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Abstract

loss of statistical power.

platforms.

Background: In many microarray experiments, analysis is severely hindered by a major difficulty: the small number
of samples for which expression data has been measured. When one searches for differentially expressed genes,
the small number of samples gives rise to an inaccurate estimation of the experimental noise. This, in turn, leads to

Results: We show that the measurement noise of genes with similar expression levels (intensity) is identically and
independently distributed, and that this (intensity dependent) distribution is approximately normal. Our method can
be easily adapted and used to test whether these statement hold for data from any particular microarray experiment.
We propose a method that provides an accurate estimation of the intensity-dependent variance of the noise
distribution, and demonstrate that using this estimation we can detect differential expression with much better
statistical power than that of standard t-test, and can compare the noise levels of different experiments and

Conclusions: When the number of samples is small, the simple method we propose improves significantly the
statistical power in identifying differentially expressed genes.

Background

Microarrays

DNA microarrays are widely used tools for simultaneous
measurement of the expression of thousands of genes.
Applications of microarrays include (1) identifying dif-
ferentially expressed genes between two groups, (2)
monitoring typical temporal or spatial profiles of genes
and (3) classifying samples on the basis of their gene
expression signature. The technical procedure of a typi-
cal experiment contains the following steps: (1) mRNA
is extracted from the sample cells, (2) mRNA is con-
verted to cDNA, (3) ¢cDNA is amplified and labeled, (4)
the labeled cDNA is hybridized to a glass slide contain-
ing complementary probes, (5) the slide is scanned by a
laser, (6) the image is analyzed using a signal processing
algorithm which provides the intensity levels and some
quality control information. Two types of microarrays
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are in common use: two color - in which hybridization
is performed on a mixture of (differently labeled) cDNA
obtained from two samples; and single color (also
known as oligonucleotide chip) - in which each sample
is hybridized to a different chip. In this work we focus
on single color oligonucleotide microarrays.

Noise

Similarly to every other measurement technique, micro-
array measurements include noise. We define noise in a
model-independent way: repeating an experiment many
times under identical conditions generates a distribution
of the measured quantity (e.g. the intensity of a single
gene, measured in the same sample). The fluctuating
random variable that gives rise to this distribution is
“noise”, quantified by the standard deviation of this dis-
tribution. Characterizing the noise distribution is impor-
tant for assessing the statistical significance of observed
differential expression.
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Differentially expressed genes

When biologists compare the expression levels of a gene
between two conditions (A and B), say by real time
PCR, they repeat the measurements a few times in each
condition. Using these repeats, they can estimate basic
properties of the noise distribution - usually the mean
and the standard deviation - either directly (as proposed
here) or indirectly (as done when a t-test is performed).
Without any estimate of the noise it is not possible to
assign statistical significance to a discovery of differential
expression (i.e. calculate a p-value - the probability to
get the measured or larger difference of expression from
the random fluctuations of the measurement). Practi-
cally implementing this approach when using microar-
rays is difficult because of two main problems: (1) The
high cost of each microarray requires careful design of
the number and type of repeats in each condition. An
insufficient number of repeats can reduce the statistical
power of the experiment, thus lowering the sensitivity to
detect differentially expressed genes, while using a large
number of repeats is very costly. (2) The high through-
put nature of this system enables measurement of thou-
sands of genes simultaneously, while in a typical
microarray experiment the desired result is a small sub-
set of genes. This introduces a need for control of false
positives (type I errors). In contrast to a single gene
experiment, in which classically a p-value of 0.05 suf-
fices, using such a p-value for a microarray (of say
10000 genes) will return ~0.05 x 10000 = 500 genes
which result from random noise, masking the true dif-
ferentially expressed genes we are seeking. To overcome
this problem, several methods for multiple testing (e.g.
Bonferroni, FDR [1]) can be used. However, they usually
pass only genes with a much lower “naive” p-value, and
therefore their use calls for applying more sensitive
methods to estimate single gene p-values.

The aim of this work

We present a method that improves the statistical power
of testing for differentially expressed genes in experi-
ments with small numbers of repeats (or even no
repeats at all). We achieve this by showing that the
main factor that governs noise is the intensity (expres-
sion level) of a gene. Using this, we estimate the mea-
surement noise on the basis of averaging a rough (single
gene based) estimate over a large number of genes with
similar intensity (and hence similar noise distribution).

Literature Survey

The issues of normalization and statistical analysis of
microarray results were the subject of many studies [2]
motivated by the need to reduce the likelihood of
reporting false, noise-generated interpretations of the
biological systems at hand. In this work we do not deal
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with the normalization and low-level processing steps
and assume that the data are normalized.

Several papers [3-5] identified intensity as a major fac-
tor governing microarray induced noise. Novak et al. [3]
studied the reproducibility of replicate microarray
experiments by comparing the results of parallel assays
done with mRNA probes synthesized from the same
mRNA sample. They suggest a linear dependency
between the replicates’ mean intensity and replicates’
standard deviation. Tu et al. [4] take this idea forward,
using a systematic experimental design, which enables
them to compare samples taken from the same cell line
but from a different dish. They try to discriminate
between biological and technical noise. They also fit an
exponential function to the standard deviation line, and
find that the hybridization noise has the greatest contri-
bution to the total measurement noise. As a practical
result from these noise characterizations, they propose a
procedure for calculating a p-value for each gene based
on its mean expression level and its fold change.
Another attempt to address this issue was made by
Huber et al. [5], who presented a variance stabilization
approach. They tried to reduce the dependency between
the variance and the mean intensity in order to get a
uniform (intensity independent ) noise distribution.
They were able to do so by a two step transformation of
the data: a linear transformation followed by a sinh™
transformation. After applying this transformation a
simple fold change cut-off is equivalent to a p-value
cut-off.

A widely used method for detection of differentially
expressed genes, which takes into account the intensity-
dependence of the noise is SAM (Significance Analysis
of Microarrays) [6]. In SAM, an intensity corrected sta-
tistic d is calculated for each gene, and significant genes
are then identified using comparison to random permu-
tations of the groups. The intensity-dependent correc-
tion is obtained by incorporating a constant additive
“fudge factor” so in the denominator of the standard
t-statistic. The exact value of s, is selected to minimize
the dependence of the d statistic on the expression level.
Thus, the fudge factor serves to reduce the significance
of the noisier low-intensity genes (a detailed comparison
with SAM is shown later in the paper).

Another approach provided by Nykter et al. [7] was to
simulate the whole process of microarray measurements
starting from the very low level of spot image analysis.
This approach is useful in order to simulate large scale
microarray data under realistic conditions in order to
test and validate data analysis algorithms. A major com-
prehensive effort to asses the inter- and intra-platform
reproducibility of microarrays was done recently by the
Microarray Quality Control (MAQC) project [8]. The
MAQC study reports intraplatform consistency and high
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level of interplatform concordance. The goal of this
study was to asses reproducibility and not to character-
ize the noise; this was done in a subsequent study by
Klebanov et al. [9], who used the MAQC dataset to
quantify the level of noise in Affymetrix microarrays.
They suggest that the average level of noise in technical
replicates (without biological variability) is quite low, as
exemplified by the lack of bias induced by such noise in
pairwise correlation coefficient estimation.

A generally accepted way to model microarray noise is
as a combination of (intensity independent) additive and
multiplicative components. We claim that such a para-
metrization does not provide a good description of the
noise and its complexity. In Additional file 1: Section 1,
Figure S1, we provide evidence supporting this claim. In
what follows we show that our intensity-dependent
parametrization does have enough flexibility to provide
an accurate description of the noise distribution.

Notations
Throughout this work we use the following notations:

I;; - is the measured log, intensity of a gene i on
microarray j.

I, j - is the true underlying (without the microarray
induced noise) log, intensity level of gene i on microar-
ray j.

U - are random variables used in modeling the micro-
array induced noise.

0-1.7- - is the true variance of gene i.

~2 - is an unbiased naive estimator for & 12

5? - is the intensity dependent variance estimator
(IDVE) for 7.

Throughout the paper we assume that the measured
(log) intensity can be written as I = Iy + U(ly), where U
is the noise component of the signal which we aim to
characterize (note: this representation is general enough
to allow for multiplicative noise, as discussed below).

In the Results section we show in a more formal way
that for Affymetrix expression data the noise distribu-
tion is indeed mostly intensity dependent, and thus
satisfies our assumptions. The same method can be
used for any other type of data to test validity of these
assumptions. The main point of this paper is to actually
estimate this i.i.d. (independent and identical distribu-
ted) intensity dependent noise. Our proposed approach,
which is based on a local noise estimation, is presented
in the Results section, which contains also several prac-
tical applications to the analysis of microarray experi-
ments. We then demonstrate the advantage of using our
approach by analysis of simulated data and of expression
data from several experiments. We close with a discus-
sion of the issue of experimental design and with some
concluding remarks.
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Results

The noise is mostly intensity dependent; formulation

and validation

When repeating a microarray experiment under identi-
cal conditions (experimental repeats) we expect the true
values (the actual expression levels) to be identical, attri-
buting all the differences between repeats to stem from
measurement noise. We refer to experimental repeats as
the scenario where the experiments were repeated with
the same type of cell, but grown on different plates,
using separate RNA extraction etc., in contrast to purely
technical repeats which refers to identical RNA being
hybridized to two different arrays (some issues related
to “biological noise” are discussed in Additional file 1).
In most of our analysis we used a publicly available
dataset GSE19921 described in detail in the Methods
section. Note that if both repeatl and repeat2 come
from the same distribution, their difference is distribu-
ted with zero mean and twice the variance. An example
of a scatter plot, produced by two technical repeats, is
presented in Figure la. In the ideal case (zero noise) all
the dots should be on the diagonal (repeatl = repeat2),
but as can be seen, the dots are scattered around the
diagonal, with the distance from it reflecting the mea-
surement noise. For an easier estimation of the noise,
Figure 1b shows the difference in expression level
between the repeats (proportional to the standard devia-
tion) as a function of the intensity - the mean expres-
sion of each gene (Figure 1b is obtained from Figure la
by a rotation of 45°).

The black lines in Figure 1b present the standard
deviation as a function of the intensity. This smooth
curve is the result of performing a “running average” of
the standard deviation, obtained for each gene i by aver-
aging the standard deviations of all genes within a win-
dow of intensity +0.5 centered on I,. It is evident that
the standard deviation of measurement noise decreases
with increasing intensity. In Figure 2 we show that this
scatter plot pattern appears in many cases, by presenting
data for repeats from different tissues and different types
of Affymetrix arrays.

In general we can write the measured signal as I = I +
U(ly), where U is the noise term, that according to the
above figures has an intensity dependent distribution.
Note that by expressing the measured signal as I = Iy + U
(Zo) we are not limiting our noise model to additive noise
only; the standard parametrization of the form I = Iof + a
can be represented by U(lp) = Io(f - 1) + a. In fact, by
allowing a general intensity-dependent parametrization
we allow an even more flexible description than a combi-
nation of additive and multiplicative noise terms (see
Additional file 1 for more details and fit to data). We
show below that the distribution of U(l,) is normal with
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deviation estimator (dataset used: GSE19921).

\

Figure 1 Noise is intensity dependent: Typical scatter plot for two experimental repeats. Each dot represents a gene, (a) repeat1 vs. repeat?,
the black line is the diagonal (repeat1 = repeat2), (b) difference vs. mean intensity. The black lines are the running average of the standard

(b)

diff= repeatl — repeat2

4 6 8 10 12
mean = (repeatl + repeat2)/2

mean zero and intensity dependent variance. In addition,
we claim that the noise terms for different genes are
independent random variables, and therefore the noise
terms of genes with similar intensities are independent
identically distributed random variables.

The noise term is normally distributed

We now turn to study the noise distribution. As a first
step, this can be done by looking at the distribution of
the difference of two repeats (repeatl-repeat2, as appears
in Figure 1b). The difference of two independent random
variables (r.v.) with the same mean (I,;) has zero mean
and a variance which is the sum of the individual var-
iances; in addition, if the two r.v. have normal distribu-
tions, the difference is also normal. While from two
duplicates it is hard to infer about the underlying distri-
bution, if the noise term is i.i.d. for a large number of
genes one can use measurements from all these genes in
order to infer accurately about the distribution. In Figure
3a we plot in blue the experimental probability density
function (pdf) of the difference between the repeats over
all the genes in the array. The manner in which this
smooth pdf is obtained from the data is explained in the
Methods section. We also plot (in red) the fitted normal
pdf (from estimating the mean and variance). As can be
seen, the fit to the normal distribution is very poor. To
quantify this observation we performed several normality
tests [10,11]; the Kolmogorov-Smirnov (KS) test indeed
yielded a very low value (pgs = 0) and the score from the
quantile-quantile (Q-Q) plots with respect to the fitted

normal distribution, shown to the right, is also relatively
low.

Figures 3b and 3c present similar plots (pdf compari-
son and KS score on the left and Q-Q plot on the
right), but here we use genes that belong to specific bins
of mean intensity; Figure 3b is for 5.75 < I < 6.25 and 3c
is for 8.75 < I < 9.25. Both show good fit to the
expected normal distribution (pxs = 0.87 and pxs = 0.15
in Kolmogorov-Smirnov test, respectively). The good fit
to normal distributions shown in Figures 3b and 3c sug-
gests that the noise term is i.i.d and indeed approxi-
mately normally distributed for genes in the same
intensity bin. In Additional file 1: Supplemental Figures
S2-S6 we provide similar plots for a wide range of inten-
sities and intensity bin sizes, which further support our
claim that the normal distribution is a good approxima-
tion, and that this holds when the choice of bin size is
varied. A second observation is that the variance of the
normal distribution changes as we move from one
intensity bin to another. This is exactly the reason for
the poor fit in Figure 3a, since the distribution of mixed
normal random variables with different variances is not
normal. These figures also suggest that the noise terms
for different genes are independent (note that we claim
that the noise terms are independent and not that the
gene expression levels are independent). Additionally,
the mean of all the experimental pdfs is zero, as
expected from data after a normalization procedure
which removes biases.
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(a) — mouse blastocyst tissue

di

(c) — breast cancer cell line

4 6 8 10 12
mean

dependent noise patterns.

Figure 2 Intensity dependence appears in many cell and microarray types: Difference vs. mean scatter plots of experimental repeats from:
(@) mouse blastocyst tissue on Affymetrix Mouse 430 array, (b) chick embryo tissue on Affymetrix Chicken Genome Array, (c) breast cancer cell
line on Affymetrix HuGene 1.0 ST array, (d) prostate cancer cell line on Affymetrix HuGene 1.0 ST array. All scatter plots show similar intensity

(b) — chick heart embryo tissue

(d) — prostate cancer cell line

mean

The noise variance estimator has a % distribution
Expanding this approach to more than two arrays is nat-
ural, by plotting the variance estimator as a function of
the mean expression level, where the mean and variance
estimators for # repeats of gene i are:

n n
- 1 A2 1 =12
Ii=— E Ly oi=—> E (Ii; - 1)) (1)
n 4 n-14
=1 =1

Note that pr 12 _ -2 even in the case of non-normal
distribution, since this is the definition of the unbiased
variance estimator. If the noise of every gene (in each
intensity bin) is normal ii.d., then the variance estimator
should have a chi-square distribution, more accurately:

2
A2 oi(n—1
67w y2y| 22D @
i
Therefore:
_ 4
Var[p]= 2021 2011 ; with E[6i]=c2 (3)

(n-1)*

A few points should be kept in mind. The reverse of
the statement made above is not correct; we present the
agreement between the measured distribution of the
variance and the x> distribution only as supporting
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Figure 3 Genes with similar intensity show normal noise distribution: Distribution of the differences between experimental repeats (blue
line) and their fit to normal distribution (red line). (a) The fit for all the genes on the array is poor, (b) for genes with mean intensity between 5
and 6 and for (c) genes with mean intensity between 7 and 8 excellent fits for normality are obtained (dataset used: GSE19921).

quantile of normal

evidence and not as a test for normality (which was
addressed above). Figure 4 shows the distribution of the
variance estimator, where the blue line is the empirical
pdf and the red line is the fit expected from the chi-
square distribution. The two upper panels (Figures 4a
and 4b) are variance estimators based on two repeats
and calculated for different mean intensity bins, while in
the two lower panels (Figures 4c and 4d) variance is
estimated using 8 repeats.

The fit of the distribution of ,2 to the y* distribution
is good. Nevertheless, it should Pe noted that based only
on two repeats, results such as shown in Figures 4a and
4b do not suffice to prove that the noise distribution is
i.i.d. The reason is that one can not rule out the possibi-
lity of a hypothetical scenario, in which the distribution
of variances of the genes is chi-square but in a gene
dependent manner (not only intensity dependent and
not i.i.d). To rule out this (unlikely) scenario, note that
under such a scenario the distribution of .2 should be
independent of the number of repeats, whereas (under

our assumptions) we predict dependency of the y* dis-
tribution on the number of repeats. Note that if our pre-
dictions are right, in the limit # — < the distribution
goes to a delta function at 6°. We see good fits in Fig-
ures 4c and 4d to narrower y* distributions than those
of Figures 4a and 4b. In Figures 4e and 4f we show the
dependence of the variance estimator distribution on
the number of repeats. As expected, the mean is almost
independent of the number of repeats (see Figure 4e),
whereas in agreement with eq.(3) the variance decreases
(see Figure 4f) as the number of repeats increases. The
fact that the distribution of the variance estimator
becomes narrower for increasing number of repeats at
the same rate as expected by the the chi-square distribu-
tion, is consistent with normal i.i.d. distributions of the
noise for different genes with similar intensity.

Estimation of the intensity dependent variance
In order to analyze the variance profile, we apply an
iterative robust estimator for the intensity dependent
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variance in constant sized bins (see Methods for details).
The result of this estimation for a dataset containing 8
microarrays (Affymetrix HuGene 1.0 ST) is shown in
Figure 5. Note that these arrays represent 4 different
conditions, with 2 technical repeats in each condition
(see Methods section for details). We therefore used
only a subset of ~10* genes which do not have large dif-
ferences between the conditions (<1.3 fold), but without
any constraints about the variation between the dupli-
cates. Hence we view the n = 8 microarrays as experi-
mental repeats. Panels a-c of Figure 5 show the
properties of this variance estimation using different
numbers of repeats (running bin size of 1 in log inten-
sity units). As can be seen, the variance lines are essen-
tially identical (as expected, E GAiZ] _ Giz, see eq. (3)),
indicating that a comparison of two microarrays suffices
to estimate the intensity-dependent variance of the
noise. The variance of this variance estimator indeed
decreases as the number of repeats increases, as also
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expected from eq. (3) (if the noise is only intensity
dependent, this variance should converge to zero when
the sample size goes to infinity), but the rate of conver-
gence is slow (see also Additional file 1: Supplemental
Figure S9). This demonstrates the large fluctuations in
the naive variance estimator in such a small sample size.
Since there are claims in the literature about a depen-
dency between the noise and the GC content of the
probe [12], we show in Additional file 1: Supplemental
Figure S7 the variance as a function of the GC content
of the probe. As can be seen, the average noise is a flat
line suggesting that the noise is independent of the GC
content.

The MAQC project dataset

The Microarray Quality Control (MAQC) project [8]
was a comprehensive study, aimed at assessing the
reproducibility of microarray results across different
platforms and within the same platform across different

(a) (b) o (e)
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Figure 4 The noise variance estimator has a > distribution: Empirical probability density function (blue line) of the variance estimator and
its fit (red dashed line) to the corresponding 752 distribution (see (2)), in (a) and (c) the mean intensity is between 6 to 7, in (b) and (d) the
mean intensity is between 10 to 11. In (a) and (b) we used 2 repeats and in (c) and (d) we used 8 repeats. Panels (e) and (f) show the
dependence of the mean (panel (e)) and variance (panel (f)) of 42 versus the number of repeats at hand, where the black and green lines
represent different intensity bins, black for 6 </ < 7 and the green for 10 </ < 11. The dashed line in panel (f) is the variance expected from (3)
(dataset used: GSE19921).
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sites. As part of the project, high quality universal
human reference RNA (sample A) was hybridized on
five identical Affymetrix HG-U133 Plus 2.0 microarrays,
all at the same site (Site # 1). The level of noise in such
experiments is expected to be the lowest one can
achieve, since this is purely technical (hybridization)
noise. We used these five replicates to validate our find-
ings regarding the nature of the noise, and to compare
the noise levels in these MAQC technical repeats with
those of our experimental repeats (the dataset from our
Figures 3, 4, 5). As can be seen in Figures 6, the pdf of
the difference between two repeats in the MAQC data
are quite similar to those of our data (compare to Fig-
ures 3a - 3c). Here also, we observe intensity dependent
noise distribution; for the intensity bin 7 + 0.25 the dis-
tribution is wider than that of the bin 9 + 0.25. Here
the fit to normal distribution is again poor when we
lump all intensities together, but becomes good in speci-
fic intensity bins. Figures 6d - 6h are similar to Figures
5a - 5f, and show that estimation of the noise on the
basis of two repeats is as good as the estimation based
on five repeats, and that the width of the distribution of
the variance around its mean value decreases (as pre-
dicted by our noise model) as the number of repeats
increases. The noise levels of the MAQC data are
expected to be different from ours because of the differ-
ent platform, but since the noise is of the same order as
in Figure 5, we can conclude that even for the case of
experimental repeats, the dominant contribution to the
noise comes from hybridization.

Implementation

A naive approach for estimating the noise is to calculate
the variance estimator for each gene, one at a time,
using the # repeats in hand (for example, as is implicitly
done in a t-test or by using SAM). However, in the case
of a small sample size large fluctuations in the variance
estimation (used while calculating the ¢ statistic) lead to
reduced statistical power.

Our proposed method is based on eq. (3); specifically,
on the statement that the mean of the variance estima-
tor is the true variance. We use the fact that the noise is
intensity dependent, and hence by calculating the mean
variance estimator of a (relatively) large number of
genes with similar intensity, we get an estimate of the
true variance which is significantly improved and stabi-
lized versus the one based on a single gene. Using these
intensity dependent standard deviation values, we can
assign statistical significance to the differential expres-
sion of a gene between two conditions using the more
powerful z-test (instead of the t-test or SAM), thus gain-
ing improved statistical power. We demonstrate this
improvement on simulated data and on real experimen-
tal data.
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Analyzing data with n = 2 repeats
Consider an experiment with # repeats, denoting the
expression levels of gene i by I; ; for j = 1, 2..n. Apply
the robust variance estimator procedure outlined in the
Methods section to obtain T,,&2; where I, is the mean
expression of gene i over 1 repeats, and &7 is the mean
of the naive (n-repeat based) single-gene variance esti-
mators, obtained by averaging over the (large number
of) genes in the intensity bin of gene i. Note that the
variance of the quantity I;is L &7. Use this estimate of
the noise distribution to find the differentially expressed
genes between conditions A and B, for each of which
we have # repeats:

1. Calculate Ti,ArGNi?,-A'Ti,B'GNi%B'

2. For each gene calculate

di=Iiy—Iip.

3. For each gene test the null hypothesis that there is

no difference between the expression of the two

conditions. Formally stated, the null hypothesis is:

the statistic

22 -2
OiAtoiB

Hy:d; ~N| 0, (4)

n

The above suggested p-value calculation is equivalent
to using the z-test which provides higher statistical
power than the corresponding t-test.

Performance on simulated data

As an example, we simulated a data set containing i = 1,
2...1000 “genes”, each with j = 3 repeats, under two
“conditions”. In the first condition (denoted as X) all
expression values were sampled from a normal distribu-
tion with zero mean and unit variance x;; ~ N(O,1) In
the second condition (denoted as Y') the first 500 genes
were sampled from the same distribution, i.e. (y;; ~ N
(O,1)[i = 1, 2...500]) while the next 500 genes were
sampled from a normal distribution with a different
mean (y;; ~ N(u1,1)[i = 501, 502...1000]) This simulation
represents the case when out of the 1000 measured
genes, the first 500 are not differentially expressed in
conditions X and Y, while the second set of 500 are.
Next, for y; = 1 (a relatively weak signal) we calculated
the p-values for each gene using (i) the standard t-test
and (ii) our suggested method (using z-test). Based on
the known true differentially expressed genes we could
calculate the true positive rate (TPR) and false positive
rate (FPR) for any Benjamini-Hochberg FDR level. This
simulation was repeated 100 times, and the results we
show are averages over these 100 realizations (the simu-
lation code and output is available as Additional file 2).
Figure 7 presents the dependence of the averaged TPR
and FPR levels on the FDR used, for both methods. For
example at FDR of 10%, the average number of genes



Zeisel et al. BMC Bioinformatics 2010, 11:400
http://www.biomedcentral.com/1471-2105/11/400

Page 9 of 15

(a) — using 2 samples

6 7 8 9 10 11 12 ] 13
(b) — using 4 samples

6 7 8 9 10 11 12 13
(c) — using 6 samples
0.6 T T T T
041
<
02l
0 | | | i 7 i i
6 7 8 9 10 11 12 13
(d) — using 8 samples
0.6 T T T T

6 7 8 9 10 11 12 13
Mean intensity
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passing when the t-test is used to calculate the p-values
is 0.5, while 14 genes pass, on the average, using our
approach (with FPR of 0.2%). At FDR of 30%, the aver-
age number of genes that pass, using t-test, is 10 and
100 genes pass at the same FDR when our approach is
used (with FPR of 3%). The results of these figures are
also summarized in Additional file 1: Supplemental Fig-
ure S8, where the ROC curve is shown for this same
value of y; = 1 as well as for a strong signal (4; = 3).
The ROC curves clearly demonstrate the superior per-
formance of our z-test - we gain in TPR without over-
polluting the discoveries significantly by false positives.
Performance on an experimental dataset

In order to test the power gained by using our proposed
method on real data, we studied the experimental dataset
of Amit et al. [13]. This study includes a time course
experiment of gene expression following LPS stimulation
of primary mouse bone marrow dendritic cells, using the
Affymetrix HT-MG-430A mouse gene array. The experi-
ments we analyzed consisted of 9 time points spanning
the first 24 hours following the stimulation, with 2 repeats
of each time point. We used these data (following MAS5
normalization) to identify differentially expressed genes

between consecutive time points. To this end, we applied
several techniques: (1) the standard t-test, (2) the SAM
algorithm [6], (3) passing a threshold of 2-fold change, (4)
our proposed intensity dependent z-test based method dis-
cussed above (with #n = 2 repeats). As an example we
show, in Figure 8a, the intensity-dependent noise profiles
measured at two time points (16 and 24 hours following
stimulation), estimated from the two replicates. As can be
seen, the noise dependent intensity profiles derived at the
two time points are similar, with the noise standard devia-
tion decreasing from ~0.8 (at average expression level 4)
to ~0.1 (at average expression levels >12). Using this noise
profile, we apply the z-test (as described above), with a
FDR level of 5%. A scatter plot comparison of these two
time points (16 vs 24 hrs) is shown in Figure 8b. Genes
which are identified as differentially expressed are marked
in magenta. As can be seen, 995 candidate genes pass at
FDR of 5%. This is in sharp contrast to detection of differ-
entiating genes using the standard t-test or SAM, both of
which fail to identify even a single candidate gene at this
FDR level.

Figures 8c-8j summarize the number of candidate
genes identified by each method (SAM, 2fold, our



Zeisel et al. BMC Bioinformatics 2010, 11:400
http://www.biomedcentral.com/1471-2105/11/400

Page 10 of 15

(a), All intensities, pks=6.3732e—135

Density

(b), 6.75 <1< 7.25, pkg=0.61449

(d), using 2 samples (®

10 12 14

(e), using 3 samples

repeatl-repeat2

deviation lines from (d)-(f) (data used: GSE5350).

1.5 = Empiric
- - = Fit 0 ‘
6 8 10 12 14
21
v
£
8
05 (h)
) 0.4 ; ;
2 samples
0 0.35 3 samples |
-2 -1 0 1 2 5 samples
0.3 : 1
(c), 8.75 <1< 9.25, pks=0.048868 (f), using 5 samples 025
1 —
<
S
1.5 —
0.8 q 02
wn
21 0.6 0.15
g ©
] 0.4 0.1
0.5
0.2 0.05
0 0 g 0 - ; ;
-2 -1 0 1 2 6 8 10 12 14 6 8 10 12 14

Mean intensity

Figure 6 Technical noise in the MAQC dataset: (a) - (c) show the empirical pdf of the difference between two technical repeats in blue and
the fitted normal pdf in red, for (a) all ranges of intensities, (b) 6.75 </ < 7.25, (c) 8.75 </ < 9.25. The p-value of the Kolmogorov-Smirnov test for
normality is indicated in each figure. (d)-(f) Scatter plots of the square root of the variance estimator vs. the mean intensity, and its properties for
different number of repeats; the black line indicates the estimated variance using our approach. (g) and (h) show the average and standard

Mean intensity

method) and their overlaps between all consecutive time
points using a FDR of 5% (Benjamini Hochberg proce-
dure [1]). As can be seen, utilizing the intensity-depen-
dent standard deviation yields a highly improved
statistical power compared to the two alternative meth-
ods (SAM and 2-fold change cutoff) as well as the stan-
dard t-test (which identifies differentially expressed
genes only in the 2-4 hours comparison). An obvious
question that arises is the fraction of true and false posi-
tives among the large number of differentiating genes
found by our method. An indirect way to test this is to
consider whether these differentiating genes make “bio-
logical sense”. To this end, a gene ontology term

enrichment analysis was performed on the differentially
expressed genes identified by the z-test method using
the DAVID web tool [14]. For all consecutive time
points tested, a large and significant enrichment is
observed in immune response related genes, such as:
cytokine production, cell death, phagocytosis and the
mitochondrial electron transport chain (Additional file
1: Supplemental Tables S1-S3). Enrichment for immune
system related terms is also observed when testing only
genes uniquely identified by our method and not by the
alternative SAM or 2-fold methods (Additional file 1:
Supplemental Tables S4-S6), while we did not observe
such enrichment when testing the lists of genes that
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were identified uniquely either by SAM or by 2-fold
change (Additional file 1: Supplemental Tables S7-S8).
A more direct way to test whether the genes discov-
ered by our method and not by SAM are true positives
is by an independent experimental validation. We
repeated the experiment of Amit et al [13] and tested,
by qPCR measurements, the expression profiles of 15
selected genes that were found to be differentially
expressed by our method (five of which were not found
by SAM or t-test), and compared their time-dependent
profiles to those obtained by Amit et al using microar-
rays. Indeed, although the experiment was done on dif-
ferent murine bone marrow dendritic cells by different
people at different labs at a different time, the qPCR
profiles of the genes looks very close to those derived
from the the array-based profiles (Additional file 1: Sup-
plemental Figure S10). In particular, note that we vali-
dated the variation of those five genes that were
identified by our method as significantly varying and not
identified as such by either SAM or t-test.
Analyzing data without repeats
We now turn to the case of a single microarray in each
biological condition, without repeats. The only way one
can estimate noise in such a case is by viewing the two
different conditions as two repeats. Of course, one has
to address the question: is it possible to distinguish
between differences due to noise, and the true condition
dependent changes in gene expression, even when there
are no real repeats? Clearly, this scenario is not recom-
mended and one should try to avoid it. Since the techni-
cal noise depends mainly on the mean expression level
while the real biological variation can be gene specific,
naive averaging over the variance estimator ( »2) in an
intensity bin will produce over-estimation of the var-
iance, because it treats real biological differences also as
noise. Under the assumption that the number of genes
whose expression levels significantly differ between the
two conditions is small, the Robust Variance Estimation
procedure described in the Methods section can par-
tially overcome this problem. In this case, we suggest as
a heuristic to find for each sample the one or two clo-
sest samples (by PCA or any other distance measure),
treat these as repeats and apply the Robust Variance
Estimation procedure.
Experimental design considerations
When performing a DNA microarray experiment, we
need to select the number and type of repeats at each
condition. While having more repeats gives a higher
sensitivity, they cost more. We provide a rough estimate
of the required number of repeats in a typical experi-
ment for detecting differentially expressed genes
between two conditions. We assume that the noise pro-
file of the microarrays is approximately as that shown in
Figure 5e (which seems a typical noise profile for a cell-
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line experiment - see also Figure 2). The z-score for a
differentially expressed gene is:

7. =

1

where Tl denotes the mean, & 1.2 denotes the variance
of the gene, and 7 denotes the number of repeats in con-
ditions A, B. Taking n4 = ng = n for genes with average
expression of 4 and 8 (6° ~ 0.2, 0.04 respectively), we can
predict the minimal fold changes needed to achieve a
3-sigma threshold, for different numbers of repeats.

As can be seen from Table 1, performing more repeats
increases the sensitivity, allowing detection of small fold
changes as statistically significant, since it is compared
to the null hypothesis of identical expression between
the conditions. However, a very small fold change, no
matter how statistically significant it is, may not be bio-
logically relevant. Therefore, when designing a microar-
ray experiment, we need to take into account the
minimal fold change we are interested in detecting,
which will affect the number of repeats needed. For
example, to detect a minimal fold change of 1.5 at inter-
mediate gene expression (I = 8), two repeats at each
condition will suffice (see Table 1). Finally, the question
of how to distribute the available microarrays for a
given experiment is hard to answer. The conflict
between having more conditions and having repeats
always comes up. Assuming that our assumptions about
the noise properties hold, two repeats should suffice to
estimate the noise. Whether repeats are needed for all
conditions - there is no clear answer but we think the
main advantage of having repeats is clearly that they
increase our confidence in the results of the analysis.

Discussion and Conclusions

When using DNA microarrays we are faced with the pro-
blem of a small sample size combined with a large num-
ber of genes, out of which we want to identify a small
differentially expressed subset. Therefore, special care
must be taken to correctly estimate the distribution of
noise for all the genes. Even a small fraction of genes for
which we under-estimate the variance can significantly
contaminate the results with false positives. We showed
here a method for estimation of the technical noise char-
acteristics of the microarrays. Utilizing the fact that the
technical noise is intensity dependent, we are able to use
hundreds of genes with similar intensity to get an accu-
rate estimation of the noise profile. Using the resulting
estimated variance, we propose a reliable and sensitive
method to detect significant changes of expression asso-
ciated with different biological conditions.
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It has been previously shown [9] that the noise level in
microarray experiments is low. While being encoura-
ging, this does not mean that this noise can just be
ignored. Using a small number of repeats often leads to
a noisy estimation of the variance, thus leading to a
reduced statistical power when using t-test statistics on
each gene separately. This can often lead to non-signifi-
cant statistics even on genes with a biologically relevant
change in expression. On the other hand, as evident
from the current study, using the average variance
across all genes can lead to false-positives, due to the
non-uniformity of variance distribution across genes. By
showing that the noise term has approximately normal
i.id. distribution for genes with similar average intensity,
and calculating the intensity-dependent noise profile,
one can utilize the low noise levels to accurately identify
differentially expressed genes even when the number of
samples is small.

Methods

Bin size selection

There is no clear criterion to determine the bin size.
The selected bin size is the result of a trade-off; on the
one hand we wish to have in each bin a large number of
points (genes) N, in order to improve the statistics (the
variance is estimated on the basis of N variances mea-
sured from the data), while on the other hand one
wishes to keep the intensity range that defines the bin

small (since genes of similar intensity are hypothesized
to have the same variance). In such a case one should
examine the sensitivity of the results to the bin size
used. We find that having N > 200 elements in each bin
provides a good estimate for the parameters of the
desired distribution. In Figure 3 we use a bin width of
0.5 (in log, of expression values), which is not optimal,
but as can be seen, does provide a distribution very
close to normal.

Empirical probability density function estimation

The experimental probability density functions flx) were
evaluated by dividing the range of the variable x that
characterizes the data points (e.g. difference between
repeats) to about 30 - 50 equal bins. The number cho-
sen for each case depended on how many data points
were available; on the one hand, we want to have small
fluctuations of the number of points in a bin, and on
the other hand, we wish to have a sufficient number of
bins to provide information about the probability den-
sity. The counts in each bin were normalized so that the
integral of the resulting histogram is 1, and a simple
smoothing procedure (running average over 5 elements)
was applied.

Robust variance estimation
The simplest way to estimate the variance of the noise
from # repeats is to calculate the variance estimator for
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Figure 8 Application for time course experiment and comparison to other methods: (a) Estimated standard deviation vs. intensity lines
derived from two repeats of data from t = 16 hrs and from t = 24 hrs after LPS stimulus. (b) Scatter plot of mean intensities measured at t = 16
hrs vs. t = 24 hrs. Blue dots denote genes that were found as non-significantly differentiating (by our method); magenta - differentially expressed
genes, that passed at FDR of 5%; green line - 1 SD. (c)-()) Venn diagrams of the three groups of genes identified as differentially expressed at 5%
FDR in each comparison of consecutive time points by: 2 fold (yellow), SAM (red), and our method (blue), (data used: GSE17721). Note that t-test
is not part of the comparison since significantly differentiating genes were found at this FDR only in the 2 hr vs. 4 hr comparison.

each gene, and its average over genes with the same
intensity. However, such an estimation can be biased by
a small number of outlier genes whose variance deviates
strongly from the population distribution. Here we pro-
vide an iterative procedure to estimate the intensity
dependent variance. The procedure uses the assump-
tions (which were validated before) about the noise dis-
tribution, and provides some robustness to exclude
outliers. Consider an experiment of # repeats, let I;;
with j = 1, 2, ... n be the measured expression levels of
gene i.

1. Calculate the naive mean and variance estimators

I, 0-2 for each gene as described in eq. (1).

Table 1 Fold change values needed to achieve p = 0.0026
(30 deviation), as a function of the number of repeats
and the intensity

n=1 n=2 n=3
| =4 (o= 045) 3.73 2.53 2.12
/=8 (=02 18 151 14

The values of o were taken from the example described in the text.

2. Define the neighborhood of gene i as all genes k
satisfying G, ={k: I, —w < I, < I, + w}, where w is
a chosen bin size (can be fixed or varied).

3. Calculate the intensity dependent variance estima-

2 _ 1 A2
C TG ek
4. Calculate the two tailed p-value for each gene var-

iance estimator (&2) using the IDVE c}f, as fol-
lows: '

oo tn-1) p =2p, if p, <05 6
Pl(O't)*J‘U fx,f,( &7 Jdt {P —o(i-p,) if pIZO.S} ( )

where (n - 1) is the number of degrees of freedom and
f 22 (t) is the density functlon The calculated p is the
probablllty that a scaled y? distributed variable with
mean of &2 will take a value whose deviation from the
mean is greater than |62

tor (IDVE): &

2
-oi |’

5. Truncate the approximately 1% extreme values of
the distribution. This should be done carefully in a
way that does not bias the mean for asymmetric
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distributions (such as chi-square): Define the right
cutoff point (outlayers with high variance) by select-
ing the largest point with p > 0.01 (denote it as x,).
To get x;, the corresponding cutoff value on the left,
we solve the integral equation:

Tef 2

< =n-1 (7)
Tef 2, (e

These choices of x; and x, keep the mean at n - 1.

6. Repeat the process (steps 2 - 5) with the truncated
distribution until it converges (i.e. the IDVE (52)
does not change).

Datasets used

The data used for this analysis is available on-line from
the GEO database. In the first dataset, accession number
GSE19921, the RNA measurements (used here as 8
replicates) were done on the breast cancer cell line T47
D, with duplicates taken under the following conditions:
wild-type T74 D, shEGFP T47 D and two shRNAs
designed to target ERBB3. The 8 microarrays were
viewed as replicates since the RNA measurements
showed only very minor effects of introducing the
shRNA. The second dataset is the MAQC [8], accession
number GSE5350, where we used only the Affymetrix
arrays from Site 1. The third dataset (accession number
GSE17721) from Amit et al [13] is expression data of
mouse dendritic cells after LPS stimulation.

Data preprocessing

Data from the Affymetrix 3’ arrays used, HG-U133 Plus
2.0 in [8] and Affymetrix HT-MG-430A in [13], were
preprocessed using the Affymetrix MAS5 algorithm and
then corrected by a Lowess multi array procedure. The
Affymetrix HuGene 1.0 ST array data were preprocessed
using the Affymetrix PLIER algorithm (with no normali-
zation) and then corrected by a Lowess multi array
procedure.

Additional material

Additional file 1: Supplemental Information, that contains: -
Modeling the noise as additive and/or multiplicative does not work.
Normality test and sensitivity to bin size. « Microarray noise is
independent of GC content. « Z-test versus t-test. « Issues related to
biological noise. « Enrichment of differentially expressed genes and PCR
validation.

Additional file 2: A MATLAB simulation code for Figure 7.
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rv.. random variable; i.i.d. independent and identical distributed; SD:
standard deviation; IDVE: intensity dependent variance estimator; pdf:
probability density function; cdf: cumulative distribution function.
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