the input array
V onto the corresponding target array T. Suppose that
O is the output from our method, it is trained to make
the output O as close as possible to the target T.

SVM-SOM classifiers
The number of positive samples or so-called interface
residues is much smaller than that of negative samples
or non-interface residues. Only 27.56% of the samples
are interface residues in this work, which leads to a
rather imbalanced data distribution. To overcome this
problem, the training positive and negative samples are
divided into several subsets without overlap, which
have roughly the same sizes, in terms of the order of
ΔASA of the corresponding residues before and after
complexation. In the case of 5-fold cross-validation
test, the positive samples are grouped into two subsets
in the order of ΔASA and, the negative samples with
ΔASAs ≡ 0Å2 are randomly grouped into five subsets
due to only a small number of negative samples with
0 < ΔASAs ≤ 1Å2.
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SVMs are accurate classifiers while they can avoid
over-fitting [58,59]. The SVM learner aims to judge
whether a residue is located at an interface region or
not. As discussed above, there are ten SVMs in the 5-
fold test. Here, input profile vector for each residue is
extracted as above, and the target value of which is
labeled as 1 (positive sample) if the residue is located at
interface region and 0 (negative sample) otherwise.
In this study, SOM technique is adopted to group

similar input samples and make them more separable
[42]. The purpose of SOM is to detect regularities and
correlations in their input, and also to recognize groups
of similar input vectors. It can adapt their future
responses to that input accordingly in such a way that
neurons of competitive networks physically near each
other in the neuron layer respond to similar input vec-
tors [42]. Readers can be referred to the Additional file
4 for details. Here, we created SOM networks with N-
by-N neurons in a hexagonal layer topology, trained the
network on the training set in our dataset by 20 steps,
tested proteins on test dataset, and finally obtained N ×
N clusters of similar input samples.
Two modifications to the traditional SOM technique

are used here, including

• Delete the relatively less important nodes asso-
ciated with a small number of input samples;
• Use a validation index to choose clusters with the
optimal size of the map.

The validation index is adopted from literature [60-62]
and presented as an entropy measure. The index is to
determine the clusters with the optimal size which can
adequately classify the associated input subset without
causing overlap. The closer the index value is to 0, the
more distinctive the individual categories are. Otherwise
the closest index value to the upper bound indicates an
absence of any clustering structure in the sample dataset.
Therefore we can determine the corresponding clusters
with the minimal validation index. Samples in such clus-
ters are then fed into the trained SVMs classifier to iden-
tify interface residues. The calculation of the validation
index E is shown in the following entropy measurement:
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Figure 7 Flowchart of generating residue profiles. Each row of the sequence profile corresponds to a residue in the protein, while each
column in the sequence profile or the KD hydropathy scale corresponds to each amino acid type.
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Where Vn

 
, n = 1, ..., N, denotes an input sample, wr,

r = 1, ..., R, denotes the corresponding weight vector,
and Urn satisfies 0 ≤ Urn ≤ 1.

Classifiers combination
A simple method was used to combine the outputs of
SVMs in this paper. A residue was predicted as interface
residue if at least TH outputs of the SVMs correspond-
ing to the same residue were labeled as positive class 1,
otherwise the corresponding residue was identified as
non-interface residue. Here TH, a threshold value, is
ranged from 1 to the total number of SVM classifiers.
For example, threshold 2 denotes that one residue was
identified as interface residue if at least two outputs of
those SVMs were labeled as 1, otherwise as non-inter-
face residue. The flowchart of the whole method is
demonstrated in Figure 8. In Figure 8 there are M × N
SVM classifiers, each of which contains balanced train-
ing positive and negative input vector sets i and j.

Measures for performance evaluation
As discussed in previous literature, there is no single
statistic that can adequately assess or rank interface pre-
dictors [17,34,63], due to the imbalanced positive and

negative datasets. In this work we adopted six evaluation
measures to show the performance of our model: sensi-
tivity (Sen), specificity (Spec), accuracy (Acc), precision
(Prec), F-measure (F1), and Matthews correlation coeffi-
cient (MCC), as defined below

Sen
TP

TP FN
Acc

TN TP
TN FP FN TP

Spec
TN

FP TN
Prec

TP
TP FP

F

=
+

= +
+ + +

=
+

=
+

,

,

11 2= × ×
+

= × − ×
+ + +

Prec Sen
Prec Sen

MCC
TP TN FP FN

TP FN TP FP TN FP( )( )( )(TTN FN+ )

(7)

where TP (True Positive) is the number of true posi-
tives, i.e., residues predicted to be interface residues that
actually are interface residues; FP (False Positive) is the
number of false positives, i.e., residues predicted to be
interface residues that are in fact not interface residues;
TN (True Negative) is the number of true non-interface
residues; and FN (False Negative) is the number of false
non-interface residues. The MCC is a measure of how

Figure 8 SVM ensemble for identifying protein-protein interface residues.
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well the predicted class labels correlate with the actual
class labels. Its value range is from -1 to 1. An MCC of
1 corresponds to the perfect prediction, while -1 indi-
cates the worst possible prediction; an MCC of 0 corre-
sponds to a random guess.

Additional material

Additional file 1: Propensity of amino acid types between interface
and non-interface sets. Each histogram is showed in a logarithm (log2)
scale.

Additional file 2: Determination of the sliding window length from
the average performance of ensembles of three-SVMs with respect
to different window lengths. The left one shows the average
performance with respect to different window lengths for threshold 1
after combining the three-SVMs, while the central and the right graphs
are for threshold 2 and threshold 3, respectively.

Additional file 3: Average performance of ensembles of three-SVMs
selected from the ten-SVMs. The left one shows the performance
under threshold 1 after combining the three-SVMs, while the central and
the right-side sub-graphs are under threshold 2 and threshold 3,
respectively.

Additional file 4: Description of SOM.
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