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Abstract
Background: Typically, pooling of mRNA samples in microarray experiments implies mixing mRNA from several 
biological-replicate samples before hybridization onto a microarray chip. Here we describe an alternative smart pooling 
strategy in which different samples, not necessarily biological replicates, are pooled in an information theoretic efficient 
way. Further, each sample is tested on multiple chips, but always in pools made up of different samples. The end goal is 
to exploit the compressibility of microarray data to reduce the number of chips used and increase the robustness to 
noise in measurements.

Results: A theoretical framework to perform smart pooling of mRNA samples in microarray experiments was 
established and the software implementation of the pooling and decoding algorithms was developed in MATLAB. A 
proof-of-concept smart pooled experiment was performed using validated biological samples on commercially 
available gene chips. Differential-expression analysis of the smart pooled data was performed and compared against 
the unpooled control experiment.

Conclusions: The theoretical developments and experimental demonstration in this paper provide a useful starting 
point to investigate smart pooling of mRNA samples in microarray experiments. Although the smart pooled 
experiment did not compare favorably with the control, the experiment highlighted important conditions for the 
successful implementation of smart pooling - linearity of measurements, sparsity in data, and large experiment size.

Background
Presently, pooling in microarray experiments refers to the
act of mixing messenger RNA (mRNA) collected from
several biological-replicate samples, before hybridization
onto a microarray chip [1-6]. This form of pooling may be
used to reduce biological variation, to lower costs by
reducing the number of microarray chips used, and to
overcome the problem of limited sample availability.

In this paper, we describe a different pooling strategy; a
smart pooling strategy based on compression algorithms
from digital communication theory. The smart pooling
strategy is applied to a large number of diverse biological
samples, not necessarily biological replicates, which are
pooled and tested on several microarray chips based on a
pre-specified pooling design. The mathematical proper-
ties of smart pooling designs ensure that each sample is
tested on multiple chips, but always in pools made up of a

different set of samples, such that, data from all the chips
taken together capture the same information as the stan-
dard one-sample-one-chip approach. Because of the con-
volution step involved in testing pools of samples on
multiple chips, the measurements made from the smart
pooling strategy must be decoded to obtain the gene
expression value of each gene in every sample. To save
cost and to accurately transmit information across digital
communication channels, where bandwidth is limited
and the channel is noisy, a similar compression and
recovery strategy is used. Similarly, smart pooling can
achieve an overall savings by using fewer microarray
chips than samples being tested. The built-in redundancy
of testing each sample on multiple microarray chips can
also provide robust expression measurements. The gains
of compression and robustness from using smart pooling
strategies motivated us to investigate this method. Smart
pooling strategies have been used in other high-through-
put biological applications such as blood testing [7], drug
screening [8,9], protein-protein interaction mapping
[10,11], genotyping [12,13], and others [14]. By using
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commercially available gene chips to implement smart
pooling, our method also differs significantly from other
attempts to design compressive sensing DNA microar-
rays that apply smart pooling at the level of probes [15].

The pooling and decoding strategy used in this paper
we call poolMC - pooled microarray. poolMC is based on
theoretical ideas from the field of compressive sensing,
which has already demonstrated its utility in signal and
image processing applications [16,17]. Compressive sens-
ing takes advantage of the intrinsic compressibility of a
data stream or set of experiments to produce experimen-
tal designs that require fewer experiments and provide
greater robustness. Other experimental design strategies,
derived from the field of group testing [14,18], have simi-
lar goals as compressive sensing but are not designed to
obtain continuous-valued, quantitative measurements. A
key requirement for any compression based experimental
design is sparsity in the underlying data. The definition of
sparsity in the context of gene expression data will be dis-
cussed in more detail in the following sub-section.

To test the poolMC strategy, we have carried out a
small pooling experiment using validated biological sam-
ples on commercially available gene chips. In the context
of this pooled experiment, we explain poolMC's pooling
and decoding strategy. The results of this pooled experi-
ment are then compared to the standard one-sample-
one-chip method for the same set of samples. Finally, we
propose the ideal setting for using poolMC and suggest
its potential benefit for large microarray experiments.

Sparsity
A key requirement for any smart pooling strategy is that
the data must be sparse to allow compression. In this
paper, the data describing a single gene's expression pat-
tern across several biological samples is called its expres-
sion profile. A gene's expression profile is said to be
sparse if, across several samples, there are only a small
number of samples in which the gene's expression is sig-
nificantly different from its median expression value in
these samples. In this context "different" is ill defined, so
for practical purposes, "different" can be viewed as mean-
ing differential expression. If a gene is differentially
expressed in only a small number of samples across many
being tested, then it is possible to exploit this sparsity to
reduce the number of microarray chips needed to obtain
the gene expression profile by pooling or multiplexing
samples.

Figure 1 shows an example of a gene with a sparse
expression profile, because out of 15 samples the gene is
differentially expressed in only one sample. By subtract-
ing the median expression value from all samples only
one sample, in this example, is left with a significant value
while the rest of the expression values are close to zero.
The significant value that is of interest is called a spike, as

labeled in Figure 1. A spike can be a positive or negative
deviation from the median depending on whether the
gene was up or down regulated in a sample. Depending
on the experiment there could be more or fewer spikes.
For a particular experiment, different genes may display a
wide variety in the number of spikes in their gene expres-
sion profile. However, when most, if not all, genes in an
experiment have a sparse expression profile across a
given set of samples, this sparsity can be exploited via
smart pooling to compress the experiment into a smaller
and more robust design. One way to achieve these savings
while maintaining robustness is by pooling samples in
microarray experiments.

Before describing the details of the pooling method, we
first identify two cases of microarray experiments that
could produce sparse gene expression profiles. A first
example of sparsity could be mRNA samples obtained
from similar cell samples, but with different, non-over-
lapping gene knockouts. This example case would bias
the expression profiles toward sparsity because many of
the genes would have no difference in expression (zero
spike) across the various knockout samples. Those genes
that do change would likely change only in one genetic
background. A second example of a sparse gene expres-
sion study is in biomarker discovery where the samples,
classified as treatment (or control), would have few genes
differentially expressed in the samples within each classi-
fication, though they may show great variation when
compared across each other.

The next sub-section describes the concept of smart
pooling and how it exploits sparsity in gene expression
profiles.

Smart pooling
The central idea of smart pooling is to exploit sparsity in a
gene's expression across several samples to obtain robust

Figure 1 Sparsity in a gene's expression profile. Example of a gene 
showing only one spike (red circle) across 15 samples. The dotted line 
marks the median value for the samples.
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estimates of the gene's expression in all samples, while
using fewer chips. This concept differs significantly from
earlier microarray pooling attempts by not focusing on
reducing the number of microarray chips used or increas-
ing statistical power by estimating a single average
expression value for each gene across multiple biological
replicate samples. The goal of smart pooling is to recover
the unique expression value of each gene in each of the
samples being tested. To achieve this goal, samples are
pooled in a systematic way across several chips while
keeping the number of chips used lower than the number
of samples tested. The pooling design ensures that each
sample is tested on multiple chips, always in pools with
different samples. The mathematical properties of the
pooling design and decoding algorithm, discussed in
more detail in the Methods section, guarantee that the
expression of each gene in all samples is decoded accu-
rately. For this strategy to succeed, two principle require-
ments need to be satisfied. First, as described in the
previous sub-section, gene expression profiles need to be
sparse. Second, the intensity of pooled measurements
should map linearly to the contribution from each sample
being pooled in the measurement.

If the data are sparse and mixing is additive, the pooling
strategy can be reduced to a linear system of equations
for each gene. As shown in Figure 2, the pooling design
specifies the samples to be mixed and tested on microar-
ray chips. However, in reducing the number of chips, we
make fewer measurements than we have samples (e.g. 12
measurements of 15 samples in Figure 2). This mismatch
between measurements and unknown variables (the
gene's expression value in the samples) results in an
underdetermined system of equations, which has an infi-

nite number of solutions. However, by assuming that the
underlying data are sparse, the number of possible solu-
tions are reduced and the measurements contain enough
information to uniquely solve the system of equations.
Figure 2 illustrates this process. The right column shows
a gene with only 1 spike (black square) in its expression
profile, corresponding to sample number 3. When the
samples are pooled according to a pre-specified pooling
design shown in Figure 2 as a matrix, where a black
square represents the presence of a sample (represented
by a column) in a specific pool along that row, sample
number 3 appears in pool numbers 2 and 6. The left col-
umn in Figure 2 shows the spike (black square) appearing
in measurement numbers 2 and 6, as expected. Thus, the
sparsity of an expression profile affects the number of
useful measurements obtained by the pooled experiment
thereby allowing the system of equations to be solved to
obtain a unique solution. The redundancy attained
through multiple measurements - two in this case - also
provides a way to improve the robustness of the predic-
tions. The theoretical basis for success of this pooling
strategy is described in the next section.

Results and Discussion
This section describes the pooling design and decoding
algorithm that together form the poolMC smart pooling
strategy. The details of the pooling design construction,
the laboratory protocol for pooling, and the decoding of
the results are described in the context of a small pooling
experiment that was performed to test poolMC experi-
mentally.

Definitions
The current one-sample-one-chip microarray experi-
ment is termed the monoplex. The pooled microarray
experiment is called the multiplex. Because the data mea-
sured by the monoplex experiment are directly used,
these data serve as both the monoplex measurements and
the monoplex results. However, the multiplex experiment
has two parts. The multiplex measurements refer to the
data obtained from pooling samples on microarray chips,
hence fewer measurements than the monoplex, and mul-
tiplex results refer to the data obtained from decoding the
multiplex measurements. The multiplex results can be
directly compared with the monoplex results. A synthetic
mutliplex was performed using the monoplex results and
multiplying them with the pooling design for each gene in
the system. This produced synthetic measurements that
were comparable to the multiplex measurement. The
synthetic results, comparable to the monoplex and multi-
plex results, were obtained by decoding the synthetic
measurements. The synthetic multiplex helped investi-
gate the linearity assumption, by comparing multiplex

Figure 2 Smart pooling process. Schematic showing the pooling 
process and the utility of a sparse expression profile. The right column 
shows a gene's expression across 15 samples, with only 1 spike (high-
lighted dark square). Samples are mixed according to the pooling de-
sign in the middle. The columns of the pooling design represent the 
samples being pooled and the rows represent the microarray chips 
used to test them. A black square in the pooling design represents the 
presence of the sample (along that column) on the corresponding 
chip (along that row). The highlighted column in the pooling design 
shows the sample that corresponds to the spike. The left column 
shows the resulting measurements that contain only two significant 
values (dark squares), those coming from the sample with the spike.
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and synthetic measurements, and the sparsity assump-
tion by comparing the synthetic and monoplex results.

A proof of concept test was carried out using 15 mRNA
samples obtained from the root epidermis of the plant
Arabidopsis thaliana. These samples included 4 pairs of
biological replicates, hence 8 samples, and 7 independent
knockout samples. The monoplex measurements were
performed at the usual concentration using 15 microar-
ray chips. The multiplex measurements were obtained by
mixing fractions of individual samples and using 12
microarray chips, employing the pooling design shown in
Figure 2. The choice of this pooling design is explained in
the next sub-section.

The mixing of fractions of individual samples was con-
ducted at the mRNA level. Following isolation of mRNA
from plant material (using the Qiagen RNeasy kit), the
concentration of each sample was determined [19]. For
the monoplex experiment 3-3.5 μg mRNA was used. For
the multiplex the samples were pooled based on the pool-
ing design described in the sub-section below, such that a
total of 3.5 μg mRNA per chip was used. The cDNA was
generated and labeled using the NuGen Ovation v2 and
the NuGen Ovation FL kit. A total of 4 μg of the labeled
cDNA were hybridized on the Affymetrix ATH1
Genechip.

The resultant mircoarray hybridization signal data cor-
responding to monoplex and multiplex measurements
were preprocessed separately using RMA [20] and anno-
tated using Brainarray custom CDF [21]. Each chip
simultaneously measured the expression value of 21,505
genes. The microarray measurements obtained from the
monoplex and the multiplex were normalized separately
to ensure that the data were handled as though they were
obtained from independent experiments, as typically
expected. The preprocessed monoplex and multiplex
experimental data are provided in Additional files 1 and 2
respectively.

Theoretical details
Several pooling methods have been discussed in the liter-
ature [22,23]. The pooling design shown in Figure 2 and
used in the experiment was based on an expander graph
construction (defined in Definition 1 of the Methods sec-
tion) used by Berinde et al. [24]. A detailed explanation of
the pooling design is provided in Additional file 3 and
MATLAB code for construction is provided in Additional
file 4. For the experiment under consideration, the design
tests 15 samples using 12 pooled tests and guarantees the
recovery of 1 spike in a gene's expression profile.

The theoretical guarantee (defined in Theorem 1 of the
Methods section and further explained in Additional file
3) is provided in the form of a bound on the error in
decoded expression values. The amount of decoding

error depends directly on the deviation of the actual
expression values from the sparsity assumptions made by
the pooling design. If the number of spikes in a gene's
expression profile exceeds the design criterion, then the
decoding error increases accordingly.

As described in the Background section, the problem of
decoding reduces to solving an underdetermined system
of equations, with more variables than measurements.
Such a system would have an infinite number of solutions
if an additional constraint of sparsity was not imposed.
With such a constraint, however, the system has a unique
solution that can be found by using a linear programming
decoder [25]. The mathematical statement of the linear
program is given in the Methods section. The MATLAB
code for the decoder is provided in Additional file 5 and
an illustrative example is provided in Additional file 6.

Further, measurement noise in experiments has a simi-
lar effect on decoding error as does deviation from spar-
sity. As the deviation from sparsity or experimental noise
increases, the error in decoding gets worse. In the experi-
ment under consideration, the pooling design guarantees
the recovery of just 1 spike in the 15 samples being tested,
when no experimental noise is present. Therefore, for
genes with multiple spikes or single spikes with measure-
ment noise the decoded result will not be exact. However,
the mathematical guarantees are typically derived for
worst-case scenarios. Smart pooling methods perform
much better in practice, as demonstrated in the following
sub-sections.

Analysis procedure
The decoding procedure described in the previous sub-
section was applied individually to each of the 21,505
genes in the system to obtain each gene's expression in all
15 samples.

Both the multiplex and synthetic pooled measurements
were decoded and analyzed using the same procedure.
The only source of noise in synthetic measurements is the
noise resulting from monoplex measurements of the indi-
vidual samples, and as such can be used to identify the
sensitivity to experimental errors.

The success of poolMC was analyzed by directly com-
paring the monoplex and multiplex results. To test the
linearity hypothesis, the multiplex measurements were
compared with the synthetic measurements. To check if
both datasets behaved similarly under standard microar-
ray data analysis techniques, six differential expression
analyses were performed between each of the 4 pairs of
biological replicate samples present in the dataset for all
three results - monoplex, multiplex, and synthetic. The
overlap of significant genes obtained from the analysis in
each of the six cases was used to evaluate the similarity of
the monoplex to multiplex results.
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Experimental results
poolMC depends on two key assumptions - linearity and
sparsity. To test the linearity assumption the multiplex
measurement was compared with the synthetic measure-
ment. Figure 3 shows an example of the alignment
between synthetic and multiplex measurements, indicat-
ing that mixing samples produces measurements that are
linearly additive. The same linear pattern can be observed
for all 12 pooled chips, as shown in Additional file 3 (Sup-
plementary Figure 6). In Figure 3, we observe a greater
disagreement between the synthetic and multiplex data
in the low expression range. This disagreement is likely
due to measurement noise, because the synthetic mea-
surements were simulated using the monoplex results,
while the multiplex measurements were directly mea-
sured. As the expression level drops, the signal to noise
ratio of the assay decays, generating discrepancies even
between technical replicates. The slight deviation from
the 45 degree line in Figure 3 is due to the monoplex,
hence synthetic, and multiplex measurements being pre-
processed separately.

Having confirmed the linearity assumption, the
poolMC linear programming decoder was applied to
both the synthetic and multiplex measurements. Over-
view figures for all samples are shown in Additional file 3
(Supplementary Figures 7 and 8). These results demon-
strate that, overall, the synthetic case provides a better fit
to the monoplex result. This better it is expected because
the synthetic measurements have no measurement noise,
relative to the monoplex. However, where the synthetic

and multiplex results show large deviations from mono-
plex results, they do so in similar patterns, implying that
the decoding error is due to deviation from the sparsity
assumption of the design.

Next we examined the data at the individual gene level
to determine how well the multiplexed results could
recover the monoplexed results. Figure 4 shows four rep-
resentative examples of individual genes, under different
conditions of sparsity and measurement noise.

The four cases in Figure 4 are described below, num-
bered according to the figure.

a A gene with exactly 1 spike and close to no measure-
ment noise (strong alignment between synthetic and
multiplex measurements in inset) is decoded accu-
rately, as guaranteed by the pooling design used.
b A gene with exactly 1 spike but with significant
noise in a measurement (far right data point in inset is
not aligned), is not decoded accurately.
c A gene with multiple spikes but low noise is
decoded with moderate accuracy, even though the
number of spikes exceeds the algorithmic guarantee.
d Gene with multiple spikes and low noise is not
decoded accurately due to a larger deviation from the
sparsity assumption than in (c).

Although the four examples are only a small sampling,
the patterns shown in Figure 4 are representative of the
properties of the decoding algorithm. The suggested
experimental settings that will maximize the utility of
smart pooling are discussed in the next section.

Given that the monoplex and multiplex results often
produce the same pattern of expression, we next com-
pared the lists of differentially expressed genes obtained
from both lists. Because the 15 samples contain 4 pairs of
replicate sample measurements (samples 2-4, 3-5, 7-8,
and 12-15), differential expression analysis was per-
formed between pairs of biological replicates using the
Significance Analysis of Microarrays (SAM) method [26]
to obtain lists of significantly expressed genes. The SAM
analysis compares the expression data for two or more
sample types (treatments or conditions) to identify genes
that were differentially expressed among them. Further, it
uses a permutation-based method to identify if the differ-
ential expression was significant. Hence the need for rep-
licate measurements for each sample type. The SAM
analysis was carried out independently within each data-
set - monoplex, synthetic, and multiplex - and the result-
ing lists of differentially expressed genes were compared
across the datasets (Table 1). Before carrying out the
SAM analysis, 50% of the 21,505 genes were filtered out
based on variance to increase statistical power [27].

In all six comparisons, the longest significant-gene lists
were produced by the monoplex dataset. The multiplex
and synthetic datasets identified fewer differentially
expressed genes at the 10% q-value cut-off. As expected,

Figure 3 Linearity of pooling process. An example of the compari-
son between the expression data from a synthetic and a multiplex 
measurement showing data from all 21,505 genes for a single pooled 
chip
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the synthetic dataset shows more overlap with the mono-
plex than the multiplex does. This difference in overlap
can be attributed to the decrease in noise in the synthetic
dataset. The significant disparity in number of significant
genes common to both monoplex and synthetic datasets
can be attributed to the lack of sparsity in a large number
of genes in the 15 samples chosen for the experiment,
resulting in decoding errors.

Conclusions
The aim of this work was to determine whether pooled
experiments following a compressive sensing inspired
design and decoder (poolMC) would be effective for
gathering gene expression data. The approach described

here is easy to implement with existing chips, as it only
requires an intelligent mixing of samples. The analysis
results indicate that gene expression measurements are
sufficiently additive to be amenable to a linear decoder,
and in some cases are sufficiently sparse to be com-
pressed. When the experimental noise was sufficiently
low and the expression profile was sparse, we have shown
that poolMC can provide experimental compression.

However, the overall agreement between the lists of dif-
ferentially expressed genes from the monoplex and multi-
plexed results did not show a strong overlap. This lack of
overlap was due to three factors: (1) experiment size, (2)
sparsity of gene expression, and (3) experimental noise. In
this study, we carried out a small pilot study with only 12

Figure 4 Examples of poolMC results. Four examples of decoding performance. (a) Low spike, low noise case, (b) Low spike, high noise case, (c) 
High spike, low noise case, and (d) High spike, high noise case. For each gene, expression profiles from monoplex result (black square), decoded syn-
thetic result (red open circle), and decoded multiplex result (blue star with lines) are shown. Inset shows the alignment between synthetic and mul-
tiplex measurements (green dots) for the gene across the 12 pooled samples. Raw gene expression values are shown.
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multiplexed results compared to 15 monoplexed results.
At this scale, multiplexing provides relatively few benefits
in terms of both compression and robustness. As is
shown in Figure 5, the compressive abilities of a poolMC
type design increase significantly as the design is
enlarged. The number of chips needed to identify k spikes
in a experiment of size n is approximately k log(n/k) (see
Additional file 3 for details). For example, a study with
100 samples would require approximately 23 chips, if
only 1 in 10 samples showed differential expression.

However, it should be noted that these calculations
ignore measurement noise and should therefore be
treated as a lower bound on the experiment size.

The second factor was the sparseness of the gene
expression data. As is shown in Figure 5, the more spikes
in a sample, the larger the required design. Gene expres-
sion data is not inherently sparse, but can be, depending
on the particular samples chosen. In the experimental
case used here, the data contain a large number of genes
that do not change, corresponding to zero spike cases.
These zero spike cases are, in general, accurately recov-
ered from the multiplexing but of limited interest com-
pared to cases that show differential expression. An ideal
situation for using multiplexing to obtain gene expression
data would be when testing a large number of samples to
identify only a small number of unusual ones, such as
when screening for a rare disease or mutation. Alter-
nately, the decoding methods could incorporate informa-
tion about the correlation structure of the genes to better
exploit sparsity of the data. Finally, it should be noted that
negative spikes could be more difficult to decode than
positive spikes because negative spikes have a bounded
magnitude that cannot go below zero. In contrast, up-
regulated genes are essentially unbounded in their mag-
nitude, and as such easier to decode.

The third factor is experimental noise. Gene expression
profiling is a well-standardized method with relatively lit-
tle noise, however this study shows that even the techni-
cal noise present in gene expression profiling can cause
artifacts in multiplexed results. The experimental design
can be modified to increase the robustness of the predic-

Figure 5 Asymptotic performance of poolMC pooling design. The 
approximate number of microarray chips needed based on number of 
samples used for the pooling experiment and the number of spikes ex-
pected in the samples.
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Table 1: Evaluation of poolMC's performance

Sample pairs tested # of significant genes at q = 10% # Overlap with Monoplex

Monoplex Multiplex Synthetic Multiplex Synthetic

2-4 v. 3-5 761 43 13 27 13

2-4 v. 7-8 1545 3 5 3 5

2-4 v. 12-15 163 69 175 21 87

3-5 v. 7-8 1 0 0 0 0

3-5 v. 12-15 280 2 1 2 1

7-8 v. 12-15 26 1 1 0 1

Comparison of significant calls, obtained via a SAM analysis between biological replicate measurements from monoplex, multiplex, and 
synthetic datasets. The overlap of significant genes (at q-value = 10%) common to monoplex and each of multiplex and synthetic datasets 
for each biological replicate pair tested are shown.
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tions to noise, but at the cost of adding additional experi-
ments.

This small experiment suggests that pooling can be car-
ried out successfully within the theoretical guarantees
provided by poolMC. In practice, however, there are a
number of strong requirements of experiment size,
sparseness, and assay noise that need to be considered to
make pooling work well for gene expression profiling.
Figure 5 implies that for smart pooling to be successful,
the number of samples used should be increased and the
type of experiment should be chosen carefully to avoid a
large number of spikes. Finally, it would be interesting to
study the connections between the linear decoding pro-
cedure used in this paper and other <1 regression meth-
ods such as Lasso [28].

Methods
In this section, we provide the mathematical statements
for the pooling design and decoding strategy that under-
lie poolMC. The practical implementation of these state-
ments is provided in Additional file 3.

Expander graph
An expander graph is a bipartite graph with high-connec-
tivity. It connects a set of nodes on the left (A) to a set of
nodes on the right (B) with a set of edges (E). The connec-
tions are such that each left node has a diverse set of
neighbors on the right resulting in high-connectivity. The
high-connectivity is useful for pooling as it ensures that
no two samples are pooled together often. The graph can
be represented as a binary matrix with the left nodes as
columns, the right nodes as rows, and the edges as entries
of the matrix; a matrix entry of value 1 represents the
presence of an edge between the corresponding column
and row nodes. This matrix is used as the pooling design.
The mathematical definition of an expander graph, pro-
vided in [24], is as follows.
Definition 1
A(k, ε)-unbalanced expander is a bipartite simple graph
G-(A, B, E) with left degree d such that for any X in A with
|X| ≤ k, the set of neighbors N(X) of X has size |N(X)| ≥ (1
- ε) d|X|, where |·| represents the cardinality of a set.

In constructing such graphs for smart pooling, the goal
is to make the right set size |B| (rows of the pooling
matrix), d (number of times each sample is pooled), and ε
(important for the theoretical guarantee of decoding) as
small as possible. Details of their construction are pro-
vided Additional file 3 and MATLAB software imple-
mentation is provided in Additional file 4.

Theoretical guarantee of decoding
poolMC provides the following decoding guarantee
(from [24]):

Theorem 1
Let Φ be a m × n matrix of an unbalanced (2k, ε)

expander. Consider any two vectors x, , such that

 and . If S is the set of k largest
(in magnitude) coefficients of x, then,

Here  is the decoded result of a gene expression pro-
file measured by a pooling design Φ. If x is the "true"
expression profile which contains k spikes, then the
decoding error, represented as sum of absolute values (l1

norm) of the error in each entry of  with respect to x, is
bounded by the l1 norm of the non-spikes in x (subtract-
ing xS, which contains only the values corresponding to
the k spikes, from x) and is scaled by a constant that
depends on the properties of the pooling design Φ.

Linear program decoder

The two conditions of  and 

imposed on the decoded result  can be accomplished

by finding a vector  using the following linear program:

poolMC uses the MATLAB-based software package l1-
magic [25] to solve this linear program. This package can
be downloaded from [25] and is required to execute the
MATLAB code provided in Additional files 5 and 6.

Additional material

Additional file 1 Monoplex data. Tab-delimited file containing the 
monoplex data. The file contains 21,505 rows corresponding to the genes 
and 15 columns of gene expression data (log-transformed) corresponding 
to the samples.
Additional file 2 Multiplex measurement. Tab-delimited file containing 
the multiplex measurement. The file contains 21,505 rows corresponding 
to the genes and 12 columns of gene expression data (log-transformed) 
corresponding to the pooled samples.
Additional file 3 Supplementary materials. An Adobe PDF file contain-
ing mathematical details and illustrative examples of the pooling and 
decoding strategies underlying poolMC. Also included are complete fig-
ures showing the comparison between monoplex, synthetic, and multiplex 
results for all samples used in the experiment.
Additional file 4 poolMC design. The MATLAB code implementing the 
expander graph based pooling design.
Additional file 5 poolMC decoder. The MATLAB code implementing the 
decoding procedure.
Additional file 6 Smart pooling example. The MATLAB code illustrating 
poolMC's pooling and decoding procedure.
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http://www.biomedcentral.com/content/supplementary/1471-2105-11-299-S1.TXT
http://www.biomedcentral.com/content/supplementary/1471-2105-11-299-S2.TXT
http://www.biomedcentral.com/content/supplementary/1471-2105-11-299-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-11-299-S4.M
http://www.biomedcentral.com/content/supplementary/1471-2105-11-299-S5.M
http://www.biomedcentral.com/content/supplementary/1471-2105-11-299-S6.M
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