
Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Open AccessS O F T W A R E
SoftwareAccessing the SEED Genome Databases via Web
Services API: Tools for Programmers
Terry Disz1,2, Sajia Akhter3, Daniel Cuevas5, Robert Olson1, Ross Overbeek4, Veronika Vonstein4, Rick Stevens1 and
Robert A Edwards*1,3,5

Abstract
Background: The SEED integrates many publicly available genome sequences into a single resource. The database
contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between
genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the
foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST)
server for whole genome annotation, the metagenomics RAST server for random community genome annotations,
and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user
interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the
development of third-party tools and mash-ups.

Results: The currently exposed Web services encompass over forty different methods for accessing data related to
microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing
any programmer access to the most consistent and accurate genome annotations available. The Web services are
deployed using a platform independent service-oriented approach that allows the user to choose the most suitable
programming platform for their application. Example code demonstrate that Web services can be used to access the
SEED using common bioinformatics programming languages such as Perl, Python, and Java.

Conclusions: We present a novel approach to access the SEED database. Using Web services, a robust API for access to
genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the
most current datasets available, including the new genomes as soon as they come online.

Background
At least 1,000 genomes have now been sequenced and
released to the public, the vast majority of which are
microbial genomes. For example, the SEED currently
contains over 850 Bacterial genomes that have been com-
pletely sequenced (Table 1; The SEED also contains many
hundreds of draft genomes (those that are in many con-
tigs and whose sequencing status is in flux).) For several
years now it has been realized that the most efficient and
accurate way of annotating these genomes is not by con-
sidering each in isolation, but by comparing them all
together in unified integration platforms [1]. The SEED
http://www.theseed.org/ contains all publicly available
genome sequences. The underlying set of databases

includes functional annotations, subsystems [2], and EC,
reaction [3], and GO terms [4] for proteins in all micro-
bial genomes. The database also houses precomputed
"all-versus-all" BLAST comparison of a non-redundant
database (all non-redundant proteins from all of the
genomes were compared to each other using BLAST),
functional coupling data that describes genes that are
linked together based on homologs in other genomes,
links to other data resources, and so on [5].

The SEED platform provides the underpinnings to sev-
eral common microbial genome annotation services
(Fig.1). The Rapid Annotation using Subsystem Technol-
ogy (RAST server) provides high throughput accurate
annotations for complete microbial genomes [6,7]. The
development of the RAST server for complete microbial
genome annotation provides consistent and accurate
annotations, automatic connections to metabolic recon-
structions, and detailed comparative genomics tools pre-

* Correspondence: redwards@mcs.anl.gov
1 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA
Full list of author information is available at the end of the article
© 2010 Disz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20546611
http://www.theseed.org/

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 2 of 11
viously only available in limited environments. The
metagenomics-RAST produces high throughput annota-
tions of random community genomes [8]. The develop-
ment of an annotation pipeline for random community
genomics (metagenomics) has opened the field to
researchers, providing high-performance bioinformatics
analysis previously only available to researchers with ded-
icated compute power. Together the SEED family are
more than just databases, as they include all the data, the
access methods, and the encodings. They are open source

software, freely available to all researchers, and there are
no restrictions on their use. They are frequently updated
as new microbial genomes are released to the public, and
annotated via the RAST system [2,5,7].

Since their inception by the Fellowship for Interpreta-
tion of Genomes (FIG), these tools were built around an
open-source framework that encourages development of
new tools and ideas. Although the primary servers are
maintained at Argonne National Laboratory and the Uni-
versity of Chicago, several remote SEED installations
have been provided for groups requiring programmatic
access to the SEED data. However, the main difficulty
with remote installations is the maintenance and constant
updates that are required, often beyond the capability of
the average bioinformatics group. A series of Web ser-
vices has therefore been developed to provide an API to
the annotations of microbial genomes without requiring
any downloads or installation.

SOAP services are available from EBI [9,10], KEGG
[11,12], and NCBI [13,14]. The existing methods were
taken into consideration when developing the SEED Web
services interface and our aim is to provide compatible
services. However, as further web service APIs are devel-

Table 1: Genomes in the SEED database as of November
26th, 2009.

Domain Complete Draft1

Bacteria 872 82

Archaea 52 7

Eukaryota 29 32

1Draft genomes are incompletely assembled and contain more
than 100,000 bp of sequence.

Figure 1 Overview of the SEED family of services. Each member of the family contributes a unique service to microbial genome analysis. The un-
derlying platform, the SEED, integrates complete microbial genomes and data associated with them. The RAST server provides automatic high-quality
annotation of complete genomes, while the mg-RAST server provides automatic high-quality annotation of metagenomes.

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 3 of 11
oped, a common set of methods, or a thesaurus to com-
pare methods, should be defined to ensure maximum
compatibility and computability between services.

To aid programmatic access to the SEED family of ser-
vices, an application programming interface (API) was
developed based on the Simple Object Access Protocol
(SOAP) standard. Here, we describe the basic implemen-
tation of the API, and provide example code to query the
databases.

Implementation
The Web services are implemented as a Perl abstraction
to the SEED database on the remote server, however the
distal implementation does not limit the user's choice in
language or implementation methods. The examples
shown here include Perl, Python, and Java, and many
other programming languages support SOAP allowing
the user to choose their favourite language for their
implementation.

Results
Before the services are described, a couple of formalities
about the underlying SEED database are introduced.
These are provided to orient new users of the database.

Internal Identifiers
The SEED family of databases and services has their own
internal identifiers, called FIG identifiers (FIDs), in the
format fig|xxxxx.i.type.yyyy. In this representation, the
fig| denotes that it is a FIG internal identifier, the xxxxx is
usually the NCBI taxon ID of the genome, the .i is the
increment of the genome (advanced when major changes
are performed), the type is the feature type, and the yyyy
is the number of the feature on the genome. Feature types
are typically peg (protein encoding gene), rna, pp
(prophage), pi (pathogenicity island), and so on. The fea-
ture type is lower case, and the number is usually incre-
mented along the chromosome. However, features that
are inserted will get the next available, unused, feature
number, and the numbers from deleted features are not
recycled. Therefore although features with adjacent num-
bers are usually adjacent to each other on the chromo-
some, that is not guaranteed.

Thus, "fig|243277.1.peg.4400" refers to the 4400th pro-
tein encoding gene in the 1st increment of the genome
with taxonomy ID 243277 (Vibrio cholerae O1 biovar
eltor str. N16961). The functional annotation of this pro-
tein is "β-subunit of the DNA-directed RNA polymerase
(EC 2.7.7.6)". The identifier "fig|243277.1.rna.23" refers to
the 23rd RNA feature of the same genome. For simplicity,
these two examples are used throughout this discussion.
The genome identifier in this case is 243277.1 (note that
we include the increment number with the taxonomy
identifier). For access to web pages and user controlled

material, the link-in URLs based on http://www.the-
seed.org/linkin.cgi provide access to pages related to the
genome, proteins, subsystems and associated data. For
example, http://www.theseed.org/
linkin.cgi?genome=243277.1 links to the organism over-
view for Vibrio cholerae O1 biovar eltor str. N16961, and
http://www.theseed.org/
linkin.cgi?id=fig|243277.1.peg.4400 links to the page
related to the protein sequence.

External Identifiers
In addition to these internal identifiers, the SEED data-
base maintains mapping to other commonly used identi-
fiers wherever possible. For example, the peg shown
above also has the following aliases: GeneID:2615094
NP_229982.1 VC0328 gi|15640355 gi|41019520
kegg|vch:VC0328 sp|Q9KV30 uni|Q9KV30. Typically,
the source database is abbreviated, precedes the identi-
fier, and is separated from the identifier with a vertical
bar (e.g. sp is SwissProt and uni is UniProt).

Accessing the SEED via Web services
The Web services API provides ready access to com-
monly used methods to retrieve sequence and related
data from the underlying database. An appropriate Web
services description language XML (WSDL) file must be
retrieved to discover which services are available. This
file contains required information about each call, and
informs the SOAP client of URLs and namespaces for the
servers, procedures that are available, and parameters
required for those calls. WSDL files are often generated
statically, and have to be updated to reflect changes to the
API. In contrast, the SEED WSDL files are dynamically
generated from the publicly exposed methods at the time
of calling, and thus the files are constantly current and
updated as new methods are exposed. The currently
available list of methods that can be used for Web service
calls, their input parameters, and their output strings are
shown in Table 2.

The examples discussed below all use Perl http://
www.perl.org/ and the SOAP::Lite Perl module available
from http://search.cpan.org/. In the examples below we
use the simple SOAP::Lite interface making HTTP calls
via port 80. This will be sufficient for most API calls, and
more details about the SOAP::Lite interface can be found
online or in the O'Reilly Programming Web Services With
Perl [15]. Python and Java code that works with the Web
services interface is included in the online examples.

To initiate a connection using Perl and SOAP::Lite, the
constructor SOAP::Lite->service is provided the URL for
the publicly available WSDL file. The dedicated Web ser-
vices server machine at http://ws.theseed.org/ is opti-
mized for handling Web services calls rather than user-
initiated calls (Code 1 in the Additional File 1). The con-

http://www.theseed.org/linkin.cgi
http://www.theseed.org/linkin.cgi
http://www.theseed.org/linkin.cgi?genome=243277.1
http://www.theseed.org/linkin.cgi?genome=243277.1
http://www.theseed.org/linkin.cgi?id=fig|243277.1.peg.4400
http://www.theseed.org/linkin.cgi?id=fig|243277.1.peg.4400
http://www.perl.org/
http://www.perl.org/
http://search.cpan.org/
http://ws.theseed.org/

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 4 of 11
Table 2: Methods, input and output parameters in the SEED Web services API

Method Name Parameters
& Order

Description

abstract_coupled_to peg Get the pegs that may be coupled to this peg through abstract coupling. Input is a
peg, output is list of [protein, score] for things that are coupled to this peg

Adjacent pegs Retrieve the set of pegs in order along the chromosome. Input is a comma separated
list of pegs, and output is the pegs in order along the genome.

alias2fig alias Get the FIG ID(s) (peg) for a given external identifier. Input is an identifier used by
another database, output is a list of our identifiers. Note that an alias can refer to more
than one protein since the mapping is done via protein sequence.

aliases_of peg Get the aliases of a peg. These are the identifiers that other databases use. Input is a
peg, output is an array of aliases

ali_to_seq alias Retrieve the protein sequence for a given identifier. Input is an alias, output is a
sequence

all_families Get all the FIG protein families (FIGfams). No input needed, it just returns a list of all
families

all_families_ with_funcs Get all the FIG protein families (FIGfams) with their assigned functions. No input
needed, it just returns a list of all the families and their functions.

all_genomes complete,
restrictions,
domain

Get a set of genomes. The inputs are a series of constraints - whether the sequence is
complete, other restrictions, and a domain of life (Bacteria, Archaea, Eukarya, Viral,
Environmental Genome). Output is a list of genome ids. An example use is with the
parameters ("complete", undef, "Bacteria") that will return all complete bacterial
genomes.

all_subsystem_ classifications Get a list of all the subsystems and their classifications. No input needed, it just returns
a list of all the subsystems and their classifications

boundaries_of locations Get the boundaries of a feature location. A feature can have multiple locations on a
contig (e.g. split locations, introns, etc). This just returns an array of [contig, beginning,
end]. You can pass it the output from feature_location directly

CDS_data families Get all the pegs in some FIGfams, their functions, and aliases. Input is a tab-separated
list of pegs, returns a 3-column comma separated table [peg, Function, Aliases]

CDS_sequences families Get the protein sequences for a list of proteins. Input is a tab-separated list of peg,
returns a 2-column comma separated table of [peg, sequence]

cluster_by_bbhs peg Get the clusters for a peg by bidirectional best hits. Input is a peg, output is two
column table of [peg, cluster]

cluster_by_sim peg Get the clusters for a peg by similarity. Input is a peg, output is two column table of
[peg, cluster]

contigs_of genomeid Get a comma-separated list of all the contigs in a genome

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 5 of 11
contig_ln genomeid,
contig

Get the length of the DNA sequence in a contig in a genome. Input is a genome id and
a contig name, return is the length of the contig

coupled_to peg Get the pegs that are coupled to any given peg. Input is a peg, output is list of [protein,
score] for things that are coupled to this peg

dna_seq genomeid,
location1

Get the DNA sequence for a region in a genome. Input is a genome ID and a location
in the form contig_start_stop, output is the DNA sequence in fasta format.

ec_name EC_number Get the name for a given E.C. number. Input is an EC number, output is the name

external_calls peg Get the annotations for a peg from all other known sources. Input is a peg, output is
two column table of [peg, other function]

feature_location peg Get the location of a peg on its contig. Input is a peg, output is list of locations on
contigs. Usually this will be a single location, but sometimes it can either be more than
one region on a contig, or even on multiple contigs. For convenience it is a comma
joined list, often you will want to pass that to boundaries_of

fid2dna peg Get the DNA sequence for a given protein identifier. Input is a peg, output is the DNA
sequence in fasta format.

fids2dna peg Get the DNA sequence for a set of protein identifiers. Input is a comma-joined list of
pegs, output is the DNA sequence in fasta format.

function_of peg Get the functional annotation of a given protein identifier. Input is a peg, output is a
function

Genomes complete,
restrictions,
domain

Get a set of genomes. The inputs are a series of constraints - whether the sequence is
complete, other restrictions, and a domain of life (Bacteria, Archaea, Eukarya, Viral,
Environmental Genome). Output is a list of genome ids with the genus species
appended. An example use is with the parameters ("complete", undef, "Bacteria") that
will return all complete bacterial genomes.

genomes_of peg Get the genome(s) that a given protein identifier refers to. Input is a peg, output is a
single column table of genomes

genus_species genomeid Get the genus and species of a genome identifier. Input is a genome ID, output is the
genus and species of the genome

get_ corresponding_ ids peg Get the corresponding ids of a peg. These are the identifiers that other databases use.
Input is a peg, output is an array of aliases

get_dna_seq featureid Retrieve the DNA sequence for a particular feature. Note that this will take a feature id
(peg, rna, etc), and return the DNA sequence for that id. There is also a separate
method to get the DNA sequence for an arbitrary location on a genome

get_translation peg Get the translation (protein sequence) of a peg. Input is a peg, output is translation.
(Note that this is a synonym of translation_of);

is_archaeal genomeid Test whether an organism is Archaeal. Input is a genome identifier, and output is true
or false (or 1 or 0)

Table 2: Methods, input and output parameters in the SEED Web services API (Continued)

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 6 of 11
is_bacterial genomeid Test whether an organism is Bacterial. Input is a genome identifier, and output is true
or false (or 1 or 0)

is_eukaryotic genomeid Test whether an organism is Eukaryotic. Input is a genome identifier, and output is
true or false (or 1 or 0)

is_member_of sequences Tries to put a protein sequence in a family. Input is a tab-separated id and sequence,
delimited by new lines. The output is a comma-separated 2-column table [your
sequence id, FamilyID] if the sequence is placed in a family.

is_prokaryotic genomeid Test whether an organism is a Prokaryote. Input is a genome identifier, and output is
true or false (or 1 or 0)

list_members families Get all the pegs in some FIGfams. The input is a tab-separated list of family IDs, and
the output is a two column table of [family id, peg]

pegs_of genomeid Get all the protein identifiers associated with a genome. Input is a genome id, output
is a list of pegs in that genome

pegs_with_md5 md5 Get the FIG IDs associated with the MD5 sum of a protein sequence. Input is the md5
checksum, output is an array of strings of FIG ids. This should be faster, and more
complete, than using aliases or other ways to match protein sequences.

pegs_with_md5_string md5 Get the FIG IDs associated with the MD5 sum of a protein sequence. Input is the md5
checksum, output is a comma separated list of FIG ids as a single string. This should
be faster, and more complete, than using aliases or other ways to match protein
sequences.

pinned_region_ data peg_id,
n_pch_pins,
n_sims,
sim_cutoff,
color_sim_
cutoff,
sort_by

Input is a FIG (peg) ID and ..., output is the pinned regions data

reaction_to_role Reaction_n
umber,
genomeid

Get a tab-separated list of [subsystem name, functional role, peg, subsystem variant
code for that genome] for any given reaction id and genome id. Maps the reaction id
to peg, peg to genome, and genome to variant code

replaces genomeid If this genome replaces another one (it is a more upto date version), what is the ID of
the older genome?

Rnas_of genomeid Get all the RNA identifiers associated with a genome. Input is a genome ID, and
output is a list (an array) of the RNAs in that genome

search_and_grep pattern1,
pattern2

Search and grep through the database. Input is two patterns, first one is used in
search_index, second used to grep the results to restrict to a smaller set. Output is an
array of hashes with keys id, organism, otherIds, functionalAssignment, and
annotator.

Simple_search pattern Search the database. Input is a pattern to search for, output is list of pegs and roles

Table 2: Methods, input and output parameters in the SEED Web services API (Continued)

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 7 of 11
structor generates method stubs that can then be called
as methods of the service. Most commonly used methods
are described below.

Searching the SEED
To search the SEED, two different access methods are
provided. The simple_search accepts a query string, and
returns all data that matches the string. For example,
searching for "VC0328" returns the text separated by tabs
as shown in Code 2 in the Additional File 1.

The first item is the internal identifier, and the second
the genome from which it came. The third item is a list of
all other aliases for this peg. The alias list is constructed
based on sequence identity [5]. Fourth is the functional
annotation of the protein, and the last item is the person
that made the annotation - in this case a master (or
trusted) annotator made the annotation.

The second method provided for searching the SEED is
via search_and_grep. This method takes two arguments,
the first is what to search for, and the second is a regular
expression that should be found within the search string.
This provides a server-side mechanism for reducing the
output of the search. For example, a simple_search for
dnaA returns 2,774 items, but a search_and_grep for
"dnaA" and "Vibrio" reduces the list to 56 items (the grep
is always case sensitive).

Working with genomes
To retrieve all the genomes in the current instantiation of
the SEED database, a call to genomes is made. This
method takes three optional constraints, the first is a
boolean, if true only "complete" genomes will be
returned, if false all genomes will be returned. The sec-
ond, is a set of restrictions that can be applied on a
genome-by-genome basis, and the third option is a
domain to return (Bacteria, Archaea, Eukarya, or Envi-
ronmental Sample). The block of code shown in Code 3
in the Additional File 1 returns all complete Bacterial
genomes in the SEED. The same code is shown in Java,
Python, and Perl to demonstrate the portability of the
Web services approach.

The returned data is an array of tuples of [genome ID,
genome name] separated by a tab. Additionally, the
genome name can be retrieved using the genus_species
call, that accepts a genome ID as its sole argument.

For any genome ID, every protein encoding gene (peg)
of the genome can be retrieved by using the call pegs_of.
This simply returns a list of FIDs in each genome that can
be parsed using the methods described below. As noted
above, the pegs are typically in numerical order along the
chromosome but that is not guaranteed as pegs may be
added to fill in missing genes. The method adjacent takes
a list of pegs and sorts them in order along the chromo-
some. Thus, the combined call shown in Code 4 in the
Additional File 1 will return a list of ordered pegs. Of
course, as shown below, the location of each peg can be
retrieved and sorted locally by the user, if desired.

Working with genes and proteins
Many methods are available to retrieve the data underly-
ing the SEED, and most work at the level of the protein.
As noted above, both internal and external identifiers are
maintained, but typically API requests are made with
internal identifiers (FIDs), as shown here. Simple func-
tional calls include the ability to retrieve the location of a
FID on a contig, the DNA or protein sequence, the anno-
tation, as shown in Table 2.

For example the block of code shown as Code 5 in the
Additional File 1 will retrieve the location of the sequence
(contig, start position and stop position), and the protein
sequence of the peg from Vibrio cholerae. The protein
sequence is in fasta format, suitable for feeding into other
bioinformatics applications. Similarly, the fid2dna
method returns the DNA sequence in fasta format.

An underlying resource in the SEED database is the
precomputed coupling of proteins along and between
genomes [1]. Coupling is an evidence-based metric of the
co-occurrence of any pair of proteins in unrelated
genomes, and infers that proteins are involved in the
same cellular process. Coupling evidence is one of the
pieces of information SEED annotators use to infer func-
tion. Two methods are currently provided to return cou-
pling data. First, coupled_to takes a given peg and returns

Sims peg, maxN,
maxP

Retrieve the sims (precomputed BLAST hits) for a given protein sequence. Input is a
peg, an optional maximum number of hits (default = 50), and an optional maximum
E value (default = 1e-5). The output is a list of sims in modified tab separated (-m 8)
format. Additional columns include length of query and database sequences, and
method used.

taxonomy_of genomeid Returns the taxonomy of a given genomeid

translation_of peg Get the translation (protein sequence) of a peg. Input is a peg, output is the protein
sequence. (Note that this is a synonym of get_translation).

Table 2: Methods, input and output parameters in the SEED Web services API (Continued)

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 8 of 11
a list of pegs that it is coupled to, along with a normalized
score for that coupling [2]. The score is the number of
genomes in which similar coupling is retained in nearby
pegs.

The second method, abstract_coupled_to is related to
the coupling. Coupling requires that two genes co-occur
near each other on two genomes, however we realized
that sometimes genes co-occur but are not next to each
other. Abstract coupling does not require that two genes
be adjacent in a genome if there is evidence from other
genomes that suggests that the genes are adjacent. This
"abstract evidence" can be used to assert related func-
tions. As shown in Table 3, the direct coupling shows
genes that are related to fig|243277.1.peg.4400, both in
terms of location and function. The abstract coupling
identifies the same related genes, but also identifies near
neighbors that are implicated by distant genomes, but are
not neighbors in V. cholerae N16961.

The SEED contains precomputed similarities for all
proteins compared to all other proteins in the database.
This is maintained essentially as the tabular output from
NCBI BLASTALL [16] appended with the length of the
query protein and the length of the database protein and
the method used to identify the similarity. The sims

method takes a peg and returns everything that is similar
to it, within the optional limits provided by the user. Two
limits are supported, the maximum number of similari-
ties returned and the maximum expect (E) value for the
sims. Thus, when executed the code shown in Code 6 in
the Additional File 1 returns the output shown in Table 4.

Timing Web services
The major drawback to the Web services approach to
computational biology is the significant delay that may be
incurred accessing and retrieving data. This is particu-
larly exacerbated in bioinformatics applications where
often very many small calls need to be made (e.g. retrieve
an identifier or location). Two tests were developed to
quantify this delay and provide an estimate of the addi-
tional burden of using the Web services interface com-
pared to direct access to a local installation of the API.
The Web services were used to access machines at
Argonne National Laboratory from San Diego State Uni-
versity, representative of a typical use of Web services to
access data. In the first example the DNA sequence was
retrieved for each of the complete bacterial genomes in
the SEED database, and the time required compared to
the length of the sequence. As shown in Fig. 2, access

Table 3: Pegs that are coupled to fig|243277.1.peg.4400 either directly through close association, or in an abstract
manner

Peg Coupled Score Abstract Coupling Score Function

fig|243277.1.peg.316 6 0.38 Translation elongation factor Tu

fig|243277.1.peg.318 39 0.65 Transcription antitermination protein NusG

fig|243277.1.peg.319 24 0.61 LSU ribosomal protein L11p (L12e)

fig|243277.1.peg.320 36 0.64 LSU ribosomal protein L1p (L10Ae)

fig|243277.1.peg.321 11 0.58 LSU ribosomal protein L10p (P0)

fig|243277.1.peg.322 25 0.67 LSU ribosomal protein L7/L12 (L23e)

fig|243277.1.peg.324 34 0.64 DNA-directed RNA polymerase beta' subunit

fig|243277.1.peg.354 -1 0.42 SSU ribosomal protein S12p (S23e)

fig|243277.1.peg.355 - 0.5 SSU ribosomal protein S7p (S5e)

fig|243277.1.peg.4033 - 0.35 Preprotein translocase subunit SecE

fig|243277.1.peg.356 - 0.27 Translation elongation factor G

1These proteins are not coupled directly.

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 9 of 11
times are linear with respect to sequence length, showing
that there is minimal delay in instantiating the backend
and accessing the data. The Web services approach takes
approximately ten times longer to access the DNA
sequence than direct access, but still remain at microsec-
onds per base, placing relatively complex calculations
within the realm of realistic computation time. Secondly,
a real-world example was used to compare the computa-
tional speed using Web services and direct access to the
data. The shannon.pl code provided online is the Perl
code to compute Shannon's Uncertainty Index [17,18] on
intergenic and genic DNA sequences for an entire
genome. A minor modification of the script that just redi-
rects the Web services call to a local instantiation (not
provided) was used to compute the same analysis with
local access to the data. Each calculation was run five
times independently on different days and at different
times to calculate the uncertainty of intergenic and genic
sequences in V. cholerae. In each case, more than 15,000
calls were made to the API. Using local access to the API
those calls and the computation took 3,409 seconds (±33
seconds; about 1 hour), but using Web services the com-
putation took 21,519 seconds (±144 seconds; about 6
hours). There is an overhead for using the Web services,
however the benefit is that there is no need to install or
maintain a local copy of the data. Therefore, accessing the
data via Web services maybe a more attractive and feasi-
ble alternative to maintaining a local installation if rapid
computation is not an issue.

Discussion
Web services provide a mechanism for computational
access to the data housed in our databases. The API
allows all users to access our systems, retrieve data, and
develop tools for mining genomes and metagenomes
essentially without restriction. The API provides a flexi-
ble interface that has evolved in response to common
requests for our end users and will continue to morph in
response to demand. The primary advantage of accessing
our data via the API is that the data are constantly
updated. Although stand-alone SEED installations are
available, almost as soon as the installation is complete, it
is out of date and needs updating. In contrast, the Web
services access data that is mirrored nightly to ensure
constant quality and timeliness.

The main drawback with using the Web services
approach to access the data rather than via a local instal-
lation is the additional overhead associated with transfer-
ring the data over the internet. Accessing the data
indirectly over a typical internet connection takes about
ten times longer than having direct access to the data.
However, as the computational processing time increases,
those delays are mitigated. On the back-end, the overhead
is being mitigated with server-side controls to limit the
amount of data transferred. For example, the
search_and_grep method described here significantly
reduces the data returned from database searches. On the
front-end prefetching the data, and maintain local caches

Table 4: Similarities returned for fig|243277.1.peg.4400

Query Database P L G M QS QE DS DE E BS QL DL Me

fig|243277.1.peg.4400 fig|345072.3.peg.508 100.00 1341 0 0 1 1341 1 1341 0 2682 1341 1375 blastp

fig|243277.1.peg.4400 fig|345075.3.peg.501 100.00 1341 0 0 1 1341 1 1341 0 2682 1341 1375 blastp

fig|243277.1.peg.4400 fig|404974.3.peg.2938 100.00 1341 0 0 1 1341 1 1341 0 2682 1341 1375 blastp

fig|243277.1.peg.4400 fig|412614.3.peg.2528 100.00 1341 0 0 1 1341 1 1341 0 2682 1341 1375 blastp

fig|243277.1.peg.4400 fig|412966.3.peg.2460 100.00 1341 0 0 1 1341 1 1341 0 2682 1341 1375 blastp

Key:
Query:Query sequence identifier
Database: Database sequence identifier
P: Percent similarity
L: Alignment length
G: Gaps
M: Mismatches
QS: Start in the query sequence
QE: End in the query sequence
DS: Start in the database sequence
DE: End in the database sequence
E: E value
BS: Bit score
QL: Query length
DL: Database length
Me: Method

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 10 of 11
of limited parts of the data may prove an attractive alter-
native to continually retrieving large data sets.

In this work to date, we have chosen to implement an
RPC/Encoded style of Web service. There are two com-
mon Web services approaches: RPC/Encoded and Docu-
ment/Literal [19]. The general advantage of the former is
that it is significantly easier to implement and has a more
"natural" style. For example, BLAST search results are
returned as tab separated text, just as if they had been
computed locally. The disadvantage is that it is much
harder for the programmer accessing the data, as they
have to individualize each call and the way the data is
processed. In contrast, the Document/Literal style uses
XML for both the call and response. The XML returned
is self-descriptive and self-validating, allowing more
automated analysis of the data. Currently we only support
the RPC/Encoded style of Web services. In part it was a
design decision based on the Perl back end of the SEED
API (RPC/Encoded support is conveniently and dynami-
cally supplied by the Perl module POD::WSDL [20]). In
addition, this decision allowed us to provide immediate
unfettered access to our data while we develop and

deploy the more formal Document/Literal style of encod-
ing. We anticipate future releases of the SEED Web ser-
vices API will move towards Document/Literal even
while we continue to support the RPC/Encoded style.

The current SEED API does not limit access in any way.
For example, there is no limit on how frequently calls may
be made. However, too many repeated calls may be mis-
construed as a denial of service (DOS) attack by the host,
and therefore users are cautioned to throttle their
requests appropriately.

We have provided many code examples both in the
Additional File 1 and online at http://ws.theseed.org/.
The service is also included in the BioCatalogue http://
www.biocatalogue.org/ and future services will also be
included there. Users are encouraged to contact the
authors to share code and to provide reusable code frag-
ments.

Conclusions
The SEED family of databases and associated software
(Fig. 1), are a comprehensive set of microbial genome
annotation and analysis databases. Every microbial

Figure 2 Timing the SEED Web services. Time taken to retrieve each complete genome is proportional to the length of the sequence and is limited
by network transfer via Web services. The time taken to retrieve each complete genome's sequence either directly from a local SEED installation or via
Web services was compared to the length of the DNA sequence. The Web services incurs an approximately ten-fold delay. Linear regression demon-
strates that approximately 1,000,000 bp per second are retrieved using the Web services interface.

http://ws.theseed.org/
http://www.biocatalogue.org/
http://www.biocatalogue.org/

Disz et al. BMC Bioinformatics 2010, 11:319
http://www.biomedcentral.com/1471-2105/11/319

Page 11 of 11
genome sequenced to date is stored in these databases,
and the annotation servers provide a flexible framework
for both complete genomes and metagenomes. Research-
ers are encouraged to try the programmatic access to the
SEED as an alternative means of retrieving data.

Availability and requirements
• Project name: SEED Web services API
• Project home page: http://ws.theseed.org/
• Operating system(s): Platform independent
• Programming language: Language independent
• Other requirements: SOAP
• License: SEED Toolkit Public License
• Any restrictions to use by non-academics: no lim-
itations

Additional material

Abbreviations
FID: (A FIG ID, an internal identifier in the format fig|xxxxxx.i.peg.yyyy); FIG: (Fel-
lowship for Interpretation of Genomes); mg-RAST: (Server for metagenome
annotations based in part on RAST technology); RAST: (Server for Rapid Anno-
tations using Subsystem Technology); SEED: (The database and infrastructure
for comparative genomics).

Authors' contributions
TD and RE developed the Web services and wrote most of the example code.
SA developed the shannon.pl code and performed the efficiency tests. DC
developed and tested the Java code. All authors have contributed to instanti-
ating, testing, and using the services and the underlying databases. All authors
contributed to, read, and approved the final version of the manuscript.

Acknowledgements
Part of this project has been funded with Federal funds from the National Insti-
tute of Allergy and Infectious Diseases, National Institutes of Health, Depart-
ment of Health and Human Services, under Contract No.
HHSN266200400042C.
We thank the beta-testers of this service especially Bahador Nosrat and Scott
Kelley at San Diego State University.

Author Details
1Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA, 2Computation Institute, University of Chicago,
Chicago, IL 60637, USA, 3Computational Sciences Research Center, San Diego
State University, San Diego, CA 92182, USA, 4Fellowship for the Interpretation
of Genomes, Burr Ridge, IL, 60527, USA and 5Department of Computer
Science, San Diego State University, San Diego, CA 92182, USA

References
1. Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N: The use of

gene clusters to infer functional coupling. Proc Natl Acad Sci USA 1999,
96(6):2896-2901.

2. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de
Crecy-Lagard V, Diaz N, Disz T, Edwards R, et al.: The subsystems approach
to genome annotation and its use in the project to annotate 1000
genomes. Nucleic Acids Res 2005, 33(17):5691-5702.

3. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource
for deciphering the genome. Nucleic Acids Res 2004:D277-280.

4. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nat Genet 2000,
25(1):25-29.

5. Overbeek R, Disz T, Stevens R: The SEED: A peer-to-peer environment for
genome annotation. Commun ACM 2004, 47(11):46-51.

6. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K,
Gerdes S, Glass EM, Kubal M, et al.: The RAST Server: rapid annotations
using subsystems technology. BMC Genomics 2008, 9:75.

7. McNeil LK, Reich C, Aziz RK, Bartels D, Cohoon M, Disz T, Edwards RA,
Gerdes S, Hwang K, Kubal M, et al.: The National Microbial Pathogen
Database Resource (NMPDR): a genomics platform based on
subsystem annotation. Nucleic Acids Res 2007:D347-353.

8. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T,
Rodriguez A, Stevens R, Wilke A, et al.: The metagenomics RAST server - a
public resource for the automatic phylogenetic and functional analysis
of metagenomes. BMC Bioinformatics 2008, 9:386.

9. Brooksbank C, Cameron G, Thornton J: The European Bioinformatics
Institute's data resources. Nucleic Acids Res :D17-25.

10. Leinonen R, Akhtar R, Birney E, Bonfield J, Bower L, Corbett M, Cheng Y,
Demiralp F, Faruque N, Goodgame N, et al.: Improvements to services at
the European Nucleotide Archive. Nucleic Acids Res :D39-45.

11. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for
representation and analysis of molecular networks involving diseases
and drugs. Nucleic Acids Res :D355-360.

12. Kawashima S, Katayama T, Sato Y, Kanehisa M: KEGG API: A web service
using SOAP/WSDL to access the KEGG system. Genome Informatics
2003, 14:673-674.

13. Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, He S, Liu C, Shi W, Bryant
SH: The NCBI BioSystems database. Nucleic Acids Res 2010:D492-496.

14. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin
V, Church DM, Dicuccio M, Federhen S, et al.: Database resources of the
National Center for Biotechnology Information. Nucleic Acids Res
2010:D5-16.

15. Ray RJ, Kulchenko P: Programming Web Services with Perl. O'Reilly 2003.
16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. J Mol Biol 1990, 215(3):403-410.
17. Akhter S, Bailey B, Salamon P, Edwards R: Shannon's Uncertainty and

Kullback-Leibler Divergencein Microbial Genome and Metagenome
Sequences. 1st International conference on Bioinformatics and
Computational Biology: 2009; New Orleans, LA 2009.

18. Shannon CE: A mathematical theory of communication. Bell Syst Tech J
1948, 27(3):379-423.

19. Which style of WSDL should I use? [https://www.ibm.com/
developerworks/webservices/library/ws-whichwsdl/]

20. Pod-WSDL-0.05 [http://search.cpan.org/dist/Pod-WSDL/]

doi: 10.1186/1471-2105-11-319
Cite this article as: Disz et al., Accessing the SEED Genome Databases via
Web Services API: Tools for Programmers BMC Bioinformatics 2010, 11:319

Additional file 1 Example code snippets. The additional file contains
example code in Perl, Python, and Java that demonstrates how to access
the SEED using SOAP.

Received: 5 January 2010 Accepted: 14 June 2010
Published: 14 June 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/319© 2010 Disz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:319

http://ws.theseed.org/
http://www.biomedcentral.com/content/supplementary/1471-2105-11-319-S1.DOC
http://www.biomedcentral.com/1471-2105/11/319
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16214803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18261238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17145713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18803844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19934258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19906712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19880382
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19854944
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19910364
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
https://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
https://www.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://search.cpan.org/dist/Pod-WSDL/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation

	Results
	Internal Identifiers
	External Identifiers
	Accessing the SEED via Web services
	Searching the SEED
	Working with genomes
	Working with genes and proteins
	Timing Web services

	Discussion
	Conclusions
	Availability and requirements
	Additional material
	Abbreviations
	Authors' contributions
	Acknowledgements
	Author Details
	References

