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Abstract
Background: Protein structure comparison is a central issue in structural bioinformatics. The standard dissimilarity 
measure for protein structures is the root mean square deviation (RMSD) of representative atom positions such as α-
carbons. To evaluate the RMSD the structures under comparison must be superimposed optimally so as to minimize 
the RMSD. How to evaluate optimal fits becomes a matter of debate, if the structures contain regions which differ 
largely - a situation encountered in NMR ensembles and proteins undergoing large-scale conformational transitions.

Results: We present a probabilistic method for robust superposition and comparison of protein structures. Our 
method aims to identify the largest structurally invariant core. To do so, we model non-rigid displacements in protein 
structures with outlier-tolerant probability distributions. These distributions exhibit heavier tails than the Gaussian 
distribution underlying standard RMSD minimization and thus accommodate highly divergent structural regions. The 
drawback is that under a heavy-tailed model analytical expressions for the optimal superposition no longer exist. To 
circumvent this problem we work with a scale mixture representation, which implies a weighted RMSD. We develop 
two iterative procedures, an Expectation Maximization algorithm and a Gibbs sampler, to estimate the local weights, 
the optimal superposition, and the parameters of the heavy-tailed distribution. Applications demonstrate that heavy-
tailed models capture differences between structures undergoing substantial conformational changes and can be 
used to assess the precision of NMR structures. By comparing Bayes factors we can automatically choose the most 
adequate model. Therefore our method is parameter-free.

Conclusions: Heavy-tailed distributions are well-suited to describe large-scale conformational differences in protein 
structures. A scale mixture representation facilitates the fitting of these distributions and enables outlier-tolerant 
superposition.

Background
Conformational heterogeneity is a common theme in
protein structures and relevant in a wide range of differ-
ent contexts. Proteins are flexible macromolecules whose
function is often accompanied by a structural transition
[1,2]. Allostery, for example, is a ubiquitous mechanism
in signal transduction [3] and continues to be a contro-
versial field of research [4]. Structural heterogeneity may
also stem from a lack of data. NMR structures are usually
represented as ensembles of conformers that fit the data
equally well [5]. Here structural heterogeneity mainly
reflects a scarcity of restraints and not necessarily true
conformational flexibility.

When comparing protein structures in different con-
formational states, one is mainly interested in internal
structural changes rather than differences that can be
accounted for by a rigid-body movement. The separation
of external from internal movements directly relates to
the problem of how to compare and superimpose protein
structures in different conformational states.

The hallmark of protein structure comparison is the
root mean square deviation (RMSD) between equivalent
atom positions after the rigid modes of structural change
have been removed. The RMSD defines an optimality cri-
terion to determine the rotation and translation that best
separate rigid-body from internal movements. How to
minimize the RMSD over all possible translations and
rotations is a classical problem in structural bioinformat-
ics and has been treated by many authors [6]. After early
accounts by Diamond and McLachlan [7,8], Kabsch has
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given a closed analytical expression for the optimal trans-
lation and rotation in terms of a singular value decompo-
sition [9]. Kearsley and others have provided an
alternative solution based on quaternions that improves
the Kabsch algorithm in terms of speed and stability
[10,11].

A physical justification for superimposing protein
structures by RMSD minimization originates in the the-
ory of dynamics in semi-rigid molecules. Eckart has
derived [12] conditions for the separation of external
(rotational and translational) from internal modes of
movement, if the molecule is subject to small-amplitude
vibrational motions. Recently, it has been pointed out
that structure comparison by RMSD minimization is
equivalent to searching for the frame of reference that
satisfies Eckart's conditions [13,14]. Therefore, if one
considers a set of heterogenous structures an ensemble of
fluctuating states, RMSD minimization is the physically
correct method for removing rigid-body displacements.
However, in many situations one is interested in a frame
of reference that is different from the Eckart frame. Such
a situation may occur if we want to compare proteins that
undergo structural transitions upon interaction with
other molecules. This is a non-equilibrium situation in
which the protein is driven to a different energy basin. A
classical example is adenylate kinase comprising three
rigid domains that undergo an opening-closing confor-
mational transition upon the binding of substrate [15].
Here, RMSD fitting fails to highlight the relative rigid-
body movements leading to domain closure. Because the
assumption of vibrational conformational changes is not
fulfilled over the entire polypeptide chain, atoms that
belong to the mobile domains would appear as "outliers"
that cannot be described by vibrational dynamics.

RMSD minimization is a least-squares technique and
therefore suffers from the same problems that least-
squares methods have in other data analysis applications,
namely sensitivity to outliers. Problems with outliers in
protein structure comparison have been treated in a
number of ways. One simple fix is to extend the Kabsch
formula to weighted RMSD superposition. A weight is
assigned to every atom and applied when summing over
the distances between equivalent positions. By choosing
small weights for outliers their dominance can be allevi-
ated. Other approaches build on different metrics than
Euclidean distances. Lesk [16], for example, uses the
Chebyshev distance to identify common substructures in
proteins. The LMS fit algorithm [17] minimizes the
median rather the mean squared deviation between
equivalent atoms. Another class of methods seeks to find
a flexible, rather than a rigid alignment between protein
structures [18].

The possibility to weight atoms individually is already
mentioned in Kabsch's paper but no rule for setting the

weights is given. As a consequence, different schemes for
weighting atoms have been proposed. An important class
of algorithms iteratively filters out atoms whose deviation
exceeds a predefined threshold [19-23]. This strategy
tries to identify those atoms that make up an invariant
structural core. More recent applications assign continu-
ous weights to every atom, such that all atoms contribute
to the weighted RMSD. The Gaussian-weighted RMSD
(wRMSD) method [24] updates the weights iteratively by
plugging distances between equivalent positions into a
Gaussian distribution. Wu and Wu [25] set the weight to
a theoretical temperature factor predicted with a Gauss-
ian network model.

Here we elaborate on the idea of using a weighted
RMSD to find a superposition that identifies geometri-
cally similar substructures in heterogeneous protein
structures. The method is intended for the comparison of
structures that exhibit significant structural disparity or
undergo large-scale conformational change. We intro-
duce probabilistic models that describe very generic
properties of the large-amplitude structural changes that
we want to account for. We show that learning these
models solves the superposition problem also in the pres-
ence of gross structural transitions and is equivalent to a
weighted RMSD whose weights are updated iteratively. A
problem with existing methods minimizing a weighted
RMSD is that the choice of the weights is heuristic and
often depends on user-defined parameters such as
thresholds [19,23] and decay constants [24,25]. Our
approach is principled and provides objective rules for
setting the weights. By averaging analytically over the
weights we show that our models for structural displace-
ments are heavy-tailed distributions, which are often
used to describe extreme events, for example, in econom-
ics. Model comparison techniques allow us to choose
among the different models and objectively select the one
that is most supported by the structures. We illustrate the
applicability of the approach in various contexts ranging
from structural changes in proteins to NMR ensembles.
From a practical point of view, the new method provides
an objective and robust basis for protein structure com-
parison and superposition.

Results and Discussion
Frames of reference in protein structure comparison
Rather than adopting a coordinate system prescribed by
physical principles such as the Eckart frame, we are inter-
ested in finding a frame of reference that overlays het-
erogenous protein structures such that they share a tight,
maximally large structural core at the cost of large-scale
outliers. To illustrate the difference consider a normal-
mode simulation of Elongation factor G (PDB code
1FNM), which contains five compact domains. We used
the elastic network model implemented in MMTK [26] to

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1FNM
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sample conformations about 1FNM. The elastic network
model imposes purely vibrational interactions between
restrained atoms. Snapshots along the first principal
mode are, by construction, related only via internal dis-
placements. This is indeed verified by calculating the
RMSD between, for example, the first and last conforma-
tion: the optimal rotation is the identity matrix, the trans-
lation vector zero. In the weighted RMSD frame that
maximizes the overlay of spatially invariant positions, the
differences between the two structures are interpreted as
a finite rigid-body movement (Figure 1A, B).

To describe this situation quantitatively, we assume that
alternative positions of the ith atom are encoded by
three-dimensional vectors xi and yi. The most general

relation between equivalent positions is given by the gen-
erative model:

where the rigid-body transformation involves a rotation
matrix R and translation vector t and the vectors di are
the non-rigid displacements. In the Eckart frame, the
structures are displaced around the center of mass,
whereas in a superposition maximizing the common
structural core only domain IV seems to move (see Figure
1A, B). Consequently, we observe different distributions
for the displacements depending on whether we superim-
pose by unweighted or core-weighted RMSD. In the

y xi i i i n= + + =R t d , , ,1…

Figure 1 Structural changes viewed from different frames of reference. A: Conformations of elongation factor G sampled along the first principal 
component. Conformations are optimally superimposed according to RMSD because they are generated in the Eckart frame. B: The core-weighted fit 
aims to superimpose the structurally invariant part, irrespective of the underlying physical mechanism. Viewed from this frame of reference most of 
the changes happen in the C-terminal domains (domain IV and V). C: Empirical distribution of the displacements in the Eckart frame (grey) and ac-
cording to the core-weighted fit (black). D: Distribution of the displacements relating the bound and unbound structure of GroEL.
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weighted fit, the distribution of displacements exhibits a
narrow central peak corresponding to the well-fitting
core and broad tails accounting for large-amplitude
movements (Figure 1C). In the Eckart frame, the dis-
placements are distributed more homogeneously. We
observe similar large-amplitude displacements in a com-
parison of GroEL in ATP-free and ATP-bound state (Fig-
ure 1D) demonstrating that the shape of the distribution
is universal irrespective of the specific context.

If we knew the displacements exactly, we could obtain
the rotation and translation by solving the above system
of equations. In general, however, the internal displace-
ments are unknown and need to be estimated simultane-
ously with the superposition. This is a chicken-and-egg
problem: estimation of the rigid body transformation
requires knowledge of the internal changes, which them-
selves can be calculated only if the superposition is
known. In general, the decomposition into rigid-body
and internal changes is not unique. We need additional
principles to estimate the decomposition from a set of
heterogenous structures.

Modeling non-rigid structural change in proteins
To separate internal from external structural changes we
need to make assumptions about their properties. Our
assumptions will be of statistical nature, because we do
not know the correct displacements and can only infer
them from the given structures. We encode our assump-
tions in a probability distribution over the displacement
vectors f(d). Given this distribution, a statistical approach
to protein structure comparison proceeds by plugging the
displacements calculated according to generative model
into the distribution. This results in the total likelihood
for the separation into rigid and non-rigid structural
changes under the assumed model f(d):

and depends on the choice of the rigid-body transfor-
mation. The optimal separation is obtained by maximiz-
ing L(R, t) over all rotations and translations to implicitly
obtain displacements whose distribution best matches
f(d).

What are reasonable assumptions about non-rigid
structural changes in proteins that are realistic and, at the
same time, simple enough to allow for efficient computa-
tion? One straightforward property of f(d) is that its mean
is zero, because if it were not, the mean could not be dis-
tinguished from the overall translation. Second, it should
not matter which of the two structures we superimpose
onto the other. The displacements resulting from either
superposition should follow the same distribution. The

reverse of the generative model is xi = RTyi - t - RTdi. That

is,  = -RTdi are the displacements according to the
reverse superposition expressed through the parameters

of the original superposition. We demand f( ) = f(di)
from which follows that f(di) is isotropic, i.e. it depends
only on the norm of the displacements, not their direc-
tion.

An intuitive quantity to characterize the displacements
are their expected amplitudes ai which are the second
moments f. Because we assume f to be isotropic, we only
need to consider the average squared norm of the dis-

placements  rather than the full covariance

matrix. For a Gaussian model, the amplitude is directly
related to the isotropic variance σ2: ai = 3σ2. The assump-
tion underlying RMSD fitting is that the unknown dis-
placements occur in a homogenous fashion: all
amplitudes vary on the same scale σ, which is a statistical
analog of the Eckart assumption. However, as discussed
before, we are interested in modeling displacements that
are most of the time small but occasionally huge.

A natural extension is to associate a separate variance

 with each displacement. For mathematical conve-

nience, we work with precisions si =  rather than
variances; si can be viewed as a measure of local stiffiness.
By allowing the si to adopt values of diverse orders of
magnitude, we can model displacements that vary on dif-
ferent scales. According to this model, highly restrained
atoms will be assigned large si as is the case, for example,
for core atoms that are restricted in their mobility by
nearest neighbor interactions. On the opposite end of the
spectrum, large-scale displacements as, for example, in
T7 RNA polymerase [2] would be described with si's that
are close to zero. Under a multi-scale model of structural
change, the optimal rotation and translation is obtained
by maximizing the corresponding total likelihood or
rather minimizing its negative logarithm:

where the inverse amplitudes si =  are atom specific
weights.

Amplitude spectra of large-scale conformational changes
If the amplitudes of the displacements were known, the
optimal rigid body transformation could be determined
by a weighted superposition. However, the scales si are
unknown, and it seems that we just shifted the problem.
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We need to estimate the scales and therefore must make
assumptions about their distribution g(s). Because the
scales are non-zero, their distribution should only have
support on the positive axis. If we interpret the si as force
constants, the spectrum should span a wide range of vari-
ability owing to the fact that protein structures are sub-
ject to internal forces of different strengths. We use a
Gamma and an Inverse Gamma distribution for g(s).
These distributions are flexible enough to gradually
switch between different situations in which we have
more or less homogeneously distributed amplitudes. The
functional form of Gamma and Inverse Gamma distribu-
tions is governed by two parameters, a shape parameter α
and a scale β, which is an overall scale of the displacement
amplitudes.

What is the distribution of the displacements f(d)
implied by our choice of g(s)? To answer this question we
need to average over all scales. Figure 2 illustrates this
averaging process. The effective distribution of non-rigid
displacements exhibits a dominant central peak but also
allows outliers to occur occasionally, which is reflected in
the elevated "fatness" of the tails when compared with a
Gaussian distribution. In the statistical literature, distri-
butions of this form are called heavy-tailed. Heavy-tailed
distributions are robust against outliers in data [27] and
can often be represented as averages over Gaussian distri-

butions with zero mean and increasing width, so-called
scale mixtures of Gaussian distributions [28,29]. From a
pragmatic point of view, the average distribution of inter-
nal displacements has the convenient property that it is
heavy-tailed and thereby accommodates large-amplitude
structural changes. For a Gamma and Inverse Gamma-
distribution, the effective distribution f(d) can be calcu-
lated analytically. The former corresponds to a Student t
distribution, the latter is a member of the K distribution
family [30] comprising the Laplace distribution as a spe-
cial case. In their superposition algorithm THESEUS
[31], Theobald and Wuttke use a related model. They
introduce a multivariate Gaussian with a full-covariance
structure for inter-positional dependencies and estimate
the covariance matrix during the superposition. The
eigenvalues of the covariance matrix are assumed to be
distributed according to an Inverse Gamma distribution.
In case of a diagonal covariance matrix, the model is
equivalent to a Gamma prior on the scales (inverse vari-
ances) and thus to the Student t model.

Algorithms for disentangling rigid and non-rigid structural 
changes
The generalized optimization problem that we face when
maximizing L(R, r) is to minimize:

That is, f(d) implies the generalized metric - log f(d) for
comparing equivalent atom positions. For Gaussian f, this
metric is the squared Euclidean distance. For Laplace-dis-
tributed displacements, it is the Euclidean distance (not
its square). Analytical expressions for the best rigid trans-
formation under such metrics are not known. One could
optimize the negative log-likelihood numerically. How-
ever, we will pursue an alternative approach based on the
scale mixture representations that we discussed in the
previous section.

The basic idea is illustrated in a flowchart (Figure 3).
Instead of averaging analytically over the scales, we esti-
mate them simultaneously with the rigid transformation
and the parameters α and β that determine the shape of
g(s). The algorithm proceeds iteratively by updating the
different groups of parameters, {si}, (R, t) and (α, β), sepa-
rately. Updates of the rigid transformation involve a
weighted RMSD fit. How to update the weights si, the
shape α and the scale β is detailed in the Methods section
and additional file 1.

We have developed two version of the updates: a deter-
ministic and a stochastic algorithm. The latter, a Gibbs
sampler, allows us to estimate not only the optimal
parameters, but also their uncertainty and enables com-

− = − − −∑log ( , ) log ( ).L f i i

i
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Figure 2 Modeling non-rigid displacements by scale mixtures. 
Our model for the distribution of displacement vectors is a mixture of 
isotropic Gaussians with increasing width (grey filled curves). By aver-
aging of the Gaussians, we obtain a heavy-tailed effective distribution 
(white line) that exhibits a narrow central peak and broad tails. By add-
ing more and more components one achieves in the limit of infinitely 
many components an exact representation of the heavy-tailed distri-
bution. In this limit, the average is obtained as an integral over Gauss-
ians of continuously varying width. How the widths are distributed is 
governed by a density function g(s) of the scales or inverse widths s. 
The functional form of the mixing distribution and of the implied 
heavy-tailed model is govern by the shape and scale parameters α and 
β.
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parison of different models, as will be shown later. Both
algorithms converge very rapidly within the first 50 itera-
tions, after which the likelihood does no longer improve
significantly. On a modern computer the best EM fit is
obtained within a few fractions of a second. The Gibbs
sampler is approximately ten times slower. Running times
for both algorithms on different protein structure pairs
are provided in additional file 1.

Robust fitting of proteins subject to large conformational 
changes
To demonstrate the validity of our approach, we tested
the framework on a number of proteins undergoing large
conformational changes. Figure 4 shows the superposi-
tion of two different conformations of GroEL [32,33]
based on a Gaussian, Student t, and K distribution. The
transition of GroEL from an unbound to a bound state
involves rigid body movements of the intermediate and
apical domains. The superposition based on a Gaussian
model fails to reveal the relative movements of the
domains, whereas the heavy-tailed models converge on a
tight fit of the equatorial domain. This observation is sup-
ported by an analysis of the individual domains. Although
the overall RMSD increases from 12.3 Å for the least-
squares superposition to 15.6 Å for both non-Gaussian
methods, the RMSD of the equatorial domain drops from
7.4 Å down to 1.5 Å and 1.3 Å for the Student t and K dis-
tribution, respectively. Both values are close to the opti-
mal RMSD of 1.2 Å when fitting the equatorial domain
alone. The reliability of the superposition can be assessed
through the structure ensembles obtained by applying the
random transformations generated during Gibbs sam-
pling. The ensemble generated by Gaussian superposi-
tion is broad reflecting a high degree of uncertainty. In
contrast, the ensembles based on heavy-tailed distribu-
tions are narrow, which indicates that the superposition
is very well defined (Figure 4). The findings are confirmed

by looking at the histograms of non-rigid displacements
and their parametric fits (Figure 5). Only the heavy-tailed
distributions fit the displacments reasonably well,
whereas a Gaussian fails to describe the simultaneous
occurance of many well-fitting positions and a few large-
scale outliers. These fits are obtained automatically dur-
ing the superposition - once a model has been chosen, all
unknown parameters are estimated self-consistently
(how to choose a model is explained below). In contrast,
other superposition algorithms based on a weighted
RMSD involve adjustable parameters that are set heuris-
tically. This may lead to problems with identifying the
optimal structural core (see additional file 1 for an exam-
ple). The domain architecture of GroEL is highlighted by
a trace plot of the local scales (Figure 6). Large weights
are assigned to the well fitting equatorial domain and
almost all weights for the intermediate and apical domain
are close to zero.

Heavy-tailed models are well-suited to describe even
large conformational changes. This is exemplified for
Pneumolysin [34] which, upon membrane insertion,
refolds two of its four domains leading to an invariant
core of about 30% of all residues only. Figure 7 compares
the least-squares superposition with superpositions
based on a Student t and K distribution. Again only a
non-Gaussian superposition is able to locate and fit the
invariant region.

Superposition of NMR ensembles
NMR structures are usually represented as ensembles
that reflect the quality and completeness of the data as
well as the local precision of the structure [5,35]. Often
termini and loops show high variability either due to pro-
tein dynamics or missing data. If one wants to assess the
precision of an NMR structure, superposition by RMSD
minimization often fails to reflect local differences due to
variations in restraint density [23,31]. As a consequence,
no generally accepted way to fit ensembles exist. The
superposition is often determined based on secondary
structure elements or subjective criteria such as a small
number of manually defined positions. Our framework
provides a more objective, robust and model-driven alter-
native to such practice.

A particularly suited example to demonstrate the viola-
tion of the least-squares assumption is the NMR ensem-
ble of Calmodulin (PDB code 1CFC). Calmodulin is
involved in cellular regulation and consists of two identi-
cal domains connected by a flexible hinge region [36].
The flexibility is also reflected in the NMR ensemble. If
one domain is superimposed, the other undergoes a large
relative motion, which makes a joint superposition
impossible. Figure 8 highlights differences between a
Gaussian and an outlier-tolerant superposition for this
example. The heavy-tailed models favor a superposition

Figure 3 Iterative disentanglement of rigid and non-rigid dis-
placements. Flowchart showing the iterative estimation of atom spe-
cific weights (scales), the rigid-body transformation and the 
parameters of the distribution of the scales. The initial scales are gen-
erated randomly. Both EM and Gibbs sampling operate by cycling 
through the updates until convergence is reach. The EM updates are 
deterministic, the Gibbs sampling updates stochastic.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1CFC
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onto the N-terminal domain with an internal RMSD of
0.7 Å, whereas the least-squares algorithm fails to find a
tight superposition. By tweaking the initial weights, it is
possible to find the superposition onto the C-terminal
domain with an RMSD of 1.7 Å, albeit this superposition
has a lower likelihood. The higher likelihood of a super-
position onto the N-terminal domain is consistent with
the observation by Kuboniwa et al. [36] that the N-termi-
nal is better defined than C-terminal domain and shows a
lower internal RMSD.

Bayesian model comparison
So far, we a given model of the displacements to a set of
structures. Bayesian inference allows us to go further and
infer which model is the most appropriate given a set of
structures. This information is provided by the evidence
or marginal likelihood P(M|D), the probability of model
M (Gaussian, Student t, or K distribution) given data D
(the structures under comparison in our context) [37].
The evidence is computed by integration over all possible

parameter values. Two models M1 and M2 are ranked rel-
ative to each other through the Bayes factor P(M1|D)/P
(M2|D) [38,39]. If the Bayes factor is significantly greater
than one, the data favor model M1 over model M2 and
vice versa. Here we seek to assess whether to choose the
Student t or K distribution over a Gaussian model for
structure superposition and comparison. Because the evi-
dence is not amenable to analytical evaluation, we use an
estimator calculated from the posterior samples obtained
with Gibbs sampling [40].

Table 1 lists the estimated log-evidence for nine struc-
ture pairs obtained for a Gauss, Laplace, Student t and K
model. In all cases, the heavy-tailed models (Student t
and K distribution) are significantly better supported by
the data than the Laplace and the Gauss distribution. For
GroEL and pneumolysin the K distribution is preferred
over a Student t model which agrees well with the visual
impression obtained from the projected distributions
shown in Figure 5. In all other instances the Student t

Figure 4 Superposition of bound and unbound GroEL. Cartoon representation of the superposition of the bound and unbound state of GroEL 
(1AON (grey) and 1OEL (colored)) using a Gaussian model (A, D), a Student t (B, E) model and a K distribution (C, F). Large local scales are shown in red, 
whereas blue indicates small weights. The upper row (A-C) depicts the results of an EM superposition. The lower row (D-F) shows the ensembles of 
25 orientations generated by the Gibbs sampling procedure. The ensembles obtained for the Student t and K distribution show little variance as op-
posed to the ensemble obtained with a Gaussian model.
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model seems to provide the best description of the inter-
nal displacements. We also ran tests on synthetic data
generated according to the Student t and the Gaussian
model (see last two rows of Table 1). In case of Student t
distributed displacements, the Student t model achieves
the highest marginal likelihood closely followed by the K
distribution. This shows that the model selection by com-
paring estimated Bayes factors works. The Laplace and
Gauss distribution models have significantly lower evi-
dence because they are not flexible enough to accomo-
date large-amplitude displacements. In case of Gaussian
distributed displacements, none of the four alternative
models is really preferred over the others. The marginal
likelihood values are identical within the precision of the
estimation procedure. This is reasonable because scale
mixtures are nested models and include the Gaussian dis-
tribution as a limiting case. The test demonstrates that
heavy-tailed models can cope with purely Gaussian dis-
placements equally well as the standard RMSD and are
also suitable to analyse rigid displacements.

Conclusions
We present a robust probabilistic approach to protein
structure superposition and comparison. The approach

builds on heavy-tailed distributions to model non-rigid
displacements between protein structures. To estimate
these distributions and an optimal superposition we
employ a scale mixture representation of the heavy-tailed
models. Practically, this amounts to introducing weights
for each atom position and to estimate the weights itera-
tively during structure superposition. In contrast to other
weight-based superposition methods, the scale mixture
framework provides a firm statistical basis for setting the
weights. Moreover, the link to the closed form helps to
interpret the weighting scheme in terms of heavy-tailed
models for structural displacements.

Methods
Scale mixture representation of heavy-tailed distributions
We use a scale mixture of Gaussian distributions [28,29]

to represent the distribution f(d) of the displacement
vectors d between protein structures under comparison.
N(d; 0, s-1) is the zero-centered, isotropic Gaussian distri-
bution in three-dimensional space with variance s-1·g(s) is

f s N s g s( ) ( ; , ) ( )d d 0= ∫ −d 1

Figure 5 Distribution of local deviations between conformational states of GroEL. Pooled distribution of local structural differences in all three 
spatial directions between the bound and unbound state of GroEL (1AON and 1OEL) is shown as grey histogram. Black solid lines are fits of a Gaussian 
(A), Student t (B), Laplace (C) and K distribution (D).
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the prior distribution of the inverse variances or scales s.
If we choose a Gamma distribution as mixing density g(s),
we obtain the three-dimensional Student t distribution:

where α is a shape parameter and β a scale. If we use the
Inverse Gamma distribution for g(s), we obtain the three-
dimensional K distribution:

where again α determines the shape of the distribution
and β the (inverse) scale; Kv is the modified Bessel func-
tion of the second kind. For the special case α = 2 and a =

 we recover the Laplace distribution:

1 D projections of these scale mixtures are used to visu-
alize the agreement between the empirical distribution of
conformational displacements (see Figure 5).

Parameter estimation
The EM algorithm [41] and the Gibbs sampler [42] are
iterative algorithms that estimate the rigid transforma-
tion and the functional form of the heavy-tailed distribu-
tion with the help of the auxiliary variables si. The main
difference is that EM is a deterministic algorithm that cal-
culates a single point estimate, whereas Gibbs sampling is
a stochastic method that generates a posterior sample.
The Gibbs sampler samples from a joint distribution by
repeatedly replacing a randomly chosen variable by a
sample from its distribution conditioned on the remain-
ing variables. Upon convergence the samples generated
by the Gibbs sampler follow the joint distribution of
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Figure 6 Local scales and domain structure in GroEL. The black solid line are the traces of the local scales according to the Student t (A) and K 
distribution (B) obtained in an analysis of bound and unbound structures of GroEL. The grey shaded regions highlight the equatorial domain (1-136, 
410-526), which remains conformationally invariant during the transition from the open to the closed conformation. The intermediate domain spans 
regions 137-190 and 367-409, the apical domain comprises residues 191-366.
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interest. The benefit of Gibbs sampling over EM is that it
calculates not only a point estimate but a posterior sam-
ple that can be used to estimate parameters by posterior
means and evaluate parameter uncertainties as posterior
variances. Moreover, the posterior sample can be used to
estimate the evidence of the model given the data.
Updates of the scales
The positional scales si can be learned from their condi-

tional posterior distribution N(di; 0, ) g(si; α, β). For
the Student t model, the mixing distribution g(s; α, β) is a
Gamma distribution G(s; α, β). The conditional posterior
of si is also a Gamma distribution G(si; α + 3/2, β + ||di||2/
2). For the K distribution, the mixing density is the
Inverse Gamma distribution IG(s; α, β). The conditional
posterior of si is the Generalized Inverse Gaussian distri-
bution [43] GIG(si; 3/2 - α, ||di||2, 2β). In the E-step of the
EM algorithm, we replace the scales by their expectation
values under the Gamma and the GIG distribution,
respectively. The analytical expression for the expectation
values are given in additional file 1. During Gibbs sam-
pling, we update the scale by generating a random sample
from the Gamma and the GIG distribution (see addi-
tional file 1).

si
−1

Figure 7 Superpositions of Pneumolysin. Estimated superposition 
of Pneumolysin (PDB codes 2BK1 (grey) and 2BK2 (colored)) using a 
Gaussian (A) and Student t (B) model. The superposition based on the 
K distribution is visually not distinguishable from the one obtained 
with a Student t distribution and thus not shown. Large local scales are 
shown in red whereas blue indicates small weights.

Figure 8 Superposition of an NMR ensemble of Calmodulin. All conformations are superimposed onto the estimated average structure by the EM 
algorithm using a Gaussian (A) and a Student t (B) model. The superposition according to the K distribution is visually not distinguishable from the one 
of the Student t distribution and thus not shown. Large local scales are shown in red, whereas blue indicates small weights.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2BK1
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Estimation of the rigid transformation
In the M-step of the EM algorithm, the optimal rotation
and translation are determined by minimizing a weighted
RMSD in which the local scales si are positional weights.
During Gibbs sampling, the translation is generated from
an isotropic three-dimensional Gaussian distribution.
The rotation is sampled from the conditional posterior of

functional from exp {tr (ATR)} with .
How random rotations can be generated from this distri-
bution is described in [44].
Estimation of model parameters
For every set of protein structures under comparison the
optimal model parameters α and β will be different.
Therefore we need to treat them as unknown variables
and estimate them case by case. For both the Student t
and the K distribution, the conditional posterior distribu-
tion of the scale parameter β is a Gamma distribution.
Analytical expressions for the expectation values are used
in the M-step of the EM algorithm. The Gibbs sampler,
draws random variates from  (Student

t distribution) or from  (K distribution),
respectively. Inference of the shape parameter α is more
involved.

Under both heavy-tailed models α cannot be maxi-
mized analytically. Therefore we need numerical optimi-
zation methods to update this parameter. In EM, we
employ a root finding method to maximize the logarithm
of the conditional posterior probability of α. During

Gibbs sampling, we use adaptive rejection sampling [45],
a technique to generate random variates from an arbi-
trary log-concave distribution. To achieve a fully probabi-
listic treatment and to avoid numerical instabilities, we
further assume a Gamma distributed hyperprior for α
and β.

Evaluation of the marginal likelihood
Bayesian model comparison ranks alternative models
according to their evidence or marginal likelihood. In our
application, calculation of the evidence involves the inte-
gral:

where D are the structures under comparison (the data)
and M a model for the distribution of conformational dif-
ferences (i.e. Gaussian, Student t, or generalized Laplace).
π(α, β) denotes the hyperprior on the parameters of the
heavy-tailed distribution (Gamma distributions), π(R) a
uniform prior distribution over rotations and π(t) a broad
Gaussian prior over the translations centered at zero.

LM (R, t, α, β) is the likelihood function implied by the
current model (i.e. for M being the Student t distribution
L is the total product of 3 D Student t densities). Given
samples from the joint posterior distribution π(α, β) π(R)
π(t) LM (R, t, α, β) (using Gibbs sampling and the scale
mixture trick), we evaluate the marginal likelihood by
applying the harmonic mean estimator proposed by
Newton and Raftery [40].

A t= −∑ si i i
T

i
( )y x

G s n si ii
( ; , )+ ∑a

G n sii
( , )a −∑ 1

P D M LM( | ) ( , ) ( ) ( ) ( , , , )= ∫d  d  d  d  R t R t R ta b p a b p p a b

Table 1: Marginal likelihood of different models

Protein PDB IDs Student t K Laplace Gauss

GroEL 1AON-1OEL -4328.57 -4307.22 -5132.84 -5722.35

DNA Pol 1IH7-1IG9 -5574.80 -5750.12 -6340.01 -8011.05

RAN 1RRP-1BYU -1124.86 -1176.53 -1795.92 -2286.10

Topo II 1BGW-1BJT -4496.17 -4553.50 -7210.74 -8042.00

Pneumolysin 2BK2-2BK1 -2692.73 -2465.09 -5195.85 -5491.90

ER 3ERD-3ERT -538.11 -622.69 -1290.81 -1980.96

RNA Pol 1QLN-1MSW -5296.61 -5455.79 -8471.69 -10168.07

Adenylate Kinase 1AKE-4AKE -1499.73 -1502.75 -1685.11 -2000.35

Myosin 1B7T-1DFK -4819.91 -5046.02 -6380.11 -7701.83

Synthetic data Student t -9179.46 -9253.48 -12465.97 -13951.94

Synthetic data Gauss -5108.73 -5112.43 -5077.97 -5115.98

Logarithm of the marginal likelihood P(M|D) of the different displacement models obtained for nine structure pairs undergoing domain 
movements. Highlighted in boldface are the maximum log-marginal likelihood values. The last two rows at the bottom report the log-
marginal likelihoods for synthetic data generated according to a Student t and a Gauss distribution.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AON
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1OEL
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1IH7
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1IG9
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1RRP
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BYU
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BGW
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1BJT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2BK2
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=2BK1
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3ERD
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3ERT
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1QLN
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1MSW
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1AKE
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=4AKE
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1B7T
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1DFK
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Software
The algorithm has been implemented in the scripting
language Python and is publically available at http://tool-
kit.tuebingen.mpg.de/bfit.
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