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sequence analysis has increased correspondingly.

source Kepler system as a platform.

Background: For more than two decades microbiologists have used a highly conserved microbial gene as a
phylogenetic marker for bacteria and archaea. The small-subunit ribosomal RNA gene, also known as 16 S rRNA, is
encoded by ribosomal DNA, 16 S rDNA, and has provided a powerful comparative tool to microbial ecologists. Over
time, the microbial ecology field has matured from small-scale studies in a select number of environments to massive
collections of sequence data that are paired with dozens of corresponding collection variables. As the complexity of
data and tool sets have grown, the need for flexible automation and maintenance of the core processes of 16 S rDNA

Results: We present WATERS, an integrated approach for 16 S rDNA analysis that bundles a suite of publicly available 16
S rDNA analysis software tools into a single software package. The "toolkit" includes sequence alignment, chimera
removal, OTU determination, taxonomy assignment, phylogentic tree construction as well as a host of ecological
analysis and visualization tools. WATERS employs a flexible, collection-oriented 'workflow' approach using the open-

Conclusions: By packaging available software tools into a single automated workflow, WATERS simplifies 16 S rDNA
analyses, especially for those without specialized bioinformatics, programming expertise. In addition, WATERS, like
some of the newer comprehensive rRNA analysis tools, allows researchers to minimize the time dedicated to carrying
out tedious informatics steps and to focus their attention instead on the biological interpretation of the results. One
advantage of WATERS over other comprehensive tools is that the use of the Kepler workflow system facilitates result
interpretation and reproducibility via a data provenance sub-system. Furthermore, new "actors" can be added to the
workflow as desired and we see WATERS as an initial seed for a sizeable and growing repository of interoperable, easy-
to-combine tools for asking increasingly complex microbial ecology questions.

Background

Microbial communities and how they are surveyed
Microbial communities abound in nature and are crucial
for the success and diversity of ecosystems. There is no
end in sight to the number of biological questions that
can be asked about microbial diversity on earth. From
animal and human guts to open ocean surfaces and deep
sea hydrothermal vents, to anaerobic mud swamps or

* Correspondence: jaeisen@ucdavis.edu

' Department of Medical Microbiology and Immunology and the Department
of Evolution and Ecology, Genome Center, University of California Davis, One
Shields Avenue, Davis, CA, 95616, USA

T Contributed equally

Full list of author information is available at the end of the article

boiling thermal pools, to the tops of the rainforest canopy
and the frozen Antarctic tundra, the composition of
microbial communities is a source of natural history,
intellectual curiosity, and reservoir of environmental
health [1]. Microbial communities are also mediators of
insight into global warming processes [2,3], agricultural
success [4], pathogenicity [5,6], and even human obesity
[7,8].

In the mid-1980 s, researchers began to sequence ribo-
somal RNAs from environmental samples in order to
characterize the types of microbes present in those sam-
ples, (e.g., [9,10]). This general approach was revolution-
ized by the invention of the polymerase chain reaction
(PCR), which made it relatively easy to clone and then
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sequence rDNA (the genes for ribosomal RNA) in partic-
ular those for small-subunit ribosomal RNA (ss-rRNA).
These studies revealed a large amount of previously
undetected microbial diversity [1,11-13]. Researchers
focused on the small subunit rRNA gene not only
because of the ease with which it can be PCR amplified,
but also because it has variable and highly conserved
regions, it is thought to be universally distributed among
all living organisms, and it is useful for inferring phyloge-
netic relationships [14,15]. Since then, "cultivation-inde-
pendent technologies" have brought a revolution to the
field of microbiology by allowing scientists to study a
wide and complex amount of diversity in many different
habitats and environments [16-18]. The general premise
of these methods remains relatively unchanged from the
initial experiments two decades ago and relies on
straightforward molecular biology techniques and bioin-
formatics tools from ecology, evolutionary biology and
DNA sequencing projects.

Briefly, the lab work involved in 16 S rDNA surveys
begins with environmental samples (e.g., soil or water)
from which total genomic DNA is extracted. Next, the 16
S rDNA is PCR-amplified with pan-bacterial or pan-
archaeal primers (i.e., primers designed to amplify as
many known bacteria or archaea as possible), cloned into
a sequencing vector, and then sequenced (or directly
sequenced without cloning in next generation sequenc-
ing) resulting in large collections of diverse microbial 16 S
rDNA sequences from these different samples. As
sequencing costs have continually declined, environmen-
tal microbiology surveys have expanded correspondingly
and 16 S rDNA datasets have grown increasingly com-
plex.

The size and complexity of data sets introduce a new
challenge - analyses that one could carry out manually on
small data sets now must be aided or run entirely on com-
puters. And those analyses that previously were carried
out computationally now must be made more efficient to
have any hopes of being completed in a timely manner
[7,19].

How then is the microbial community sequencing data
converted from reads off a sequencing machine to bar
graphs, network diagrams, and biological conclusions?
Fortunately, even as data sets have expanded, most
researchers analyzing rDNA sequence data sets, even
when they are very large, have a similar set of goals in
their analysis. For example, most studies are interested in
assigning a microbial identity to the 16 S rDNA
sequences and determining the proportion of these
organisms in each sequence collection. And to achieve
these (and related goals), a similar set of steps are used
(Fig. 1) including aligning the rDNA sequences in a data-
set to each other so that they are comparable, removing
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Figure 1 Overview of WATERS. Schema of WATERS where white
boxes indicate "behind the scenes" analyses that are performed in WA-
TERS. Quality control files are generated for white boxes, but not oth-
erwise routinely analyzed. Black arrows indicate that metadata (e.g,,
sample type) has been overlaid on the data for downstream interpre-
tation. Colored boxes indicate different types of results files that are
generated for the user for further use and biological interpretation.
Colors indicate different types of WATERS actors from Fig. 2 which
were used: green, Diversity metrics, WriteGraphCoordinates, Diversity
graphs; blue, Taxonomy, BuildTree, Rename Trees, Save Trees; Create-
Unifrac; yellow, CreateOtuTable, CreateCytoscape, CreateOTUFile;
white, remaining unnamed actors.

chimeric sequences generated during PCR identifying
closely related sets of sequences (also known as opera-
tional taxonomic units or OTUs), removing redundant
sequences above a certain percent identity cutoff, assign-
ing putative taxonomic identifiers to each sequence or
representative of a group, inferring a phylogenetic tree of
the sequences, and comparing the phylogenetic structure
of different samples to each other and to the larger bacte-
rial or archaeal tree of life.

Over the last few years, a large number of software
tools and web applications have become available to carry
out each of the above steps (e.g., [20,21] for chimera
checking, [22] for phylogenetic comparisons, STAP for
taxonomy assignments). In practice, even as new soft-
ware became available, researchers still have to act as the
drivers of the workflow. At each step in this process, dif-
ferent types of software must be chosen and employed,
each with distinct data formatting requirements, invoca-
tion methods, and each associated with a variety of post-
analysis steps that may be selected and applied. Even after
all of these steps have been completed, a wide variety of
statistical and visualization tools are applied to these
results to interpret and represent these data. In this con-
text, there is a clear need for tools that will run a compre-
hensive set of analyses all linked together into one system.
Very recently, two such systems have been released -
mothur and QIIME. WATERS is our effort in this regard
with some key differences compared to mothur and
QIIME.
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Motivations

As outlined above, successfully processing microbial
sequence collections is far from trivial. Each step is com-
plex and usually requires significant bioinformatics
expertise and time investment prior to the biological
interpretation. In order to both increase efficiency and
ensure that all best-practice tools are easily usable, we
sought to create an "all-inclusive” method for performing
all of these bioinformatics steps together in one package.
To this end, we have built an automated, user-friendly,
workflow-based system called WATERS: a Workflow for
the Alignment, Taxonomy, and Ecology of Ribosomal
Sequences (Fig. 1). In addition to being automated and
simple to use, because WATERS is executed in the Kepler
scientific workflow system (Fig. 2) it also has the advan-
tage that it keeps track of the data lineage and provenance
of data products [23,24].

Automation

The primary motivation in building WATERS was to
minimize the technical, bioinformatics challenges that
arise when performing DNA sequence clustering, phylo-
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genetic tree, and statistical analyses by automating the 16
S rDNA analysis workflow. We also hoped to exploit
additional features that workflow-based approaches
entail, such as optimized execution and data lineage
tracking and browsing [23,25-27]. In the earlier days of 16
S rDNA analysis, simply knowing which microbes were
present and whether they were biologically novel was a
noteworthy achievement. It was reasonable and expected,
therefore, to invest a large amount of time and effort to
get to that list of microbes. But now that current efforts
are significantly more advanced and often require com-
parison of dozens of factors and variables with datasets of
thousands of sequences, it is not practically feasible to
process these large collections "by hand", and hugely inef-
ficient if instead automated methods can be successfully
employed.

Broadening the user base

A second motivation and perspective is that by minimiz-
ing the technical difficulty of 16 S rDNA analysis through
the use of WATERS, we aim to make the analysis of these
datasets more widely available and allow individuals with
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Figure 2 Screenshot of WATERS in Kepler software. Key features: the library of actors un-collapsed and displayed on the left-hand side, the input
and output paths where the user declares the location of theirinput files and desired location for the results files. Each green box is an individual Kepler
actor that performs a single action on the data stream. The connectors (black arrows) direct and hook up the actors in a defined sequence. Double-
clicking on any actor or connector allows it to be manipulated and re-arranged.
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little or no programming and bioinformatics skills to still
use the best software currently available. Prior to
WATERS, few microbiologists had the skills and time to
invest for installing close to a dozen different pieces of
software, troubleshooting them, preparing files, etc. if
they wanted to do comprehensive 16 S rDNA analyses.
With WATERS we believe more biologists can get to the
heart of microbial ecology questions and obtain results
faster.

Comparability and reproducibility

The third, complementary motivation to build WATERS
was to "standardize" the 16 S rDNA analysis methods
thus facilitating comparability and reproducibility of
results. Although isolated reports have called for commu-
nity-wide standardization of part of the 16 S rDNA analy-
sis process [28], in the past most microbial ecologists
have cobbled together software tools from different web-
sites and individual software downloads in an ad-hoc
manner that is hard to compare to other microbial analy-
ses in other publications. In short, we sought to develop a
reproducible, convenient "one stop shop"” method for 16 S
rDNA analysis that was accessible for a user with only
minimal computational expertise. Data lineage and prov-
enance information that is automatically generated dur-
ing workflow runs provides rich additional opportunities
for result validation and reproducibility [23-27]. Very
recently, two new programs, Mothur [29] and QIIME
[30], have been published that also attempt to standardize
16 S rDNA analyses. The similarities and unique attri-
butes are discussed below and in Table 1.

Scientific workflows and the Kepler system

In recent years, the concept of automating repetitive,
complex informatics tasks has gained popularity and
practice in many scientific communities [25,31], and been
widely used and implemented in the public sector for cor-
porate use. This process, when applied to scientific
research, is termed scientific workflow automation [31],
and a variety of different scientific workflow systems are
available or under active development (e.g., [31,32]).
Based on our prior experience extending the Kepler sci-
entific workflow system, we chose to implement
WATERS in Kepler [33]. The use of a scientific workflow
system in general and Kepler in particular offers several
advantages for use by the scientific community [25],
which are described below.

First, it is open-source and freely available, and thus
ideal for academic development. Second, unlike other
systems, Kepler is independently extensible, which means
that developers can make changes to the underlying
workflow system if the need arises. To our knowledge, no
other workflow system allows developers to make major
changes to the system for their particular application
needs. For example, as part of WATERS, a custom data
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cache capability was developed that allows for incremen-
tal recomputation of results (see below). Such enhance-
ments can also be contributed back to the shared source
code repository and used by other projects.

Kepler is also unique in that it supports different mod-
els of computation (e.g. different forms of executing data-
flow process networks, streaming pipeline parallelism,
etc.) via software components called directors. For exam-
ple, WATERS employs a new COMAD director (Fig. 2) to
simplify handling of nested data collections [23,25,27].
Similarly, developers who need to make deep changes to
the system, e.g., in order to change workflow scheduling
or data handling for specific applications or projects, can
do so by customizing existing directors or devising new
ones. Other contemporary workflow systems do not
allow such customization and instead only support a sin-
gle way of running workflows (deep changes to these sys-
tems would likely break existing workflows).

Fourth, a very active Kepler community is constantly
developing actors, the individual units within a workflow
that perform specific operations on the data, for many
fields in the natural sciences [34]. These actors now make
up a large library, available via a public repository of
usable, interoperable, and interchangeable actors.

Kepler has been used in a wide variety of scientific
domains and communities, ranging from astrophysics, to
ecology, to particle physics [31], and - importantly for 16
S rDNA analyses - the phylogenetic and ecology commu-
nities [26], which have similar needs and functions. In
fact, the RAXML actor that builds phylogenetic trees
within WATERS already existed prior to the development
of our workflow, demonstrating the intrinsic reusability
and exchangeability of workflow actors.

Incremental Recomputation

Finally, Kepler has a built-in database that allows calcula-
tions to be cached and stored internally rather than recal-
culated anew every time. For instance, in analysis of 16 S
rDNA datasets, new data often become available sporadi-
cally as sequencing centers complete batch jobs. The
addition of new data generally requires re-analysis of the
entire dataset, but, by using the cache, previous interme-
diate data products, including alignments, chimeras, and
taxonomy assignments, can be retrieved automatically
from the database rather than being recalculated. There-
fore, the cache increases the efficiency of adding new data
to a partially analyzed dataset. Moreover, if new metadata
parameters become available or are altered, the entire
workflow can be re-run on the existing cached data and
all new results files can be generated without the need for
any heavy recalculations.

Implementation
Scientific workflow systems typically represent work-
flows as networks of components (representing workflow
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Table 1: Comparison of WATERS' tools to existing web services and stand-alone software tools.
Greengenes RDPII RDP-Py Silva Mothur QIIME WATERS
Use Web Web Web Web Command line Command GUI
line

Align NAST Infernal Infernal SINA NAST Infernal

Chimeras Bellerohpon No No No Unknown Mallard

OTUs Yes DOTUR Complete- No DOTUR OTUHunter

linkage
Taxonomy Simrank; 7mer naive Bayesian naive Yes Yes STAP
classification classifier Bayesian
classifier

Trees No NJ NJ No Yes ML; NJ

Ecology No No Yes No Yes Yes

Unifrac No No No No Yes Yes

Export Yes Yes No Yes No No

Trim? Yes Yes Yes No Yes No

Data size? hundreds hundreds 500,000 hundreds  tens of thousands  tens of tens of thousands

thousands

Along the left column, "Use" indicates where or how the software is used; "Align" indicates the alignment programs available; "Chimeras"
indicates the chimera removal software available; "OTUs" indicates the software used to detect and determine operational taxonomic units;
"Taxonomy" indicates the software used to assign taxonomy to OTUs; "Trees" indicates the software used to build phylogenetic trees; "Ecology"
indicates whether or not ecological indices such as Chao1 and the Shannon index are calculated; "Unifrac" indicates whether Unifrac analyses are
done within the software or whether data is formatted for downstream use in Unifrac; "Export DB" indicates whether a quality-controlled, curated
16 S dataset is available for export and/or for comparison to the user's own dataset; "Trim" indicates the availability of quality control trimming
to remove sequence vectors or low-quality bases from the initial upload of sequences; "Dataset size" indicates the estimated amount of
sequences that can be readily processed through each software type. Along the top are all known multi-tool 16 S rDNA analysis software suites.
Note that these software are each under very active development. This table represents a snapshot in time of current tool availabilities. ML,

maximum-likelihood; NJ, neighbor-joining.

steps, tasks, or processes). In Kepler, these components
are called actors which can be viewed as independently
executing processes, and which communicate by sending
data through unidirectional pipelines (a.k.a. channels).
New workflow components can be added simply by
choosing new instances of existing actors, or by building
new "native" actors, i.e., implemented in Java, the under-
lying implementation language of Kepler. A workflow
consisting of actors and their dataflow connections is
then executed according to a schedule as prescribed by
the director (see Fig. 2).

Kepler supports a number of ways to add new actors to
the system and to implement new actors. If the desired
actor is not available from the library or a remote actor
repository, one can either create new "native" Java actors,
or one can instantiate certain generic actors in new ways.
The former requires programming expertise in Java,
while the latter doesn't. For example, to add a new data
analysis step implemented in the R language as an actor,
one only has to instantiate the generic R actor accord-
ingly. This specialized R actor instance can then be stored
as a new actor. Other ways to add new actors to Kepler
include, e.g., instantiation of the command-line actor

(effectively "wrapping" a given command-line tool and
turning it into an actor), or instantiation of the web ser-
vice actor so that certain web services become new com-
ponents (actors).

For WATERS a number of custom actors were devel-
oped to perform the required microbial ecology func-
tions. Some, like the Mallard and OTUHunter actors
(described below in detail), directly invoke pre-existing
Java-based algorithms. Others, like the STAP and Infernal
actors, invoke external non-Java programs automatically,
meaning that these actors run the programs on behalf of
the WATERS user, wait for the results to be produced,
and reincorporate these results into the internal data
stream seamlessly. Two additional features of WATERS
are the options to use a computer cluster to accelerate
compute-intensive processes (the Infernal, OTUHunter,
and STAP actors all can take advantage of a cluster) and
to intelligently reuse existing results within the cache
where possible to minimize computation.

The main WATERS workflow comprises 23 actors,
each of which is a Java class that implements a common
actor interface. This interface allows the workflow system
to communicate with the actor, directing it to take certain
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actions. The COMAD (Collection-Oriented Modeling
and Design) computational model within Kepler was
used [27]. In the COMAD style of developing and execut-
ing workflows, a stream of structured data flows through
a sequence of actors that together form a computational
pipeline. Much like workers in an assembly line, each
actor in the pipeline can add or remove information from
the data stream passing through it; newly computed data
products are added to the stream, and data that will not
be needed by downstream actors can be deleted. Actors
that conform to the COMAD paradigm need not process
all the data that streams through them; instead, the work-
flow designer can declare with an XPath-like syntax,
(XPath is a simple query language for selecting nodes
from an XML data stream) which data in the stream each
actors should process, giving the workflow designer many
options for composing the structure of the data stream,
grouping intermediate and final results with the raw data
used to compute them, etc. It has been shown that this
workflow modeling paradigm results in more robust,
flexible, and change-resilient workflows when compared
with conventional workflow designs [25,35].

The WATERS Workflow

In this section we describe step-by-step the analysis auto-
mated by the WATERS workflow and portrayed in Fig. 1.
Sequence libraries import

Because most sequencing centers in our experience
return to users assembled quality-controlled contigs, the
workflow begins its operation by importing a collection
of sequences in FASTA format. The design only assumes
that the user has a collection of libraries generated from
individual samples (neither the size of the libraries nor
the number of samples is fixed). The only other informa-
tion input to WATERS is a file that allows the user to
assign a single metadata table to the input libraries. Each
line of this file corresponds to one library, and any num-
ber of columns corresponding to distinct variables may
be included in the table and used to group data during
downstream analysis. This metadata is used, for example,
to indicate from which environment or experimental
condition each library was generated.

Sequence alignment

For the first step, sequence alignment, two options are
available. The default is the recently released Infernal
package [36]. Infernal has the advantage over previous
alignment methods that it takes into account the second-
ary structure of the 16 S rRNA molecule, and that it is
extremely fast. Because it is able to discern homologous
positions of secondary structure it can more easily and
accurately determine group-specific insertions, which it
subsequently removes from the alignment. Infernal also
very efficiently performs its alignment one sequence at a
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time, and thus can take advantage of parallel processing
capabilities, e.g., of Linux clusters.

Alternatively, the STAP aligner, which uses the Clust-
alW algorithm for alignment and is part of the STAP
package for taxonomy assignment [37], may be employed.
While the STAP aligner does not take into account rRNA
secondary structure, it also is fast and is the same align-
ment method used during the downstream taxonomy
assignment step (see below). Additionally, many short,
bar-coded (454) sequences are from the variable regions
of the 16 S molecule, which Infernal is unable to align.
Providing this alternate aligner gives the user flexibility
depending on the type of sequences they are using and
allows for comparisons between the two approaches.
Chimera removal
During the PCR amplification process two non-identical
single-stranded pieces of DNA occasionally will anneal
together at regions of high sequence identity. DNA poly-
merase can amplify such hybrid pieces of DNA because
one piece of single-stranded DNA can serve as a primer
for DNA replication and thus will lead to chimeras when
the "primer" portion is of separate origin from the part
added downstream of the primer. This will essentially
contaminate the PCR product with chimeric sequences
that were not present in the original sample. Because
these artificial sequences can skew the interpretation of
the real data, they should be (computationally) removed
from the input sequence libraries before further analysis.
However, bioinformatics tools for detecting chimeras are
still relatively new, and only a few programs are available
to choose from. The Mallard program [20], based on the
Pintail algorithm [38], is widely-used for chimera removal
and was selected for use in WATERS. However, to auto-
mate Mallard from within WATERS its graphical user
interface (GUI) had to be eliminated for automation of
the algorithm, although the program's parameters are
configurable within the actor (through double-clicking on
it) and all of the original confidence interval options are
available. An additional Chimera checking program, Bel-
lerophon, was considered because it employs a different
chimera detection methodology [21] and could theoreti-
cally complement Mallard. However, Bellerophon is not
yet available as a stand-alone package. Chimera detection
algorithms continue to be optimized and improved, and,
in time, perhaps the chimera-removing actor in WATERS
can be upgraded and replaced as newer software
becomes available.

Determination of OTUs

A key step in determining the total number of times a
particular microbe is represented in a library is the clus-
tering of highly similar sequences together to infer opera-
tional taxonomic units (OTUs). OTUs are akin to
molecular microbial species and are commonly based on
97% or 99% sequence identity levels. A single representa-
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tive sequence is chosen from each cluster, and the count
of sequences in the cluster can be used to compute the
relative proportion of the corresponding OTU in the total
collection of sequences. Those sequences not chosen to
represent the OTU in which they were clustered may be
excluded from further analysis because their presence is
included in the total sequence count for the OTU.

A new piece of software, OTUHunter (Huntemann, et
al, in preparation), is used for clustering sequences and
identifying OTUs in WATERS. OTUHunter uses an
implementation of the Markov clustering (MCL) algo-
rithm to group sequences together (Huntemann et al, in
preparation). Briefly, OTUHunter first calculates an all-
by-all similarity matrix (using the Kimura 2-Parameter)
from the alignment of the sequences in all libraries. It
then simulates random walks via the MCL algorithm on
the graph represented by the similarity matrix and mea-
sures the flow until the algorithm ends in a nearly idem-
potent matrix (meaning the flow has stabilized and
change has ceased). The resulting matrix is interpreted as
the clusters, and the sequence in a cluster over which the
most flow went is chosen as a representative of that clus-
ter (termed the "OTU representative" in the resulting out-
put text file). If there is more than one sequence with the
same amount of flow within a cluster, one of them will be
chosen arbitrarily as the representative.

Taxonomy assignment

Taxonomy assignments are made for each of the repre-
sentative sequences chosen by OTUHunter. The STAP
software [37] is used for taxonomy assignments and can
either be run locally or be configured to take advantage of
the parallel processing capabilities of a Linux cluster. As a
side effect of our development of WATERS, STAP can
now be used in WATERS alone without pre-compilation
by simply deleting all other actors in the workflow and
creating a very short workflow involving the FASTA input
and STAP actors. Prior to WATERS, STAP only could be
run from the command line and after going through sev-
eral installation steps.

Phylogenetic tree inference

WATERS infers phylogenetic trees relating the OTU rep-
resentatives using either the neighbor-joining-based pro-
grams, Fasttree [39] or Quicktree [40], or the maximum-
likelihood program, RAxML [41]. A RAxML actor had
been developed previously and released as part of the
Kepler/pPOD package [26]; it submits compute jobs to
the CIPRES (Cyberinfrastructure for Phylogenetic
Research: http://www.phylo.org) cluster at the San Diego
Supercomputer Center [42]. We also developed new
Kepler actors to run Fasttree and Quicktree as part of
WATERS.

Workflow development and testing
WATERS was created in an iterative, bottom-up manner,
starting from small pieces of the overall target workflow.
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This iterative development allowed easy adaptation while
the user requirements were still evolving. Initial testing
was performed by using small collections of sequences as
test datasets and sequentially adding new actors to the
workflow, identifying and solving error messages pro-
duced, and refining the workflow and Java code until the
final version was produced. First, two test users within
the lab (of JAE, seek Acknowledgements) with different
programming and bioinformatics skills were employed to
use the workflow and provide feedback on WATERS
setup and usage. Next, three test users outside of UC
Davis were asked to experiment with WATERS, report
any bugs or problems encountered, and comment on the
user manual. WATERS was also tested with increasingly
large datasets to detect any scaling issues. Testing
revealed certain performance bottlenecks, both in paral-
lelization and in memory usage, which were subsequently
removed and optimized.

Results and Discussion

After downloading and running WATERS, a variety of
results files are automatically generated (Table 2) and are
available for biological interpretation and comparison.
These files and their use are discussed below. Next, a dis-
cussion is presented of how the workflow can be custom-
ized and optimized for specific requirements and
advanced usages. Then, we discuss other types of 16 S
rDNA tool suites currently available and discuss specifi-
cally where WATERS fits. Finally, the broad benefits of
automation and its implications for the community are
discussed and some of the limitations of the WATERS
method are acknowledged.

Results files automatically generated and delivered to the
user
Ecology statistics
One of the first questions a microbiologist may likely
have about their community of interest is how many
kinds of organisms do I have here? And how different is
one sample from another? To answer these questions two
diversity indices are calculated: Chaol and the Shannon
index. The Chaol diversity index [43] is an ecological sta-
tistic that estimates the total number of species in a col-
lection by taking into account the total size of the sample
and the number of times a sequence was seen at least
twice. This is a measure of "richness", i.e., total estimated
number of organisms. A Shannon-Weiner index [44] is
also calculated, which is a measure of "evenness" that
includes a measure of richness but also takes into account
the relative proportion of the organisms in the collection,
to convey how evenly distributed the organisms are
throughout the sample.

Two other global ecological results are returned: the
calculation and display of rarefaction curves (Fig. 3A) and
rank-abundance curves. In WATERS these curves are dis-
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Table 2: Results files generated by WATERS for further analyses.
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Results file Contents Purpose
aligned_sequences.fas All seqs pre-OTUHunter QG; Alignment
bad_infernal_sequences.fas Segs un-alignable by Infernal QC
chimeras.fas Seqs removed by Mallard QcC
coordinates_Rank_abundance.csv  x,y coordinates for rank-abundance Create graphs

coordinates_Rarefaction.csv

graph_*_variable.xgmml

graph-Rank_Abundance.bip/.ps

graph-Rarefaction.bip/.ps
otu-table.txt
sequences-*.fas
short_sequences.fas

tree_*.txt

unifrac_*_variable.txt

workflow.trace

x,y coordinated for rarefaction

Similarities between libraries based on shared OTUs

Printed graph of rank-abundance curves

Printed graph of rarefaction curves

Counts of OTUs and diversity indices at each cutoff and metadata variable
One representative seq for each OTU found

Short seqs that did not pass cut off

Phylogenetic tree of representatives with taxonomy information

"Environment file" for Unifrac; OTU abundance and library info

Provenance file written by Kepler describing the worklow run

Create graphs

Cytoscape

View graphs

View graphs

Graph OTUs; diversity metrics
Alignment

QC

Unifrac
Dendroscope

Unifrac
QC

Fourteen different types of results files can be generated from one run of WATERS in its complete configuration. * represents the cutoffs used in
OTUHunter, by default 97 and 99 percent similarity, which will generate two different files at each cutoff used. Abbreviations: Seq(s), sequence(s);

QC, Quality Control; OTU, Operational Taxonomic Unit.

played as a graphical pop-up image, a saved post-script
image file, and a text file that contains the x, y coordinates
of the graphs. The rarefaction curve displays the increase
in the number of OTUs as more sequences are added to
the collection. The slope of the rarefaction curve indi-
cates how well sampled a library or an environmental
(metadata) variable was. For example, as the rarefaction
curve begins to flatten out (asymptote) along the x-axis,
very few new OTUs are being added as new sequences
are added (Fig. 3A). The rank-abundance curve plots
along the x-axis, in decreasing order, the most abundant
organisms in a sample and presents on the y-axis the
quantity of that organism, i.e., organism rank is displayed
on the x-axis and abundance on the y-axis, therefore, pre-
senting an overview of the distribution of organisms in a
sample.

Library comparisons

One useful file produced by WATERS is the OTU table
(Table 2). The OTU table writes out the OTU representa-
tives, taxonomic description of these sequences and the
total size of an OTU on a per library and per metadata
variable basis (at all chosen cutoffs of OTUHunter). The
information contained in this file can be employed in
many practical ways to get an overall picture of how
libraries compare. For example, by dividing the abun-
dance of each OTU by the total number of high-quality
reads in a library a relative proportion of each OTU can
be determined. These relative OTU abundances can then

be imported into heat-mapping software, e.g., TreeView
[45] microarray visualization software. The heat map can
then be clustered based on relative abundance and then
on similarities between libraries in a manner similar to
clustering gene expression patterns generated from
microarray data. These relative or raw OTU values or
even a presence/absence view of the OTUs (simply made
in Excel by changing all numbers greater than O to a 1) are
also formatted for use with many different statistical tests
such as PCA or hierarchical clustering. Additionally, the
OTU table can be used to sum up taxonomy groups at
any taxonomic level to produce taxonomy bar graphs.
Two additional sets of results (Table 2) are produced
which are pre-formatted for use in specific software pro-
grams that allow the user to globally compare libraries.
First, are the files required for phylogenetic library com-
parisons in Unifrac [22], namely a phylogenetic tree and
an "environment" text file. The Unifrac program allows
the user to determine the statistical over- or under-repre-
sentation of microbial lineages based upon their phylog-
eny, i.e., the Unique fraction of the phylogenetic tree
branch length present. Second, files are formatted for use
in a network-viewing program, Cytoscape [46].
Cytoscape does not take into account phylogeny, but cre-
ates a clear visual image for how similar two groups of
samples are based upon the shared number of OTUs. For
both Unifrac and Cytoscape files, results are generated
for every similarity cutoff used in OTUHunter (the
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Figure 3 Biologically similar results automatically produced by WATERS on published colonic microbiota samples. (A) Rarefaction curves sim-
ilar to curves shown in Eckburg et al. Fig. 2; 70-72, indicate patient numbers, i.e,, 3 different individuals. (B) Weighted Unifrac analysis based on phylo-
genetic tree and OTU data produced by WATERS very similar to Eckburg et al. Fig. 3B. (C) Neighbor-joining phylogenetic tree (Quicktree) representing
the sequences analyzed by WATERS, which is clearly similar to Fig. ST in Eckburg et al.

default is 97% and 99%), and they are also generated for ~ Data pruning

every metadata variable comparison that the user To assist in troubleshooting and quality control,

includes. WATERS returns to the user three fasta files of sequences
that were removed at various steps in the workflow. A
short_sequences.fas file is created that contains all
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sequences that were removed because they did not meet
the length requirements (default is 500 bp). Mallard cre-
ates a chimeras.fas file that contains sequences that were
determined to be likely chimeras and thus removed. And
a bad_infernal.fas file is created that contains sequences
that were unalignable by Infernal.

Flexibility and adaptability

The basic WATERS workflow (file: full.xml) contains spe-
cific default settings, but can be significantly altered and
adapted in a number of different ways: e.g., the basic
workflow can be changed by adding, removing, or rear-
ranging individual actors, by changing workflow and
actor parameters, and by modifying the metadata file. For
runs with large amounts of data, an external MySQL
database can be used instead of the built-in Kepler data-
base. The following sections discuss these possibilities
and the user manual gives more specific detail on how to
implement and select these changes.

1. Workflow Design Changes

Many scientific workflows are, at least initially, explor-
atory in nature, i.e., unlike a production workflow that is
used over and over again without changes to the design,
exploratory workflows evolve, while the scientist is exper-
imenting with the workflow design, testing outputs for
different input datasets, parameter settings, methods
used, etc. The visual programming paradigm of scientific
workflows makes it fairly easy for scientists to add,
remove, or substitute workflow components while
exploring alternative workflow designs, in particular
when a change-resilient workflow paradigm such as
COMAD is used. Conventional workflow designs often
require special adaptors (a.k.a. "shims") and rewiring of
workflows when design changes are made or when the
structure of data changes. In contrast, COMAD can
adapt to these changes via corresponding changes to its
actor signatures and configuration parameters (e.g., read-
scope) [25,35].

Beyond simple deletion and addition of existing com-
ponents, workflow actors can also be exchanged to pro-
vide different methods or implementations for
conceptually similar workflow steps. For example, there
are two types of alignment methods, STAP and Infernal,
Infernal is the default method but can be removed and
swapped out with the STAP aligner. Or, alternatively, the
aligner can be disabled entirely if the user wishes to use
their own alignment format, such as Greengenes [47], or
has manually aligned the sequences. Additionally, the
phylogenetic tree methods can be switched out between
RaxML [42], Fasttree [39], and Quicktree [40].

2. Workflow and Actor Parameters

The second category of flexibility is to change the param-
eters of the overall workflow or of specific actors. For
example, Mallard, OTUHunter, and STAP each come
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with default parameters, but depending on the individual
requirements of the user, the default settings can be
changed by double-clicking on the actor and altering the
parameters. Mallard can be made to be more or less strin-
gent in detecting chimeras, OTUHunter can calculate
OTUs at different percent identity cutoffs, and STAP can
search for taxonomy information in bacterial, archaeal,
prokaryotic or eukaryotic domains of life. Additionally,
there is a default sequence length cutoff at the beginning
of the workflow that can be changed from the default set-
ting of 500 bp minimum.

3. Deployment on a compute cluster

The compute-intensive actors of WATERS can also be
executed on a linux cluster rather than locally on the sci-
entist's desktop or laptop. Deploying the analyses from
these actors allows the compute time to be increased
because parallel computing can be taken advantage of.
The cluster-deployable actors are (i) the STAP aligner, (ii)
the STAP taxonomy assigner, (iii) OTUHunter, and (iv)
Infernal. To turn on the cluster submission process, a
radio button is checked and the user's account informa-
tion for the cluster is entered if necessary for the user's
cluster account. For extensive technical information on
this process please see the online documentation wiki for
more information: http://code.google.com/p/waters16s/

wiki/ServerActors.
4. Change metadata

Another way to produce new kinds of results is through
the user-written metadata file. This metadata file is
optional, but allows the user to describe the libraries ana-
lyzed in any combination of variables of interest. For
example, many variables of interest can be added on the
fly as the user becomes aware of additional experimental
parameters or begins to test a new hypothesis as new
variables of interest develop as a result of the original
analysis. Each variable column is used to create new Uni-
frac, Cytsoscape and OTU table files/text. Notably,
because of the caching and incremental computation fea-
ture in WATERS, unnecessary re-computations after
metadata file updates can be avoided.

5. Switching to a different database

Kepler has a built-in HSQL database that is well-suited
for smaller sequence collections of wup to
approximately10,000 sequences. For analyzing larger
datasets we have made WATERS compatible with a
MySQL database which will make the resulting results
cache from larger runs more robust, quick and stable.

WATERS proof-of-principle results are biologically
meaningful

To test WATERS we used data from a published dataset
of ~11,000 full-length 16 S rDNA sequences from the
human colon [48]. The total number of OTUs (akin to
bacterial species) at the 99% similarity cutoff was compa-



Hartman et al. BMC Bioinformatics 2010, 11:317
http://www.biomedcentral.com/1471-2105/11/317

rable: 381 determined by WATERS vs. 395 as published.
The OTUs were further analyzed (Table 3) and show that
both the OTU abundance as well as the number of OTUs
in each taxonomic group are very similar. In most taxo-
nomic groups there is complete or near-complete numer-
ical correspondence between the two datasets. The
biggest discrepancy lies in the Firmicutes Clostridia
group where a smaller quantity was observed in the
WATERS results. The possible cause(s) of this difference
are unknown. The biological results (Fig. 3A-C) were also
highly concordant with previously published results. The
rarefaction analysis (Fig. 3A) indicated that the overall
picture of sequence diversity was similar to published
results. The UniFrac analysis (Fig. 3B) indicated that the
microbiota similarity was responsible for the clustering of
samples together and for the separation of different indi-
viduals away from others. The topology of the phyloge-
netic tree (Fig. 3C) indicated that the diversity and
distribution of the microbiota was also consistent with
published results.

WATERS was also used to analyze the nine small bowel
transplant libraries described in Hartman et al. [49].
These sequence collections were used to optimize and
develop WATERS at both a small scale [49] and large
scale (Hartman et al., in preparation) of sequence collec-
tions. The data were analyzed using WATERS and the
results described were derived from output files gener-
ated by WATERS. The results from these analyses were
used to set the default parameters in WATERS.
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Advantages of using a scientific workflow approach

The automation of 16 S rRNA analysis through a work-
flow system offers several advantages. First and most
obviously, WATERS dramatically increases the efficiency
of these analyses. WATERS saves both human time and
compute-time thus allowing scientists to focus on result
analysis and biological interpretation rather than on
repetitive and often error-prone manual data handling
tasks. WATERS also provides new means for the valida-
tion, "debugging”, and reproducibility of results: The
workflow produces log and trace files that capture exactly
what operations and calculations have been performed
and how derived products were obtained from their
inputs.

These provenance capabilities [23,24] provided by
WATERS through Kepler effectively turn the system into
an automatic lab notebook that records details that are
normally not captured and published. With increasingly
powerful means to browse and query provenance in
Kepler [50] and similar systems such as Taverna and Vis-
trails [51], and with the emergence of standards for data
provenance such as Open Provenance Model (OPM), it
will only become easier in the future to interpret, validate
and re-analyze workflow results, both for the original
experimenters and for other users.

The use of a workflow approach also increases the size
of a workable dataset, and, in parallel, should greatly
decrease user-mediated error. Our own experience of
performing large-scale analysis with self-written Perl
scripts strung together with shell commands has taught
us that unintentional bioinformatics errors can be quite

Table 3: Comparison of OTU abundance between WATERS' automated results and previously published data.

Taxonomy WATERS Eckburg et al.

Abundance OTUs Abundance OTUs
Actinobacteria 18 10 22 10
Alphaproteobacteria 10 4 10 4
Bacteroides 5510 67 5640 65
Betaproteobacteria 27 6 32 5
Cyanobacteria 3 1 3 1
Deltaproteobacteria 24 4 24 4
Epsilonproteobacteria 2 1 2 1
Firmicutes Clostridia 4849 265 5721 274
Firmicutes Mollicutes 318 19 287 27
Fusobacteria 9 1 9 1
Gammaproteobacteria 5 2 5 2
Verrucomicrobia 69 1 76 1

Along the left are the bacterial taxonomic groups detected in the dataset. Across the top are the results from WATERS compared to the previously
published results. Columns 1 and 3 provide the total abundance of all OTUs in that taxonomic category. Columns 2 and 4 provide the number of
discreet OTUs observed in that taxonomic group. OTU abundance data for the Eckburg et al. dataset can be found on page 23 of the original

publication's supplemental material [48].
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common in practice and may be easily perpetuated
throughout an entire dataset. By handing over the book-
keeping to Kepler and concentrating efforts on the results
and interpretation, the impact of human error is mini-
mized, particularly those borne out of minimal expertise
or minimal software familiarity. Ultimately, this allows for
larger, more complex analysis and comparisons, which
should enhance the broader field of microbial ecology.
Furthermore, because the analysis processes always occur
in the same manner, WATERS could be very useful for
comparing and contrasting different published datasets
to each other.

Tying together software written in different program-
ming languages, requiring different inputs, returning var-
ied outputs, and expecting different types of user
interactions into one workflow program is a large techni-
cal challenge. The technical considerations to building a
robust system composed of these varied and different
software parts were quite high. This is one of the first
examples of a wide distribution of a fully self-contained
Kepler workflow package (which includes executable ver-
sions of diverse pieces of software) and, to the best of our
knowledge, is the first comprehensive and extensible 16 S
rDNA analysis package of its kind.

Known Limitations

The current WATERS release bundles a number of exter-
nal software components and is initially available and
supported on Mac OS x (Leopard). Ports to other plat-
forms are planned for the future (Kepler itself is platform
independent and is distributed on Windows, Mac OS,
and Linux). Instructions for how to set up and use
WATERS on other operating systems are available on the
WATERS web site; however, they are currently not well
supported or tested.

Some data and metadata entry is currently file-based,
i.e., users have to conform to the specific file formats to
ensure the workflow executes as expected. In the future,
we plan to include a more convenient form of data and
metadata entry, e.g., using a configuration wizard. This
will also minimize execution errors due to formatting
errors in the input files.

Similarly, deploying WATERS on a cluster requires the
user to make sure the cluster-setup has been done cor-
rectly. Working with distributed computing resources
and similar parallel computing middleware is inherently
more complex than working with a single machine. The
emergence of virtual computing environments and cloud
computing services should make deployment of
WATERS on parallel platforms much more easy and
fault-tolerant in the future.

Using our machines and setup, we could run WATERS
roughly around 50,000 full-length sequences. This limit is
imposed by Java memory limits in Kepler and in OTU-
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Hunter clustering, but will vary somewhat depending on
the similarity of sequences run; more similar sequences
will lower the sequence limit because the clustering
becomes more memory intensive. Despite these limita-
tions, WATERS provides end users with a new, more
intuitive and user-friendly approach than has currently
been available for 16 S rDNA analysis.

Related 16S rDNA analysis tools

Mothur [29]is a tool with similar aims as WATERS, but
which uses a more conventional command-line approach
instead of employing a scientific workflow system
approach. The software tools it incorporates are different
from those available in WATERS. Table 1 shows a com-
parison of Mothur, WATERS, and other tools at the time
of writing:

Three large websites are specifically dedicated to the
purpose of 16 S rDNA microbial ecology, Greengenes
[47], RDP-II [52], and Silva [53]. Each website has many,
but not all, of the tools required for a high quality com-
munity analysis. Additionally, they all depend on web ser-
vices, which inherently limit autonomy and sometimes
limit the speed and the amount of data that can be pro-
cessed (Table 1). Furthermore, these websites currently
do not return data in advanced formats to be used in pro-
grams like Unifrac [22], Cytoscape [46] or heat map visu-
alization. They also do not report ecological calculations
like diversity metrics, rarefaction analysis or rank-abun-
dance curves.

Recently a new pipeline, email-based tool for short bar-
coded 454 pyrosequencing datasets became available
within RDP (unpublished, http://pyro.cme.msu.edu/).
The idea and concept are also similar to WATERS, but
the input data is limited to 454 reads (100-250 bp) rather
than full-length reads as WATERS is designed for. It is
included in the table for comparison purposes, but is not
designed for the same type of data. Table 1 compares
WATERS to the available 16 S rRNA gene analysis web
services as well as stand-alone programs that serve simi-
lar functions.

In summary, WATERS provides the community with a
comprehensive and flexible 16 S rDNA analysis platform
in a single stand-alone software package. WATERS can be
installed on the user's local machine, but also scales to
very large datasets with its support for cluster deploy-
ment of several compute-intensive steps. The WATERS
workflow can also be customized and evolved, according
to the user's needs.

Future directions

As new sequencing methods continue to be developed,
with decreasing costs, WATERS can be easily adapted for
the data delivered by those "next generation" sequencing
technologies. Specifically, short bar-coded sequences of
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the variable regions from pyrosequencing require a great
deal of pre-screening and quality control. In order to
adapt WATERS to pyrosequencing reads, new actors that
perform these functions need to be implemented. Fur-
thermore, OTUHunter is currently the rate-limiting com-
putation within the workflow and would either need to be
optimized or replaced for datasets that exceeded roughly
50,000 sequences or more as pyrosequencing datasets
would surely do.

Fortunately, though, besides additional screening and
clustering, many of the downstream actors in WATERS
would continue to be useful, and, in fact, if widely
adapted, would allow for easier comparisons between
methods or between datasets made with two different
technologies. The beauty of the workflow system is mod-
ularity. WATERS grants an opportunity to expand, adapt,
and change without disrupting the functional parts that
already exist.

Conclusions

We present here a new, automated, workflow system to
analyze 16 S rDNA clone libraries. The system is flexible,
evolvable, and modular; workflow results can be
inspected and validated using the built-in data prove-
nance sub-system, facilitating the reproducibility of
results. WATERS should increase community-wide the
transparency of results and data management as well as
allow new, less-experienced users to perform analyses at
a very high technical level that might otherwise be too
overwhelming. WATERS increases efficiency and saves
time; ultimately allowing the user to concentrate their
efforts on more biologically-engaging questions about
microbial communities rather than on repetitive bioin-
formatics tasks. In short, microbial ecologists do not
need to be constrained by their programming abilities in
order to ask penetrating comparative microbial ecology
questions if they employ WATERS.

Availability and requirements

¢ Project name: WATERS

» Project home page: waters.genomecenter.ucda-

vis.edu; user manual and problem-solving wiki also

available here

» Operating system: Mac OS 10.5 and 10.6

¢ Other requirements: Java 5

» License: MIT open-source

WATERS can be downloaded from waters.genomecen-

ter.ucdavis.edu, which re-directs to a Google Code proj-
ect page. The download is large (~500 MB) due to the
dependencies of the STAP application take up around
100 megabytes, and the self-contained installation of Perl
and TCL add another 200 megabytes. The remainder is
the source code and resources that make up Kepler.
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On the site, a wiki contains several entries that explain
how to use WATERS at several levels of complexity. The
Issues section of the site allows users to report any bugs
encountered to the developer (SR). Currently, the stand-
alone version of WATERS (all programs bundled together
in one simple package) is available for Mac OS x (10.5
and 10.6). Windows and Linux users will need to pre-
install several programs before using WATERS and
should follow the instructions on the wiki.

List of abbreviations
WATERS: Workflow for Alignment, Taxonomy, and Ecol-
ogy of Ribosomal Sequences; rDNA: ribosomal DNA
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