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Abstract
Background: Determining a suitable sample size is an important step in the planning of microarray experiments. 
Increasing the number of arrays gives more statistical power, but adds to the total cost of the experiment. Several 
approaches for sample size determination have been developed for expression array studies, but so far none has been 
proposed for array comparative genomic hybridization (aCGH).

Results: Here we explore power calculations for aCGH experiments comparing two groups. In a pilot experiment 
CGHpower estimates the biological diversity between groups and provides a statistical framework for estimating 
average power as a function of sample size. As the method requires pilot data, it can be used either in the planning 
stage of larger studies or in estimating the power achieved in past experiments.

Conclusions: The proposed method relies on certain assumptions. According to our evaluation with public and 
simulated data sets, they do not always hold true. Violation of the assumptions typically leads to unreliable sample size 
estimates. Despite its limitations, this method is, at least to our knowledge, the only one currently available for 
performing sample size calculations in the context of aCGH. Moreover, the implementation of the method provides 
diagnostic plots that allow critical assessment of the assumptions on which it is based and hence on the feasibility and 
reliability of the sample size calculations in each case.

The CGHpower web application and the program outputs from evaluation data sets can be freely accessed at http://
www.cangem.org/cghpower/

Background
Array comparative genomic hybridization (aCGH) is a
technique that uses microarrays to perform high-resolu-
tion and genome-wide screening of DNA copy number
changes. Its most important applications are in cancer
research [1] and clinical genetics [2]. In this paper we
focus on aCGH experiments comparing two groups of
cancer samples. Previously, we introduced the Wilcoxon
test with ties to identify chromosomal copy number dif-
ferences when comparing two groups [3]. The goal of
comparing two groups is generally to identify disease bio-
markers, chromosomal regions (or genes therein) for sur-
vival, therapy, progression, et cetera. An important
problem that arises in the planning of aCGH experiments
is the choice of the sample size, which we explore here.
Data analysis of microarray experiments comparing two

groups generally involves calculating a test statistic for
each array element and setting a cutoff for rejecting the
null hypothesis of no difference between the groups.
With a single array element, there are therefore two typi-
cal errors that can occur in the process. A type I error
occurs when the null hypothesis is rejected even though
it was actually true and the cut-off was exceeded only by
chance. A type II error involves accepting a null hypothe-
sis that should have been rejected, thus failing to identify
a true difference. To broaden the perspective from indi-
vidual array elements to the framework of multiple test-
ing covering the entire microarray, two concepts are used:
false discovery rate (FDR) [4] and average power. FDR is
the expected percentage of discoveries that are false. Sta-
tistical power is the probability of recognizing a single
array element with a true difference, and average power
refers to the expected percentage of true positives that is
identified. In general, it is desirable to have the FDR as
close to zero and average power as close to one as possi-
ble. Setting the cut-off for rejecting the null hypothesis is
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a delicate balance between sensitivity and specificity;
while a stringent cut-off lowers the FDR, it also lowers
average power and vice versa.The only way to improve
both, or one without affecting the other, is to increase the
number of biological replicates and thus perform more
arrays. Sample size calculations can generally be divided
into two categories. The first category asks the user to
define values for certain parameters, such as the effect
size (fold change of a differentially expressed gene) and
the proportion of genes that are truly differentially
expressed [5-9]. The second category estimates these
parameters from existing data [10,11]. The method pro-
posed here follows the latter approach and therefore
requires pilot data.

To adapt mRNA expression array power calculations
for aCGH and copy number changes, two key aspects
need to be taken into account. Instead of concentrations
of individual mRNA molecules, the underlying biology
measured by aCGH consists of blocks of chromosomal
DNA. Each block is (presumably) present in a normal
copy number of two, but may contain areas of one or two-
copy losses and one or more gains. Higher level amplifi-
cations can also be present. The aberrations contain both
driver and passenger genes, and the breakpoints may vary
from one sample to another.

As the entity being measured is DNA present in a dis-
crete number of copies (0, 1, 2, 3, 4, ...), but individual
array elements yield log2 ratios, aCGH data preprocessing
generally involves the following steps that aim to better
capture the biological relevance. Normalization first
removes technical artifacts and makes the log2 ratios
comparable across different hybridizations. Segmentation
then identifies areas that share a common copy number
and are separated by breakpoints. Finally, calling deter-
mines a discrete copy number level for each segment. At
the moment, there is no clear consensus regarding the
optimal stage of preprocessing from which the data
should be used for downstream analysis. We discussed
the topic and proposed that in most cases the recom-
mended choice be to use calls, which have the clear
advantage of having an attached biological meaning [12].
For power calculations however, the use of calls is prob-
lematic, as it would require the use of the chi-square test,
for which no method of sample size calculation in large
FDR-based multiple testing contexts is presently avail-
able. While both normalized and segmented log ratios
allow the use of a t-test, they fail to take full advantage of
the adjacency of consecutive array elements. Aberrations
typically show great variation in their sizes ranging from
focal amplifications to gains and losses of entire chromo-
some arms. Working directly with the original array ele-
ments does not take this into account, and gives larger
aberrations significantly more weight than smaller ones
as they contain more array elements. A possible improve-

ment is therefore to replace array elements with regions,
which are defined as a series of neighboring array ele-
ments sharing the same copy number signature. This
reduces dimensionality with little loss of information
[13]. Throughout this paper, the term regions is used to
refer to the results of this analysis step.

For CGHpower, we are combining the advantages of
regions with the feasibility of log ratios, by replacing the
hard calls with median log ratios of all the array elements
within a region. Together with these region-wise log
ratios (RWLRs), the regions are then taken as a represen-
tation of the underlying biology (i.e. chromosomal
regions with varying copy number levels). Each region is
coupled to a null hypothesis stating that the means of the
two groups do not differ from each other, which is the
framework required for the power calculations proposed
here. Regions that have a true difference between the two
groups (generally normal copy number in one group and
a gain, loss or amplification in the other) will be referred
to as "differentially behaving regions".

After this preprocessing, power calculations are per-
formed using regions as Ferreira et al. [14] previously
described for both real and simulated gene expression
data. T-statistics and p-values are calculated for each
region from the RWLRs. All p-values from non-differen-
tially behaving regions are expected to follow a uniform
distribution, while those from the differentially behaving
ones should follow another, unknown distribution (G).
Two separate estimators of G are calculated: a non-para-

metric ( ) and a parametric one (Ĝn), which assumes
that G follows a normal distribution. Both of these esti-
mators depend on another unknown parameter, γ, which
is the proportion of non-differentially behaving regions.

When the estimate of γ used to calculate Ĝn and 
moves away from its true value, the difference between
the two G estimators increases. The estimate of γ is there-
fore chosen so that this difference is minimized. The lim-
iting density of effect sizes (λ) is then estimated using
deconvolution, and so is G. Once these estimates have
been calculated, approximate sample size calculations
can be made using an adaptive version of the Benjamini-
Hochberg method for multiple testing. While the original
method [4] allows control over the FDR, the adaptive ver-
sion also allows the estimation of average power [10].

While optimizing the protocol, there were certain
options that we considered: whether to calculate the
RWLRs as the mean or median of the log ratios, whether
to use the Student's t-test assuming equal variances or
Welch's t-test that allows unequal variances, and finally
whether to calculate the p-values from normal or Stu-
dent's t-distribution. All of the possible combinations
were tested, and the optimum performance was observed
with median log ratios, unequal variances and the normal
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distribution. These choices were then fixed in CGH-
power.

Implementation
Evaluation Data Sets
To evaluate the performance of CGHpower, eight
recently published aCGH data sets that could be divided
into two groups were collected. They will be referred to
as Chin et al. [15], Douglas et al. [16], Fridlyand et al.
[17], Myllykangas et al. [18], Nymark et al. [19], Postma et
al. [20], Smeets et al. [21] and Wrage et al. [22] A total of
five different array types were used among the data sets:
VUmc 30 K spotted oligo [23] for data sets [15,20,22],
Agilent Human 1 cDNA Microarray for [18,19], 3 K BAC
array [24] for [16], 2 K BAC array [25] for [17] and 6 K
BAC array for [21]. Table 1 provides a summary of the
cancer and array types, together with group definitions
and sizes.

Simulated Data Sets
In addition to real data sets, evaluation was also per-
formed with simulated data. While generating the simu-
lations, we attempted to implement realistic aspects of
both signal and noise of tumor profiles. In the context of
an aCGH experiment comparing two groups, the signal
consists of aberrant regions that are specific to one of the
groups. Noise consists of regions common to both
groups, random aberrations in individual samples, and
technical noise. Further characteristics are also that the
sizes of the aberrant regions vary from entire chromo-
somes to focal aberrations, the exact start and end posi-

tions of a region vary slightly from one sample to another,
and even a "common" region might not be be present in
all of the samples.

The simulated data were generated by introducing arti-
ficial aberrations into a data set of clinical genetics sam-
ples of patients with mental retardation and no or few
chromosomal aberrations [26]. To achieve a simulated
data set of the desired size, resampling was performed
with replacement. Aberrant regions were then randomly
introduced as follows. A single array element was chosen
at random as the starting point of a region. The size of the
region was then chosen at random with a 10% probability
for a single cytoband, 30% for three consecutive bands,
30% for six consecutive bands, 20% for the whole chro-
mosome arm, and 10% for the entire chromosome. The
type of the aberration was randomly chosen as a gain or
loss with equal probabilities, but for the smallest aberra-
tions of individual cytobands, a 2% probability for ampli-
fications was also included. When introducing a region to
a set of samples, the exact samples receiving the aberra-
tion were sampled from the Bernoulli distribution with p
= 70%. Randomness was also introduced to the exact start
and end positions of aberrations in individual samples by
shifting the starting and ending array elements by a ran-
dom number between -10 and 10.

A simulated data set of 15 + 15 arrays was generated
with 30 common regions, and 5 regions for each individ-
ual sample. These copy number changes do not separate
the two groups from each other, and therefore represent
background noise. This data set is referred to as Simula-
tion 0. Single regions specific to the two groups were then

Table 1: Evaluation data sets

Data Set Array Type Probes Regions Cancer Type Groups (Samples)

Chin et al. spotted oligo 26,755 223 breast ER+ (113) vs. ER- (57)

Douglas et al. BAC 3,032 142 colorectal MSI (7) vs. CIN (30)

Fridlyand et al. BAC 1,877 231 breast TP53+ (10) vs. TP53- (52)

Myllykangas et al. cDNA 11,342 260 gastric diffuse (15) vs. intestinal (23)

Nymark et al. cDNA 10,953 242 lung asbestos-exposed (11) vs. non-exposed (9)

Postma et al. spotted oligo 26,755 111 colorectal good (16) vs. bad response (16)

Smeets et al. BAC 4,196 143 head and neck HPV+ (12) vs. HPV- (12)

Wrage et al. spotted oligo 25,549 23 lung BM+ (13) vs. BM- (15)

Simulation 0 in-situ oligo 42,331 440 (15) vs. (15)

Simulation 5 in-situ oligo 42,331 489 (15) vs. (15)

Simulation 10 in-situ oligo 42,331 525 (15) vs. (15)

Eight public data sets were collected to evaluate the performance of CGHpower. They represented five different cancer types and BAC, cDNA 
and oligo-based microarray platforms, with resolutions varying from 2 K to 27 K array elements. The last column contains the distinguishing 
factor used to divide the data set into two groups, along with the number of arrays in each group. The simulated data sets were generated 
by introducing artificial aberrations into a set of clinical genetics samples. A total of 11 simulations were generated, and the remaining ones 
are available at http://www.cangem.org/cghpower/. ER = estrogen receptor, MSI = microsatellite instability, CIN = chromosomal instability, 
HPV = human papilloma virus, BM = bone marrow metastasis.

http://www.cangem.org/cghpower/
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introduced to Simulation 0 yielding data set Simulation 1.
This process was repeated ten times resulting in a set of
11 simulations with the amount of differential signal
ranging from none in Simulation 0 to 10 regions specific
to each group in Simulation 10. Only Simulations 0, 5 and
10 are presented in this paper, but the full CGHpower
outputs for all of them are available on the program's web
page.

Preprocessing
All evaluation data sets were preprocessed starting from
raw log2 ratios. First, the data were median normalized.
Wavy patterns typically seen in many aCGH profiles were
removed [26] from the 30 K arrays [15,20,22]. Normal-
ized log ratios were segmented using the DNAcopy algo-
rithm [27] and called by CGHcall [28] to identify gains,
losses and amplifications. Regions between breakpoints
were then collapsed into single data points, when shared
between most of the samples [13]. Finally, the median log
ratio was calculated for each of these regions in each sam-
ple, resulting in region-wise log ratios (RWLRs). All algo-
rithms were run with default parameters, and sex
chromosomes were excluded from the data.

Sample Size Calculations
For each region, t-statistics were calculated with a
Welch's t-test allowing unequal variances and p-values
computed from the normal distribution. The proportion
of non-differentially behaving regions (γ) was estimated
by minimizing the difference between parametric (Ĝn)

and non-parametric ( ) estimators of G, which is the
unknown distribution of the p-values from differentially
behaving regions. The limiting density of effect sizes
(λ)and G were then estimated using deconvolution.
Finally, with FDR fixed at 10%, these parameter estimates
were used to approximate average power as a function of
sample size.

Results and Discussion
Estimates of average power as a function of sample size
were calculated for the eight evaluation data sets and 11
simulations (Figure 1). The reliability of the power calcu-
lations depends directly on the the quality of parameter
estimation, which in turns depends on compliance with
required assumptions. The first assumption is that the
proportion γ of non-differentially behaving regions be
"substantially" smaller than 1 (e.g. ~0.9 will typically do,
but 0.99 will not). The second assumption is that the
RWLRs be approximately normally distributed, being
neither particularly asymmetric (skewness) nor heavily
tailed or extremely peaky (kurtosis). The complete CGH-
power program output contains diagnostic plots from
different stages of the power calculations procedure.

These plots help determine to which extent these
assumptions are fulfilled. While it is impossible to know
what the true values of γ and λ are, one can easily evaluate
how well the two estimators of G agree with each other
(the "goodness-of-fit"). If they show a clear discrepancy,
the accuracy of parameter estimation is questionable and
the resulting power calculations consequently unreliable.
Different scenarios in the quality of parameter estimation
observed with the evaluation data sets are examined for
each of the data sets to estimate the reliability of the cal-
culated power.

The data sets Douglas et al., Smeets et al., Fridlyand et
al. and Chin et al. are examples where the goodness-of-fit
of the G estimators was satisfactory, ranked in this order
according to their fits (Figure 2A). What appears to be the
most important factor distinguishing these data sets from
the others, is the density of the p-values. If there is no dif-
ference detected between two groups, p-values are
expected to follow a uniform distribution, and their den-
sity function appears as a flat line. When the number of
differentially behaving regions increases (γ moves away
from 1), density at low p-values increases and the func-
tion is expected to be convex (Figure 2B). This can also be
seen on the simulations where the amount of differential
signal gradually increases from Simulation 0 to Simula-
tion 10. Along with the increase in density for low p-val-
ues, also the goodness-of-fit systematically improves
(data and figures at http://www.cangem.org/cghpower/).

Less satisfactory performance was observed with data
sets of Postma et al. and Myllykangas et al. The good-
ness-of-fit shows more disagreement between the two
estimators of G (Figure 2C) and as a result power esti-
mates are less reliable. The density is increasing for low p-
values, but slightly less and the function is not convex as
expected (Figure 2D). Compared to Simulation 0, which
has no true differences between the groups, the increase
in p-value density for the data set of Myllykangas et al. is
very small. One explanation is that there is simply not
enough differential signal that is detectable with a t-test.
Alternatively, the number of differentially behaving
regions might be too low ( i.e. γ is too close to 1). While
these data sets do give γ estimates of 0.75 and 0.55,
respectively, these estimates cannot be trusted if the esti-
mates of G disagree with each other. Therefore it is rec-
ommended that the goodness-of-fit plot be used to assess
the reliability of the estimates of other parameters. Also,
judging from the results with the simulated data sets,
CGHpower seems to underestimate the true value of γ.

While assumptions regarding γ seem to be most impor-
tant, the RWLRs are also assumed to be normally distrib-
uted. The program output contains histograms of the
skewness (asymmetry) and kurtosis (peakedness) of the
RWLRs, superimposed with those of a normal distribu-
tion (data on the CGHpower web page). Assumptions of
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normality become more critical with small sample sizes
and less important with large ones. Within the evaluation
data sets, most violations of normality were observed
with the Chin et al. data set, yet this is one of the better-
performing ones in terms of goodness-of-fit. This might
be explained by the relatively large sample size (170) of
the study. Another factor besides the number of arrays, is
the number of regions found after the preprocessing step.
The larger the number of regions, the better the perfor-
mance of the parameter estimation and therefore the reli-
ability of power calculations. The assumption of
normality is therefore more crucial with samples contain-
ing very few biological differences.

The data sets of Nymark et al. and Wrage et al. are
examples where our method failed to work, despite the
differences reported and technically as well as biologi-
cally validated. In the case of Nymark et al. the obtained
power curve is a flat line (Figure 1). This can happen
when parameter estimation fails. The explanation can be
found from the density of the p-values, but now the
assumptions were violated more severely than in the
cases of Postma et al. and Myllykangas et al. The density
function is actually concave and shows even less density
at low p-values than would be expected by chance (Figure
2F). With Wrage et al., failure can be observed at the pre-
processing step, as only 23 regions are detected (Table 1).

Figure 1 Power calculations for evaluation data sets. Average power estimated as a function of sample size for the eight evaluation data sets and 
three simulations. False discovery rate was fixed at 10%. The horizontal position of the small symbols mark the actual size of the data set that was used 
to calculate the estimates in each case. Real data sets are shown with solid lines and three of the simulations with dotted lines. Additional simulations 
are available at http://www.cangem.org/cghpower/.
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Figure 2 Diagnostic plots. The goodness-of-fit of the two estimators of G and densities of p-values for three data sets illustrating different scenarios 
in the performance of CGHpower. The data set of Douglas et al. shows A) a satisfactory goodness-of-fit following from B) a convex p-value density 
function. Mediocre operation is demonstrated with the data set of Postma et al. C) An inferior fit results from D) a p-value density which shows a slight 
increase for small values, but is not convex as expected. Nymark et al. represents failed execution. E) The disagreement between the G estimators is 
slightly more severe and the estimated power curve is a flat line (Figure 1). F) P-values exhibit even less density at low values than would be expected 
by chance. In such circumstances, it is recommended that data preprocessing be carried out before uploading and only the power calculations part 
be performed in CGHpower.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

G
(u

)

non−parametr
semi−paramet

A) Estimates of G for Douglas et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

p−value

de
ns

ity

B) Densities of p−values for Douglas et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

G
(u

)

non−parametr
semi−paramet

C) Estimates of G for Postma et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

p−value

de
ns

ity
D) Densities of p−values for Postma et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u

G
(u

)

non−parametr
semi−paramet

E) Estimates of G for Nymark et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

p−value

de
ns

ity

F) Densities of p−values for Nymark et al.



Scheinin et al. BMC Bioinformatics 2010, 11:331
http://www.biomedcentral.com/1471-2105/11/331

Page 7 of 10
Since the sex chromosomes are excluded from the analy-
sis, this means that only one copy number breakpoint was
detected in the whole genome using the fixed CGHpower
preprocessing described above. As preprocessing and
power calculations procedures are fixed earlier in CGH-
power, it was not optimized it for every aCGH platform
or data set. Allowing the user to fine-tune different set-
tings and immediately see the result of each change
would require implementing a more complex user inter-
face, similar to desktop software, which would be imprac-
tical for a single-purpose web tool. As an alternative
option, if the goodness-of-fit and density plots indicate
that power calculations failed, users can perform prepro-
cessing independently, turn off the preprocessing step
from the program, and perform the power calculations
only.

Consistency as the Pilot Size Is Increased
CGHpower was initially developed to be used on smaller
pilot data sets in the planning stages of larger microarray
experiments or for verifying power achieved in past
experiments. We wanted to evaluate whether the result-
ing power estimates hold while more and more arrays are
added to the data set. Assuming that a pilot of 10 + 10
arrays has estimated an experiment with 40 + 40 arrays
should result in an average power of approximately 70%.
The data set of 80 arrays is then generated and for verifi-
cation the power calculations are repeated with the entire
data set. If the new results indicate that the achieved
power is in fact only 50%, and that 20 + 20 new arrays are
needed in order to achieve our goal of 70%, then the two
power calculations have to be declared inconsistent. To
evaluate whether the power estimates remain consistent
while the pilot size is increased, power was calculated
with smaller subsets of the Chin et al. data set, since it is
our largest one. This data set contains a total of 170 arrays
(113 vs. 57), which was split into smaller subsets to repre-
sent pilots of a larger study. Nine resamplings ranging
from 10% (11 vs. 6 arrays) to 90% (102 vs. 51) of the origi-
nal data set were randomly selected for the power calcu-
lations. Each resampling was repeated 10 times and the
results were averaged. Two of the ten repetitions of the
10% subset and one repetition in the 20% subset experi-
enced a failed power estimation resulting in flat power
curves as with the Nymark et al. data set. These cases
were removed before averaging the results. A plot of the
resulting power estimates shows that except for the
smallest subset (11 vs. 6 arrays), the results appear to be
consistent (Figure 3). This suggests that as long as the
pilot is of sufficient size, power estimates generated with
CGHpower using smaller pilot data sets are in fact repre-
sentative of a subsequent larger study. While the exact
requirement for a "sufficient pilot" is hard to define
beforehand, the power calculations can be repeated when

more arrays are performed to see whether power esti-
mates are still changing or have been stabilized.

Conclusions
We have explored sample size calculations in the context
of aCGH and copy number changes and propose a dedi-
cated tool for this purpose. From a pilot data set, CGH-
power estimates the biological diversity between two
groups of cancer samples and estimates average power as
a function of sample size using an adaptive version of the
Benjamini-Hochberg method for multiple testing [4,10].
Pilot data is used for parameter estimation and this
requires certain assumptions to hold in an approximate
sense. We have evaluated the performance of CGHpower
with eight published data sets, four of which show satis-
factory performance using predefined preprocessing
measures. Among these data sets were BAC and oligo-
based array platforms, whose resolution varied from less
than 2 K for BACs to almost 27 K for oligos. The differ-
ences in resolution did not have a direct impact on the
obtained power estimates, which should be determined
more by the amount of biological variation between the
two groups.

In two data sets violations of critical assumptions lead
to problems in parameter estimation and therefore power
estimates are less reliable. More severe violations and/or
the inflexibility of a completely predefined analysis proce-
dure lead to failed execution for the two other data sets.
Even though the proposed method has its limitations, it is
to our knowledge the only proposed one for aCGH data
and copy number changes. As the program allows perfor-
mance evaluation through diagnostic plots, critical judge-
ment can be applied for each data set.

As a summary on the evaluation of CGHpower results,
users should consider paying attention to the following:
1) Do the copy number profile plots appear similar to the
aberrations that you have detected in your own analysis?
If CGHpower does not seem to detect the important
aberrations, consider performing the preprocessing
before uploading and use CGHpower only for the power
calculations. 2) Do the estimators of G agree with each
other? If the goodness-of-fit is poor, so will other parame-
ter (and resulting power) estimates. 3) Is the density func-
tion of the p-values convex, and showing a higher density
at small p-values? A straight or concave function might
be caused by too small effect size, or γ being too close to
one. 4) Excess skewness and/or kurtosis in the data might
also affect the performance, but this seems to be less cru-
cial.

The proposed method uses log ratios instead of calls,
even though we feel the latter is generally the preferred
choice when working with aCGH data. Calls have the
benefit of a clear biological meaning and are therefore
easier to interpret. However, their use for power calcula-
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tions in the context of FDR is problematic, as it would
require using the chi-square test, a setting that is not as
well developed as the Gaussian one. Also, as log ratios are
the basis for calls in the first place, they do contain all the
necessary information even though they are not as clear
to interpret.

In comparison to sample size calculations for mRNA
expression arrays, the differentiating factor for aCGH
studies is the concept of regions, which stems from the
different biological phenomenon underlying the microar-
ray log2 ratios. Compared to the number of array ele-
ments, the number of regions is relatively small, which

presents challenges to parameter estimation from the
data. As the total number of regions is remarkably
smaller than with expression arrays, the estimation might
fail if the number of differentially behaving regions is too
small, even if there is a true difference between the
groups.

An important concern when performing power calcu-
lations is the actual power requirement. A power curve
typically plateaus out at some point, indicating satura-
tion. Increasing the average power from e.g. 60% to 70%
requires a significantly bigger increase in sample size than
is needed for an increase from 50% to 60%. Therefore it is

Figure 3 Consistency as the pilot size is increased. To evaluate whether power estimates obtained from smaller pilots are in fact representative of 
larger data sets, the calculations were performed with subsets of the Chin et al. data. Resampling without replacement was used to obtain subsets 
from 10% to 90% of the original data set. Each resampling was repeated ten times and results averaged. The horizontal position of the small symbols 
mark the size of the subset used to obtain each power estimate.
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difficult to set a a predefined gold standard of adequate
power. One option is to try to find where the slope of the
power curve is decreasing rapidly. This should give a rea-
sonable compromise between statistical power and cost
of the experiment. Another aspect worth pointing out, is
that the level of power needed also depends on the
research question. For example, if the goal is to construct
a classifier that can classify future samples into one of the
two groups, a lower level of average power might yield a
perfectly satisfactory classifier even though not all differ-
ences are detected.

Availability and requirements
CGHpower is a web-based application and can be freely
accessed at http://www.cangem.org/cghpower/. It allows
direct uploads and can also automatically retrieve data
stored in the CanGEM database [29]. The computation
times of CGHpower may vary considerably depending on
the number of samples and array elements in the data set,
and also on the prevailing load of the Linux cluster where
the calculations are performed. As an example, running
times for a data set of 30 samples and 42 K array elements
have been around 1-1.5 hours in our test runs. The soft-
ware has been implemented in R [30] and the source code
is available upon request.
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