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Abstract

Background: Phylogenetic relationships between genes are not only of theoretical interest: they enable us to learn
about human genes through the experimental work on their relatives in numerous model organisms from bacteria to
fruit flies and mice. Yet the most commonly used computational algorithms for reconstructing gene trees can be
inaccurate for numerous reasons, both algorithmic and biological. Additional information beyond gene sequence data
has been shown to improve the accuracy of reconstructions, though at great computational cost.

Results: We describe a simple, fast algorithm for inferring gene phylogenies, which makes use of information that was
not available prior to the genomic age: namely, a reliable species tree spanning much of the tree of life, and knowledge
of the complete complement of genes in a species’ genome. The algorithm, called GIGA, constructs trees
agglomeratively from a distance matrix representation of sequences, using simple rules to incorporate this genomic
age information. GIGA makes use of a novel conceptualization of gene trees as being composed of orthologous
subtrees (containing only speciation events), which are joined by other evolutionary events such as gene duplication
or horizontal gene transfer. An important innovation in GIGA is that, at every step in the agglomeration process, the tree
is interpreted/reinterpreted in terms of the evolutionary events that created it. Remarkably, GIGA performs well even
when using a very simple distance metric (pairwise sequence differences) and no distance averaging over clades
during the tree construction process.

Conclusions: GIGA is efficient, allowing phylogenetic reconstruction of very large gene families and determination of
orthologs on a large scale. It is exceptionally robust to adding more gene sequences, opening up the possibility of

creating stable identifiers for referring to not only extant genes, but also their common ancestors. We compared trees
produced by GIGA to those in the TreeFam database, and they were very similar in general, with most differences likely
due to poor alignment quality. However, some remaining differences are algorithmic, and can be explained by the fact

that GIGA tends to put a larger emphasis on minimizing gene duplication and deletion events.

Background

Phylogenetic inference algorithms have a very long his-
tory [1]. The earliest algorithms used information about
macroscopic phenotypic "characters” to determine the
evolutionary relationships between species. So it was nat-
ural that as soon as genetic (DNA) or genetically encoded
(protein) sequences became available, these were treated
as "molecular characters" that could be used, essentially
in an identical manner to phenotypic characters, to eluci-
date species relationships. Out of this character evolution
paradigm were developed techniques such as the maxi-
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mum parsimony algorithm [2], and various approximate
methods that aim toward parsimony such as neighbor-
joining (NJ) [3], as well as methods that assume constant
"molecular clock"-like behavior such as the unweighted
pair group method with arithmetic mean (UPGMA) [4].
More recently, a different paradigm has developed specif-
ically for molecular sequences. This sequence evolution
paradigm is exemplified by maximum likelihood (ML) [5]
and Bayesian [6] methods, which use an explicit model of
how molecular sequences change over time. Different
possible evolutionary histories ("alternative hypotheses")
are distinguished by their relative likelihood under a par-
ticular model of sequence evolution. This paradigm has
also led to the use of "corrected" distances calculated
using a sequence evolution model, as an input into dis-
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tance-based methods such as NJ and UPGMA. Many of
the important recent developments in phylogenetic infer-
ence have involved constructing ever more realistic mod-
els of sequence evolution. The increased accuracy has a
price, though, both in the computational power required
and in the complexity of downstream analysis, such as
interpreting the resulting inferences and comparing alter-
native hypotheses from different models or parameter
sets.

In the genomic age, knowledge of a "representative
genome" for many different species provides the opportu-
nity to consider yet another paradigm, which we dub the
genome evolution paradigm. Recently, several approaches
have been developed that make use of genomic informa-
tion in the construction of gene trees. One common
method is species tree reconciliation [7,8], which takes a
gene tree (typically estimated using NJ, a character evolu-
tion paradigm method) and then prunes and rearranges
branches (typically those with weaker statistical support)
to reduce the number of implied gene duplications and
losses given a known species tree. The soft parsimony
algorithm [9] extends tree reconciliation to minimize
duplications and losses given an uncertain species tree
(containing "soft" polytomies or multifurcating nodes).
The SPIDIR algorithm [10] extends the sequence evolu-
tion paradigm by learning lineage-specific rate parame-
ters for phylogenetic reconstruction over a large number
of orthologous gene trees simultaneously. The SYNERGY
algorithm [11] constructs a gene tree by using a known
species tree to specify the sequence of iterative steps--
bottom-up from leaves to root--of building and rooting
NJ trees. In addition to sequence dissimilarity, the dis-
tance used in the NJ step includes an empirical term to
capture synteny, or shared genomic context, which pro-
vides long-range (extending over multiple genes)
genomic sequence evidence of common descent. Synteny
has been used in a number of gene tree inference algo-
rithms [12], and results from the inheritance of contigu-
ous sequence regions that include more than one
product-encoding gene. Existing algorithms within the
genome evolution paradigm have shown that including
this additional information generally improves gene tree
inference, but they are algorithmically quite complex and
computationally expensive. We set out to ask the ques-
tion: given the constraints that can be derived from
knowledge of whole genomes, how simple can we make a
gene tree inference algorithm? What is a minimal set of
principles underlying the evolution of gene families
needed to reliably reconstruct gene histories?

Note that the inference of gene trees in the genome
evolution paradigm builds upon either the character or
sequence evolution paradigms--as described above,
sequence data retain a primary role in all such algorithms
proposed to date. The difference is that, in the genome
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evolution paradigm, we can make use of information
from whole genomes in addition to that which can be
derived from information inherent in each gene itself. In
GIGA, we make use of two additional sources of informa-
tion, which are applicable for even very distant relation-
ships (unlike synteny, which is not observed, for example,
between the most distant animal lineages). First, in the
genomic era, we have more accurate knowledge of the
"true" species tree (insofar as the tree model holds, see
discussion below). Whole genome sequences have pro-
vided important information for resolving many species
relationships that were difficult to determine from physi-
cal characters, or from sequences of individual genes.
Second, the genome sequence provides nearly complete
knowledge of the genes in the genome (for protein-cod-
ing genes at least, given the current state of gene predic-
tion). This is critically important for distinguishing
between alternative hypotheses for gene trees, and for
locating gene duplication events relative to speciation
events. However, it is also important to acknowledge the
limitations of the genome evolution paradigm for gene
trees. Despite much rhetoric to the contrary, these are
still early days in the genomic age. Gene predictions are
not of uniformly high quality [13,14], and any inference
algorithm must take steps to minimize errors arising
from low-quality predictions.

In summary, our approach is to infer phylogenetic trees
of gene families using 1) a "known" species tree, 2) knowl-
edge of all recognizable members of a given family in
each genome, and 3) identification of potentially prob-
lematic gene predictions, together with 4) some knowl-
edge derived from the molecular sequences. Our
hypothesis was that the genomic constraints and detec-
tion of potentially problematic sequences might allow the
use of an extremely rudimentary representation of the
sequences themselves. If so, we could develop a simple
algorithm that would be straightforward to interpret and
to improve in the future. We call our algorithm GIGA
(Gene tree Inference in the Genomic Age), and it differs
from existing genome evolution paradigm methods in
that it does not, at any point, construct a tree using exist-
ing character or sequence evolution methods such as NJ
or ML. Like the very simple, efficient UPGMA method, it
builds up a gene tree iteratively using a pairwise sequence
distance matrix. However, in stark contrast to UPGMA,
the final tree topology from GIGA does not simply reflect
the order in which sequence pairs are joined during the
algorithm. Rather, the algorithm uses simple rules based
on knowledge of evolutionary processes, for inferring the
tree topology from the order of pairwise operations. In
the following section, we describe these rules and the the-
oretical and empirical considerations underlying them, in
the context of a novel conception of gene trees as being
composed of orthologous subtrees (OS's) joined together
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by founding copying events (FCEs) such as gene duplica-
tion and horizontal transfer. We then describe the GIGA
algorithm in detail. Finally, we assess the algorithm's per-
formance by comparing to a comprehensive set of more
than 14,000 phylogenetic trees from the TreeFam data-
base.

Results and Discussion
Rationale behind the GIGA algorithm
In the spirit of making our initial algorithm as simple as
possible, we designed a "greedy" algorithm that con-
structs a tree guided by the sequence distance matrix but
additionally applying rules that aim toward a parsimony-
like criterion minimizing the number of gene duplication
and deletion events [15]. The algorithm iteratively joins
together subtrees of sequences, beginning with the two
sequences that are closest according to the distance
matrix. The topology of the joined subtree after each iter-
ation is not simply an agglomeration of the constituent
subtrees; rather, rules are used to "rearrange” the joined
subtree at each iteration, in accordance with additional
(genomic) knowledge. In essence, at each stage of the
agglomeration process, GIGA interprets the tree in terms
of the evolutionary events (speciation and gene duplica-
tion) that most likely generated that tree.

We found that, somewhat surprisingly, we needed only
a very rudimentary description of sequence distances to
build accurate tree topologies. Our initial implementa-
tion uses simply the relative pairwise sequence difference:
(number of different amino acids at homologous sites)/
(total number of homologous sites). Furthermore, unlike
other distance-matrix-based methods, our algorithm
does not update distances after each step, but uses the
"raw" sequence distances throughout (in effect, the dis-
tance between two groups is the minimum distance over
all inter-group sequence pairs). These additional simplifi-
cations are possible because the rules described below
strongly constrain the inferred evolutionary history; the
sequence distances are required only to represent very
approximately any actual sequence divergence from a
common ancestor.

Orthologous subtrees and gene trees

We first describe a novel conception of gene trees, which
will simplify the explanation of our rules for determining
the tree topology from the pairwise sequence distance-
determined order of operations. In this conception, a
gene tree is composed of "orthologous subtrees", i.e., con-
taining sequences related by speciation events. Each OS
contains at most one gene from each organism, and every
sequence in the subtree is orthologous to the others. Dis-
tinct orthologous subtrees are joined together to produce
a gene tree, via events that involve the copying (or trans-
fer) of genetic material to create a new locus within an
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ancestral genome. When the copying is from the same
genome (e.g., tandem gene duplication or whole genome
duplication), the joining event is a gene duplication event;
when the copying is from another genome, the joining
event is a horizontal transfer event. In our representation,
when a copying event occurs, one copy of the gene
"remains" in the same OS as its ancestors, while the other
copy "founds" a second OS. Each OS, then, has a "found-
ing copying event", though at the root of the tree this
event is unresolved. Thus, each OS is defined by 1) a rela-
tionship to the OS that contains the other duplicated
copy ("sibling"), and 2) a date of the FCE, relative to spe-
ciation events in the sibling OS's.

If there has been at least one copying event, there is
more than one way to decompose a phylogenetic tree into
OS's, depending on which copy is chosen to remain in its
ancestral subtree, and which is chosen to found a new
subtree. Each copying event can be decomposed in # pos-
sible ways, where # is the number of descendants of the
copying event, so n = 2 for a bifurcating event. Thus, for a
bifurcating tree with N copying events, there are N2 possi-
ble decompositions into OS's. Figure 1 gives an example
of a tree with one duplication event (orange circle) and
the two possible ways in which it can be decomposed into
OS's. Note that this example is designed merely to illus-
trate our conception that gene trees can be described in
terms of OS's and the relationships between sibling OS's.
The fact that the decomposition is not unique does not
bear on our algorithm, as it counstructs gene trees from
component OS’s, rather than decomposing a gene tree
into constituent OS's.

Rules for phylogenetic inference

With this representation we can describe rules for phylo-
genetic inference that can be applied during the distance-
based iterative process. The first three rules describe how
the species tree and genome content can be used to
determine the topology of each OS (Rule 1), distinguish
likely speciation from duplication events (Rule 2), and
date FCEs relative to speciation events (Rule 3). The
fourth rule enables initial OS's and FCEs to be revised at
later steps in the process. The fifth rule attempts to mini-
mize errors in tree reconstruction due to sequence frag-
ments (usually due to partial gene predictions).

These rules treat only speciation and gene duplication
events, i.e., vertical inheritance of genetic material (from
parent to child). Less common, but still important partic-
ularly in prokaryotes, is "horizontal" gene transfer, in
which DNA from a source other than a parent is inte-
grated into the genome. In this case, the DNA being cop-
ied originates in another genome. However, it should be
noted that vertical inheritance is generally treated as the
null hypothesis even for bacterial genes, and horizontal
inheritance is usually established by evidence that rules
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Figure 1 Decomposing a tree with a duplication event into orthologous subtrees (0OS's). The example shows part of the methylene tetrahydro-
folate reductase (MTHFR in human) gene family. This tree can be decomposed into OS's in two different ways: 1) the fungal MET13/met9 group re-
mains in the same OS as its ancestors, while the MET12/met11 group founds a new OS, and 2) the MET12/met11 group remains in the same OS as its
ancestors, while the MET13/met9 group founds a new OS. In both cases, the two OS's are sibling groups, because they contain genes descending
from the duplication event, and in both cases the FCE of the more recent OS (the one with only genes from fungi) can be dated relative to speciation
events, between the opisthokont common ancestor and the fungal common ancestor in this example. Species are abbreviated with the 5-letter Un-
iProt code: CAEEL (C. elegans, nematode worm), CHICK (G. gallus, chicken), DANRE (D. rerio, zebrafish), DICDI (D. discoideum, cellular slime mold), HU-
MAN (H. sapiens, human), MOUSE (M. musculus, mouse), SCHPO (S. pombe, fission yeast), YEAST (S. cerevisiae, Baker's yeast).

out vertical inheritance. We therefore focus in this paper
on vertical inheritance, noting that there are already a
number of methods for locating horizontal transfer
events, such as incongruence with a vertical-only inheri-
tance model [16] including comparison with ancestral
sequence reconstructions [17], and extension of maxi-
mum parsimony to phylogenetic network representations
[18].

Rule 1: if a subtree contains only speciation events, the
topology is determined by the known species tree

When an ancestral species undergoes a speciation event,
it is first separated into two reproductively isolated popu-
lations. Within the tree model of gene evolution, this
event produces two copies of an ancestral gene, one in
each species' genome, and these two copies then proceed

to diverge from each other by well-known processes of
population genetics, including mutation, random drift,
and natural selection. If only speciation events have
occurred, and multiple speciation events do not occur
within a relatively short period of time, the gene tree is
expected to be congruent with the species tree. Indeed, a
major application of gene tree inference has been to infer
species relationships. For genes that approximately obey
"molecular clock-like" behavior such as ribosomal RNA
genes [19] this remains a powerful tool. However, on a
genome-wide scale, the inference of species trees based
on single gene trees is notorious for giving different
answers for different genes. While there are evolutionary
scenarios, such as incomplete lineage sorting [20-22], by
which a gene tree will be genuinely incongruent with the
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known species tree, recent studies have concluded that
observed incongruence is much more often due to prob-
lems with sequence alignment algorithms, tree inference
algorithms, and paucity of data when considering only
relatively short regions of contiguous sequence, rather
than to actual historical causes [10,23].

Particularly relevant to our approach, Rasmussen and
Kellis [10] demonstrated that accounting for lineage-spe-
cific rate differences in a Bayesian evolutionary model
dramatically increased the number of orthologous gene
families among Drosophila species that matched the gene
tree. Two of their important conclusions are that a single
gene does not typically contain enough information to
adequately resolve gene family relationships, and that lin-
eage-specific differences in evolutionary rate (due to pop-
ulation dynamics) are a primary cause of incongruence
between the species tree and gene tree. This is not to say
that incomplete lineage sorting does not occur, or that a
tree is always a good model for gene evolution. Incom-
plete lineage sorting may lead to cases where a gene tree
genuinely disagrees with the known species tree, or
agrees over some regions of a gene and not others (e.g.,
due to recombination); the reason for this disagreement
is a breakdown of the gene tree model itself, which treats
speciation and duplication as point events occurring to
an ancestral genome, rather than as actual population-
based events. Rather, these results suggest that for large-
scale phylogenetic reconstruction, rate differences and
inadequate information within a single gene may pose
larger problems than incomplete lineage sorting. There-
fore, in GIGA, we use the known species tree during the
tree inference process to define a species tree constraint
on the tree topology. Within the gene tree model, the
problem of short speciation times can be addressed by
simply allowing multifurcations in the underlying species
tree. Finally, we note that even incorrect trees that
assume the species tree topology is correct are useful as a
null hypothesis for establishing that a more complicated
evolutionary history has occurred.

Rule 2: a duplication event should be inferred only when there
is genomic proof that a duplication occurred, viz. when,
during the iterative process, a given subtree contains more
than one gene from the same species (within-species
paralogs)

As discussed under Rule 1, we do not expect phylogenetic
inference to be accurate when using information from
typical gene-length sequences, and we cannot then
expect the agglomerative process, in general, to construct
an orthologous tree in the order of the known species
relationships. Therefore, when two OS's are joined at a
given stage of the algorithm, if together they contain only
a single gene from each genome, we merge the OS's into a
single OS (Figure 2). Our simple rule assumes that the
genes are in fact orthologous, but the sequence data was
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not adequate for recognizing this relationship. However,
if the OS's together contain more than one sequence from
any genome, our algorithm retains the two separate OS's,
which are then joined by a gene duplication event (Figure
2B).

This procedure is similar to the "witness of non-orthol-
ogy" criterion used by Dessimoz et al. [24] to identify par-
alogous relationships in the Clusters of Orthologous
Groups (COGs) database [25]: within-species paralogs (z,
z') can establish paralogy between pairs of genes (x, y) in
other species if the distance d(x, y)>d(x, z) and d(x,
y)>d(x, z'). This criterion is justified by the improbability
of overall convergent evolution in molecular sequences.
Most molecular sequence evolution is selectively neutral
[26], and therefore similarity between molecular
sequences is due more to common ancestry than to com-
mon selective selective pressures driving sequence con-
vergence. If x is more similar to z, and y is more similar to
z', than x is to vy, this is almost certainly due to the fact
that x and z have a more recent common ancestor than x
and y; and y and z' have a more recent common ancestor
than x and y. In other words, the two paralogous genes in
genome Z, together with pairwise sequence distances,
allow us to recognize that x and y are also paralogous.
Thus, this is a genome age criterion, and can be used only
if we know which genome each of the sequences came
from, and if we can assume that our list of genes from
each genome is nonredundant. Of course, relatively rare
events, such as gene conversion or complementary dele-
tions of paralogs in different genomes, can invalidate this
assumption, and further rules could be developed to
identify such cases.

Rule 3: if two subtrees of orthologous genes are related by a
founding copy event, tentatively date the FCE using the gene
content of the two groups and the known species tree

Given a known species tree, if there have been gene dupli-
cation events, our task is to determine where each duplica-
tion event occurred relative to the speciation events, i.e.,
which ancestral gene was copied, and when it was copied.
In a character or sequence evolution paradigm, we must
infer the location of duplications from sequence diver-
gence. However, if evolutionary rates differ significantly
for different lineages, parsimony and related approaches
suffer from artifacts such as "long branch attraction,"
while likelihood methods typically make assumptions
about the evolutionary model such as a constant relative
substitution rate at each site. Yet evolutionary rate change
is one of the prominent features of gene families, particu-
larly after gene duplication [27]. After a duplication
event, at least one copy is free to diverge under relaxed
selective constraints and/or positive selection for a new
or modified function; in a gene tree model this commonly
manifests as branch- or lineage-specific accelerated evo-
lutionary rate that differs among sites. We propose below
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Figure 2 GIGA rules for speciation events. Note that GIGA Rules 1 and 2 result in a different tree topology than standard agglomerative methods
such as UPGMA. Because GIGA uses knowledge of the species tree, it postulates that the yeast MET13/met9 group is actually orthologous to the MTH-
FR genes from other organisms, but was not merged prior to the sequence from D. discoidieun (DICDI) due to accelerated evolutionary rate in the
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that gene duplication events can be located using, in
addition to sequence data, gene presence or absence over
a particular set of genomes (genome content, used to
construct "phylogenetic profiles” [28]) and knowledge of
the species tree.

At the point at which OS's are inferred to be related by
gene duplication (Rule 2), we have inferred the two
descendant sibling lineages of the duplication. This speci-
fies which sequences arose from a duplication. Because of
two constraints--namely, the species tree, and the
improbability of convergent sequence evolution--we can
also make an initial hypothesis as to when the gene dupli-
cation may have occurred. Because, as described above,
overall convergent sequence evolution is extremely rare,
at the point in the iterative process where two OS's
(inferred from shorter sequence distances) are joined by a
duplication event, this duplication event very likely
occurred prior to the most recent MRCA speciation
event in either OS. The most recent common ancestor
(MRCA) speciation event can be determined for each OS,
from the species tree and the list of species with a gene in
the OS. Thus, the OS must be older than its MRCA spe-

ciation event. We can therefore tentatively assign an FCE
to the OS with the more recent MRCA speciation event
(Figure 3, top). If both OS's have the same MRCA specia-
tion event (as would be expected, assuming approxi-
mately molecular clock-like behavior and no gene loss),
both OS's can be tentatively assigned an FCE. Note that
this method of locating the FCE is reliable only if we
know the full complement of genes in that family, for all
the genomes under consideration; otherwise, the inferred
founding ancestor for the subtree could depend on miss-
ing data rather than established absence of a gene.

Note also that gene loss may have occurred within an
OS, which can cause the MRCA speciation event of all
the extant sequences in the OS to be an underestimate of
the age of the founding event (Figure 3, middle and bot-
tom). However, we note that these alternative evolution-
ary histories become increasingly less likely as we go
further back in time, as they invoke an increasing number
of independent gene loss events. Thus, in the absence of
additional information, the most parsimonious explana-
tion of the data with respect to implied gene deletion
events [15] is to connect each pair of related OS's accord-
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Figure 3 GIGA rules for duplication events. GIGA infers that a duplication must have occurred using Rule 2, as the two OS's being joined contain
two genes from both Baker's yeast (YEAST) and fission yeast (SCHPO). It then places the duplication just prior to the most recent MRCA speciation
event (fungi, in this case), which is the most parsimonious solution with respect to gene deletion events (Rule 3). Note that many other solutions are
possible (two examples are shown below the most parsimonious case), but they require an increasing number of independent gene deletion events.
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ing to the most recent FCE. Of course, additional infor-
mation (such as synteny) could be used to revise this
estimate, but in our simple algorithm we report only the
most parsimonious reconstruction. This criterion implic-
itly considers the genomic presence/absence of genes to
be a more reliable data source than the molecular
sequence evolution rate, as estimated from character or
sequence evolution methods. Finally, we note that multi-
ple OS's may have the same MRCA speciation event and
relate to the same sibling OS. In this case, multiple dupli-
cations have occurred between the same speciation
events, and in this first implementation of GIGA we allow
these to remain unresolved multifurcations.

Rule 4: if the founding copy event of an orthologous subtree
has already been dated, allow this date to be revised based on
additional evidence

Gene loss near the FCE is not the only reason that the ini-
tial MRCA speciation event may be an underestimate of
the actual age of the FCE. Accelerated evolutionary rates

near the FCE of an OS will also result in an underesti-
mate. However, unlike gene loss (where we would need
additional information such as synteny to recognize these
events), we should be able to recognize most cases of
accelerated rates in later iterations of the algorithm, and
revise the FCE accordingly. This revision is necessary
because we initially date an FCE when paralogous
sequences are joined (Rules 2 and 3, Figure 3). If a lineage
near the true FCE is accelerated in evolutionary rate,
sequences in this lineage may have diverged more from
their orthologs in other species than those orthologs have
diverged from genuine paralogs. As a result, the sequence
distances between paralogs will be smaller than those
between some ortholog pairs, and the orthologs will be
joined at a later iteration than the paralogs.

We can recognize possible cases of accelerated rate
near the FCE in the following way. Even if there has been
an accelerated evolutionary rate, there is likely to be some
signal of common ancestry that can identify the diverged
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sequences as members of the correct orthologous sub-
tree. We therefore ask whether these diverged sequences
are significantly closer to this potentially orthologous
subtree than to any other subtree. Consider a stage in the
algorithm where the closest remaining pairwise distance
asserts that OS1 (with a previously established FCE)
should be merged with OS2 (containing potentially
diverged orthologs) into a new OS. If OS2 contains genu-
ine orthologs, these sequences will most likely retain
sequence similarity evidence of this orthology. Recall that
the FCE of OS1 was established due to a closer distance
(earlier iteration) to a sibling OS containing at least one
paralog of a sequence in OS1. Thus, if OS2 is significantly
more similar to OS1 than to the sibling of OS1 (the clos-
est paralogous group), this would be good evidence that it
is actually orthologous to sequences in OS1. Because we
calculate distance as the number of differences per site,
we can simply use the Jukes-Cantor formula to estimate
the standard deviation in this distance [29]. Depending
on the alternative hypothesis to the proposed merge of
OS1 and OS2, we take either one or three standard devia-
tions to be significant, and if this criterion is met, the
merge proceeds and the FCE is revised accordingly. If the
alternative hypothesis is that OS2 is instead orthologous
to the sibling of OS1 (which, like a merge with OS1 itself,
also implies no gene duplications), we require the dis-
tance to be closer by at least three standard deviations. If
the alternative hypothesis would require a gene duplica-
tion, either of OS1 or its sibling (i.e., OS2 is paralogous to
the sibling of OS1), then we require less stringent evi-
dence, namely, that the distance be at least one standard
deviation closer.

Rule 5: if a sequence appears to be a fragment, leave it aside
until the tree topology of all non-fragments has been
determined

Obviously, it is of value to determine the evolutionary
histories of as many genes as possible. However, it is well
known that a nontrivial fraction of predicted genes in
current genomes are partial predictions, which can cause
problems for phylogenetic inference. Sequence fragments
cannot be treated the same way as full-length sequences--
e.g., for calculating pairwise distances or within a
sequence evolution model--because different regions of a
gene may be under dramatically different selective pres-
sures, and will therefore evolve at very different rates;
consequently distances estimated from part of the
sequence may not accurately reflect those of the whole
gene. One way to solve this problem is by constructing a
multiple sequence alignment, and then restricting analy-
sis to only those sites that are common to all sequences.
However, this reduces the amount of data available for
evolutionary inference, which as discussed above is
already inadequate even if the entire gene sequence can
be used.
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It is not trivial, a priori, to distinguish a sequence frag-
ment from a genuine evolutionary event in which a
region of sequence has been gained or lost. For an evolu-
tionary event, of course, we expect congruence with the
phylogenetic tree: once a region of sequence is lost or
gained in a particular ancestral gene, this gain or loss will
be inherited by its descendants. Because, at a given stage
in our tree reconstruction process, we have a hypothesis
for the evolutionary history, we can make use of this
expected congruence to identify potential sequence frag-
ments on-the-fly. In our simple algorithm, each OS is a
hypothesis about a group of sequences that descends
from a common ancestor by speciation events, and we
can expect to a good approximation that these sequences
should have inherited most of the sequence sites present
in the ancestor.

Thus, we implemented the following simple on-the-fly
test for potential fragments. At a particular step in the
iterative process, we are considering a possible merge
between two OS's to form a new OS, based on a distance
between two sequences. We want to avoid a merge if one
(or both) of the sequences driving it is a sequence frag-
ment, since in that case the merge would be based on
unreliable data. We first approximate the sites likely to be
present in the ancestral sequence as those columns of the
multiple sequence alignment for which more than 50% of
the sequences in the merged OS align an amino acid. We
then test each of the two sequences driving the merge to
identify each as a potential fragment. First, if the
sequence is already part of an OS with at least three other
sequences, it is not considered a fragment, since it passed
our fragment test during previous steps, demonstrating
that there are at least three other (presumably indepen-
dently predicted, to some degree) orthologous sequences
with similar structure. (The choice of three other inde-
pendent observations is somewhat arbitrary, and of
course depends on the number of species under consider-
ation in a tree; in our tests below we considered as many
as 50 species total, and varying this empirical parameter
somewhat did not, in general, have an effect on the result-
ing trees.) If there are less than three other sequences in
its OS, we gather all sequences from the potentially new,
merged OS. If a sequence does not align more than 50%
of the expected sites, it is identified as a potential frag-
ment; the merge is not made; and the sequence is
removed from the list of sequences to be used during the
remainder of the iterative process. This prevents the frag-
ment from determining the tree topology at any stage of
the algorithm. However, we found that we could often
correctly place sequence fragments during a second itera-
tive process after a tree has been initially reconstructed
for all non-fragment sequences. In this second process,
each previously removed fragment is joined into the
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existing tree according to its shortest distance to a non-
fragment sequence.

The GIGA algorithm
The steps of the algorithm are as follows:
1. Preprocessing and setup

1.1 Decide on the genomes to be included; construct

the "known" species tree for these genomes

1.2 For each protein family:
1.2.1 Assemble a "complete” set of genes for the
given family.
1.2.2 Create a multiple sequence alignment of the
genes in the family.
1.2.3 Select homologous sites in the alignment for
sequence comparisons. We "trim" the alignment
by removing a site if more than 15% of the
weighted sequences are gapped at that site.
Sequences are weighted using the procedure of
Karplus et al. [30].
1.2.4 Represent sequence divergence at homolo-
gous sites. In the spirit of first trying the simplest
model, we calculate the distance between each
pair of sequences as simply the fraction of
sequence differences at selected homologous
sites.

2. For each protein family, infer the gene tree topology
by iteratively defining orthologous groups, and how those
groups are related via gene duplication events. Initializa-
tion: each sequence begins in its own OS.

2.1: Consider the closest pair of sequences that has
not been treated in previous steps, and do one of the
following operations with the two OS's containing
them (Figure 4):
2.1.1 Join the two OS's by a duplication event, and
locate the event relative to the speciation events in
each OS (Rule 3). If the two OS's, taken together,
have two genes from a single organism, then they
will be joined by a duplication event (Rule 2) if
either of the following conditions also holds:
2.1.1.1: The founding duplication event has
not been previously located for either OS.
2.1.1.2: The founding duplication event has
been previously located for only OS1 and not
0S2, and joining the two OS's will not conflict
with this location. In other words, the phylo-
genetic span of OS2 must be less than or equal
to that of OS1. This constraint means that
joining the two OS's would not require us to
revise an earlier hypothesis about when a
duplication event occurred.
The founding duplication event is initially esti-
mated so as to minimize the number of implied
deletions, i.e. the FDE of the OS with the more
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recent MRCA is set to be immediately prior to
that MRCA (Rule 3, Figure 3).
2.1.2: Merge the two separate OS's into a single
OS (Rule 1).
2.1.2.1 Allow the merge only if the sequences
are not likely fragments (Rule 5). If neither
sequence is a fragment then the two OS's are
merged if one of the following conditions
holds:
2.1.2.2 The founding duplication event has not
been located for either OS.
2.1.2.3 The founding duplication event has
been located for only OS1 and not OS2, and
merging the two OS's will not conflict with
this location. In other words, the MRCA spe-
ciation event of the merged OS is the same as
for OS1. This constraint means that merging
the two OS's would not require us to revise an
earlier hypothesis about when a gene duplica-
tion event occurred.
2.1.2.4 The founding duplication event has
been located for only OS1 and not OS2, and
merging the two OS's will conflict with this
location, but there is adequate sequence evi-
dence to support the revised location of the
duplication event (Rule 4). We first calculate
the standard deviation of the distance between
OS2 and OS1 (distl and std_dev1) and that of
the distance between OS2 and the sibling of
OS1 (dist2 and std_dev2). If OS2 and the sib-
ling of OS1 have no species overlap and might
be orthologous, we require that
dist1-dist2>1.5(std_devl+std_dev2)
Otherwise, we require a less stringent criterion that
dist1-dist2>0.5(std_dev1+std_dev2)
2.2 Attempt to add fragments back into the tree.
Allow each fragment one attempted merge or join
event, based on the shortest distance between the
fragment and any non-fragment.
3. Infer tree branch lengths
We recommend taking the tree topology generated by
GIGA and estimating branch lengths and ancestral
sequences using an ML-based procedure, e.g. PAML [31].
However, in the spirit of the simple algorithm, we com-
pute by default an approximate reconstruction of each
ancestral sequence (a local, parsimony-like algorithm that
reconstructs each node using only its descendants and
closest outgroup), and then compute branch lengths as
the sequence difference between adjacent nodes in the
tree, including the Jukes-Cantor correction [29].
3.1 Infer ancestral sequences at each node. We do this
in a simple manner, by recursion beginning at the leaf
nodes (only extant sequences, the leaves, are known).
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For each non-leaf node, we consider the descendant
nodes and its closest outgroup node. If the sequence
of the closest outgroup node has not yet been deter-
mined, use its descendants to define the outgroup. If
over half of the descendant nodes align the same
amino acid at a given site, it is inferred to be the most
likely ancestral amino acid. If the descendants dis-
agree, and the outgroup agrees with one of them, the
outgroup amino acid is inferred to be the most likely
ancestral amino acid. Otherwise, the ancestral amino
acid is considered to be unknown ('X').
3.2 Calculate branch lengths from node
sequences. We use a simple measure, the fraction
of sequence differences between a parent node
and a child node. The Jukes-Cantor correction is

applied to this value. However, in one respect we
want to be very careful, and calculate distances
only over a selected subset of sites. Following a
duplication event, it is often the case that one of
the duplicates continues to conserve the ancestral
function more closely, while the other diverges
more rapidly. We can identify the "least diverged"
ortholog by tracing the shorter branch. Because of
rate heterogeneity among sites, the relative
branch lengths are reliable only if they are calcu-
lated over the same sites. Therefore in our algo-
rithm, for branches following a duplication event,
lengths are calculated using only those sites that
are aligned in all the descendant nodes.
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Implementation
The GIGA algorithm has been implemented in the C pro-
gramming language, and the code is available at ftp://

ftp.pantherdb.org/.

Testing the GIGA algorithm

Three properties of a phylogenetic inference algorithm
are important to assess: speed, accuracy and robustness.
Speed (compute time required to build each tree) should
be assessed over a range of conditions to also determine
how well a method scales with increasing number of
sequences or alignment length. Robustness describes the
sensitivity of the tree topology to perturbations such as
adding/removing sequences, "resampled"” character states
(for calculating "bootstrap” values), or different parame-
ter settings. Accuracy describes how well the inferred
tree matches the actual history of evolutionary events. Of
course, for actual gene families, we cannot go back in
time and follow the "true" sequence of events, to know it
for certain. In practice, accuracy can potentially be
assessed in two ways: comparison against sequence data
generated by "forward" evolutionary simulation for a
known tree topology, or comparison with "gold standard"
phylogenetic reconstructions. Simulated data sets are
widely used, but their relevance for assessing gene tree
inference algorithms is not established; the ability of an
algorithm to correctly infer the underlying tree may be
more dependent on how well it matches the particular
simulation algorithm than how well it will work on actual
gene data. On the other hand, there are as yet no "gold-
standard" sets of diverse gene phylogeny reconstructions
based on actual data. Several groups have used congru-
ence with the "known" species tree as a gold-standard
measure [10,32], but because GIGA uses such congru-
ence as a constraint, this is not an appropriate test
(though it does support the use of species tree congru-
ence as a constraint).

We suggest that the TreeFam resource [33] can be used
to provide benchmarks for speed, accuracy and at least
one type of robustness, namely the effect of adding more
sequences (taxa) of potentially lower quality. TreeFam
contains a large, diverse set of protein families. Moreover,
most families display substantial sequence divergence,
indicating that they do not represent trivial cases for evo-
lutionary reconstruction. Figure 5 shows the distribution
of average and minimum pairwise sequence identity
across TreeFam protein alignments (considering only the
positions that are aligned for most sequences, as
described in the GIGA algorithm description 1.2.3
above). Average pairwise identity is approximately nor-
mal, with a mean and standard deviation of 52%+-15%,
while the minimum pairwise identity mode is less than
20%, and nearly all families (>90%) have a minimum pair-
wise identity less than 50%. Figure 5B shows the distribu-
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tions of the number of sequences in the TreeFam families
(>4 sequences), and the lengths of the protein alignments.

Accuracy cannot be assessed directly (because the true
evolutionary history is unknown), but consistency with
TreeFam trees can be easily assessed. The quality of Tree-
Fam trees on average has been established using a num-
ber of different metrics [34], so we can reasonably expect
that an accurate method should produce trees similar to
TreeFam trees in general. Because there is only one possi-
ble topology for a tree of two sequences, and only three
possible topologies for a bifurcating tree of three
sequences, we confined our analyses to 14,331 TreeFam
families (release 6.1) comprising four or more sequences.
Finally, robustness of an algorithm to perturbations such
as adding sequences, and variations in sequence quality,
can be assessed by comparing trees constructed from the
two different TreeFam alignments, the "clean” and "full"
alignments, which differ only in that the full alignments
contain additional sequences from partially sequenced
genomes. A perfectly robust method will infer identical
trees for the sequences in the "clean" alignment, regard-
less of whether or not the additional "full” sequences are
also included during the tree building process.

Algorithm speed

In order to assess algorithm speed and scaling, we
selected two sets of families: one with families of the
same alignment length (to test the algorithms' depen-
dence on the number of sequences), and one with fami-
lies of the same number of sequences (to test the
algorithms' dependence on the alignment length). In the
current implementation, GIGA scales similarly to other,
commonly used methods in terms of dependence on the
number of sequences and alignment length (Figure 6),
but is over 100 times as fast as neighbor joining (as imple-
mented in PhyML), and over 1000 times as fast as the ML
methods PhyML and TreeBeST.

Accuracy of GIGA trees: consistency with TreeBeST

As a proxy for accuracy, we compared GIGA trees
directly to TreeFam "clean” trees (the trees considered to
be of highest quality in TreeFam). Figure 7A shows the
Robinson-Foulds (RF) [35] distances (the most com-
monly used measurement of tree similarity) between
TreeFam clean trees, and GIGA trees inferred using the
same alignment. Overall, the trees produced with the two
different algorithms are quite similar, with about 13% of
the trees being identical and 64% very similar (RF dis-
tance < 0.2).

To further characterize the magnitude of these RF dis-
tances, we constructed both NJ and ML trees from the
clean alignments using the PhyML program [36]. We
then compared the trees from all four methods. While
the RF distance distributions for all comparisons are
affected by both the number of sequences and the align-
ment length, GIGA and TreeBeST trees are the most sim-
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Figure 5 Characteristics of the TreeFam families used in this study (14,331 families with at least 4 sequences). (A) Distribution of average and
minimum pairwise identity of families, (B) Distributions of number of sequences and protein alignment length.

ilar to each other in almost all cases, except for a few of
the smaller trees (Figure 8). On average, GIGA and Tree-
BeST produce the most similar trees, along with NJ-ML
(average RF = 0.21). The overall NJ-ML similarity is
expected, since in PhyML the ML tree construction pro-
cess begins with the NJ tree, so the comparable GIGA-
TreeBeST similarity is striking.

For all comparisons, the RF distance correlates with the
number of sequences when alignment length is constant
(Figure 8A, R = 0.25 to 0.41 except GIGA-TreeBeST),
though the GIGA-TreeBeST distance depends much less
upon the family size (R = 0.16), presumably due to the
species tree guidance. Thus, despite a slight absolute
decrease in GIGA-TreeBeST similarity for larger families,
this decrease is small relative to all other comparisons.

Also for all comparisons, the RF score is negatively corre-
lated with alignment length when the number of
sequences is held fixed (Figure 8B, R = -0.25 to -0.37
except for NJ-ML), though this effect is much less pro-
nounced for the NJ-ML comparison (R = -0.14) presum-
ably because the NJ tree is used in the ML process.
Importantly, all of the different methods tend to converge
towards each other as the amount of substitution data
increases. This is consistent with the conclusion of Ras-
mussen and Kellis [10] that shorter genes often lack suffi-
cient  information for  accurate  evolutionary
reconstruction. Finally, because GIGA joins the closest
sequence pair at each step, it is useful to compare it to the
UPGMA method. On average, the UPGMA trees (esti-
mated by PHYLIP [37], using corrected distances from
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PROTDIST using the JTT model [38]) are much less sim-
ilar to TreeBeST trees (average RF = 0.30), and perhaps
surprisingly, are even less similar to GIGA trees (average
RF = 0.41) than to TreeBeST trees. Thus, on real protein
family alignments, the tree construction rules in GIGA
tend to predominate over the algorithmic ordering of
joining operations, and these rules dramatically improve
the match with TreeBeST trees.

Although the differences between GIGA and TreeBeST
trees were not very substantial (no larger than those
between PhyML and its NJ starting point, as discussed
above), we explored these differences further. Because

TreeFam trees use the species tree only as a "soft" con-
straint, we reasoned that some of the disagreement
between the two algorithms was simply due to local rear-
rangements of speciation events, as opposed to more
substantive differences in the location of gene duplication
events. We can quantify this disagreement by comparing
the sets of ortholog pairs that are inferred from the two
trees. Because two genes are inferred to be orthologous if
their most recent common ancestor in a gene tree is a
speciation event, a local rearrangement involving only
speciation events will have no effect on the inferred
ortholog pairs. Differences involving duplication events,
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Figure 8 Comparison of multiple different tree reconstruction methods. The RF distance of each pair of trees is plotted versus (A) the number
of sequences in the family and (B) the length of the alignment to show the dependence on these parameters. GIGA and TreeBeST (blue diamonds)
generally yield more similar trees than any other pair of methods, except for NJ-ML, which is of comparable similarity. The RF distance mean and stan-
dard deviation for each pair of methods is in the figure legend in parentheses. The same subsets of TreeFam families was used as for Figure 6.

on the other hand, will affect the inferred ortholog pairs. Figure 7B shows that for 53% of the TreeFam families,
We therefore calculated ortholog pairs for all the trees.  the inferred orthologs are in perfect agreement; in these
We defined the ortholog pair difference as cases the GIGA and TreeFam trees are either identical or

1-(number of pairs inferred in common from both display only minor rearrangements of speciation nodes

trees)/(total number of pairs inferred from either tree)  relative to each other. For the vast majority of trees (84%),
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the ortholog difference is less than 0.2, suggesting gener-
ally good agreement on the inference of gene duplication
events.

Because multiple sequence alignment quality is well
known to influence phylogenetic reconstruction, we rea-
soned that some of the remaining discrepancy between
TreeFam and GIGA trees might be due to poor alignment
quality. We ran PredictedSP [39] on all TreeFam align-
ments to generate an alignment score (1 indicating per-
fect quality, with smaller numbers indicating lower
quality). We found that families for which GIGA and
TreeFam differed more substantially (ortholog pair differ-
ence > 0.2) had a strong tendency to have poor align-
ments. Over half (54%) of families with substantially
different trees inferred by the two different algorithms
(ortholog pair difference > 0.2) had a PredictedSP score of
less than 0.85, while this was true of only 19% of the fami-
lies with similar trees (ortholog pair difference < 0.2).
This strongly suggests that poor alignment quality
accounts for a substantial fraction of the discrepancies
between TreeBeST and GIGA trees.

Poor alignment quality does not account for all the dis-
crepancies. Despite the overall good agreement between
predicted orthologs, there are systematic differences
between the two tree inference methods. Over the entire
set of more than 14,000 families we compared, 67% of all
ortholog pairs inferred by either algorithm are in exact
agreement. However, the disagreements are not ran-
domly distributed between the two algorithms. GIGA
infers a substantially larger number of ortholog pairs. Of
all ortholog pairs inferred by TreeBeST, 96% are also
inferred by GIGA, but of all ortholog pairs inferred by
GIGA, only 69% are also inferred by TreeBeST (Figure 9).
This difference can be largely explained by the fact that
the GIGA algorithm locates duplication events using a
genomic parsimony criterion, while TreeBeST also uses
an ML sequence evolution model. GIGA will tend to
locate duplication events as far as possible toward the
leaves of the species tree, to minimize the number of
implied deletion events. This, in turn, will enable a larger

2.5%
67%

30.5%

Figure 9 Overlap between orthologs computed from GIGA and
TreeBeST trees. GIGA infers 96% of orthologs inferred by TreeBeST,
but also finds many additional orthologs, due mainly to minimization
of implied gene duplication and deletion events.
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number of gene pairs to be traced to a common specia-
tion event ancestor, i.e., a larger number of inferred
orthologs. An example is shown in Figure 10.

Robustness of GIGA trees

As a baseline, we first assessed the robustness of Tree-
BeST trees, by comparing the TreeFam "clean" and "full"
trees. If the TreeBeST algorithm were perfectly robust to
the addition of sequences, the topology of the TreeFam
full tree would be identical (for the subset of sequences
also in the clean tree) to the clean tree. To identify devia-
tions from perfect robustness, we calculated the RF dis-
tance between the TreeBeST clean and full trees. Figure
11 (red bars) shows that TreeBeST is reasonably robust to
the additional sequences. In relatively few cases are the
TreeBeST trees for the clean and full alignments identical
(5.7%) but most are very similar (57% have a distance less
than 0.2; 88% have a distance less than 0.4). We note that
the TreeBeST algorithm itself is somewhat different for
full and clean alignments, as full trees are estimated using
only protein sequences, while clean trees can use nucle-
otide as well as protein sequences.

To test the robustness of GIGA, we then constructed
two separate GIGA trees for each TreeFam family, one
from the "clean" protein alignment, and one from the
"full" alignment. We then calculated the RF distance
between the two GIGA trees to measure how much the
additional "full" sequences changed the topology inferred
for the "clean" sequences. We found that GIGA is consid-
erably more robust than TreeBeST to the perturbation of
adding sequences (Figure 11, blue bars), with over 85% of
the trees being completely unchanged (RF distance of 0)
and 98% changing in RF distance by less than 0.2. The
robustness of GIGA is remarkable, and is due largely to
the strong constraints provided by the rules described
above.

Conclusions

We described a simple algorithm, GIGA, for inferring the
evolutionary events that have given rise to a particular
gene family. We then demonstrated that this simple algo-
rithm creates trees that are similar overall to those pro-
duced by the much more complex and computationally
intensive TreeBeST algorithm [33]. We consider this to
be evidence of the accuracy of GIGA, based a on pub-
lished analysis of TreeBeST trees [34], though of course
evolutionary reconstruction is an ongoing research activ-
ity. GIGA is over 1000 times faster than "fast” ML meth-
ods such as TreeBeST and PhyML, and over 100 times
faster than neighbor joining. The GIGA algorithm can be
simple precisely because it makes use of constraints on
the evolutionary history that have only recently become
available, with the advent of whole genome sequencing.
The overall philosophy of the algorithm is that because of
potentially dramatic departures from clocklike behavior
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Figure 10 Example of a tree with substantial disagreement in inferred duplication events, and corresponding orthologs, between Tree-
BeST (A) and GIGA (B), TreeFam family TF105095. The sequence alignment is of high quality according to PredictedSP, so this disagreement is due
to algorithm differences rather than a problematic alignment. The main differences are in the inference of gene duplication events (orange nodes) in
the CYP17A1 lineage (other than the recent duplications in the bovine lineage). (A) TreeBeST infers two duplication events (dup 1 and dup 2), both
prior to the ray-finned fish-tetrapod divergence, followed by at least five separate deletion events: one prior to the frog-amniote divergence (del 1),
one prior to the chicken-mammal divergence (del 2), one prior to the fish radiation (del 3), one following the divergence of the frog lineage (del 4),
and one following the divergence of the chicken lineage (del 5). Note that according to this tree, there are no orthologs of human CYP17AT1 in chicken,
frog, or fish. (B) GIGA infers one duplication event, before the fish radiation (dup 1) and no deletion events. Note that according to this tree, there is
one ortholog of human CYP17A1 in frog, one in chicken, and two in each fish species. Note also that tree (B) infers two periods of accelerated (poten-
tially adaptive) molecular evolutionary rates, which may account for why a molecular evolution model would favor a topology with longer divergence
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in many gene families, even a fairly sophisticated treat-
ment of molecular sequences is likely to be less trustwor-
thy overall as a guide for constructing gene trees than is
genome-derived information such as a known species
tree, and gene content (presence or absence of particular
genes). The algorithm does rely on sequences to reveal
common ancestry (due to the improbability to convergent
sequence evolution), even if the sequences alone may not
reliably date that common ancestor. Of course, GIGA is
not the ultimate implementation of this genome evolu-
tion paradigm--rather, it is only a simple first step.

The GIGA algorithm makes use of ideas that have been
employed for some time. GIGA is similar to tree reconcil-
iation [7,8] and soft parsimony [9], but rather than first
estimating the entire tree and then reconciling it with the
species tree, GIGA reconciles the tree at each step in the
algorithm. Unlike soft parsimony, polytomies in the spe-
cies tree or from rapidly repeated duplication remain
unresolved, "simultaneous” events, in the current imple-
mentation of GIGA. Other algorithms have made use of a

species tree to guide gene tree reconstruction, notably
SYNERGY [11] and TreeBeST [33]. While SYNERGY
uses the species tree to determine the order of iterative
NJ tree building and rooting, GIGA builds up different
"orthologous subtrees” (OS's) simultaneously and deter-
mines their relationships based on pairwise distances and
genome content. While TreeBeST uses the species tree to
count duplications and deletions, which are then treated
in an ML framework with weighted probabilities relative
to substitution events, GIGA minimizes the number of
duplications and deletions consistent with the OS's,
which is tantamount to giving these events a very large
weight compared to substitutions.

One of the main advantages of the GIGA algorithm
over other methods is its simplicity. This simplicity
makes it particularly amenable to systematic improve-
ment, as it is easy to identify the algorithmic reasons for
the tree topology inferred by GIGA and to propose addi-
tional rules if necessary. In the future, one could develop
rules to handle specific evolutionary events in addition to
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Figure 11 Robustness of tree inference algorithms: histograms for GIGA and TreeBeST, for "clean" vs. "full" alignments for more than
14,000 TreeFam families. Full alignments include additional sequences, but the alignment is the same as for the clean set. An RF distance of 0 indi-
cates that the tree topology is unchanged by adding more sequences. Overall, GIGA is more robust than TreeBeST to the perturbation of adding se-
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those addressed in this initial implementation, such as
whole genome duplication, horizontal transfer, polyto-
mies and even incomplete lineage sorting. Nevertheless,
even with only the few rules presented here, the algo-
rithm performs remarkably well for many applications.
As with nearly all computational methods, GIGA was
designed to address certain applications of phylogenetic
inference and is not appropriate for all applications.
GIGA assumes that the "true” species tree is known (inso-
far as the tree model holds), and that we have a whole
genome and "complete” knowledge of the genes in that
genome. It is therefore applicable only to genomes that
have been fully sequenced and annotated with respect to
the genes in the families whose histories we wish to infer.
It is obviously not amenable to analysis of gene sequences
obtained by environmental sequencing (where the spe-
cies of origin is not known), nor to inference of species
phylogenies from gene sequences, nor to inference of
incomplete lineage sorting (except as a null hypothesis).
Nevertheless, the algorithm has many advantages for
problems involving large-scale phylogenetic reconstruc-
tion, inference of orthologs, and inference of gene func-
tion by homology. It is very fast, enabling reconstruction
of the phylogenies of large gene families. GIGA may even
be appropriate as a starting point for refinement by "fast"
maximum-likelihood methods. Finally, GIGA is remark-
ably robust to adding sequences. This property is particu-
larly useful for phylogenomic databases, as it enables
ancestral sequences to be referred to by a stable identifier

over successive releases as new genomes are sequenced
and new genes are annotated in existing genomes. In
turn, the stable reference to ancestral sequences would
enable the large-scale annotation of gene function by
homology, explicitly tracing the evolution of gene func-
tion within a gene family. The Gene Ontology Reference
Genomes Project is currently undertaking just such an
effort, using the trees produced by the GIGA algorithm
[40]. Trees produced by GIGA for 48 completed genomes
are now available in the PANTHER version 7 database
[41], which complements other existing phylogenomics
resources that employ other tree reconstruction algo-
rithms, such as TreeFam [33] (using a combined
sequence/genomic event ML algorithm), PhylomeDB
[42] (using NJ, ML and Bayesian algorithms) and Gene-
Trees [43] (using a Bayesian algorithm).

List of abbreviations

FCE: founding copy event; GIGA: gene tree inference in
the genomic age; ML: maximum likelihood; MRCA: most
recent common ancestor; NJ: neighbor joining; OS:
orthologous subtree; RF distance: Robinson-Foulds dis-
tance; UPGMA: unweighted pair group method with
arithmetic mean.
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