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Abstract
Background: Contact maps have been extensively used as a simplified representation of protein structures. They 
capture most important features of a protein's fold, being preferred by a number of researchers for the description and 
study of protein structures. Inspired by the model's simplicity many groups have dedicated a considerable amount of 
effort towards contact prediction as a proxy for protein structure prediction. However a contact map's biological 
interest is subject to the availability of reliable methods for the 3-dimensional reconstruction of the structure.

Results: We use an implementation of the well-known distance geometry protocol to build realistic protein 3-
dimensional models from contact maps, performing an extensive exploration of many of the parameters involved in 
the reconstruction process. We try to address the questions: a) to what accuracy does a contact map represent its 
corresponding 3D structure, b) what is the best contact map representation with regard to reconstructability and c) 
what is the effect of partial or inaccurate contact information on the 3D structure recovery. Our results suggest that 
contact maps derived from the application of a distance cutoff of 9 to 11Å around the Cβ atoms constitute the most 
accurate representation of the 3D structure. The reconstruction process does not provide a single solution to the 
problem but rather an ensemble of conformations that are within 2Å RMSD of the crystal structure and with lower 
values for the pairwise average ensemble RMSD. Interestingly it is still possible to recover a structure with partial 
contact information, although wrong contacts can lead to dramatic loss in reconstruction fidelity.

Conclusions: Thus contact maps represent a valid approximation to the structures with an accuracy comparable to 
that of experimental methods. The optimal contact definitions constitute key guidelines for methods based on contact 
maps such as structure prediction through contacts and structural alignments based on maximum contact map 
overlap.

Background
For over 30 years [1,2] contact maps have been used as an
alternative representation of protein structures. A con-
tact map is a 2-dimensional representation of the residue
interactions in a protein structure. This 2-dimensional
representation takes the form of a binary matrix. A given
cell (i, j) of the matrix can only take two values, 1 if the
residues i and j are in contact or 0 otherwise. The defini-
tion of interaction varies but it is usually based on some
cut-off distance between the atoms of the two residues.
One can also see this description from another perspec-
tive as a residue interaction graph (RIG) with residues as
nodes and the contacts as edges. In this view the binary

matrix is no more than the adjacency matrix representing
the graph.

Although they constitute a simple 2-dimensional repre-
sentation of the molecule, contact maps still capture all
important features of a protein fold. As such they are an
invaluable tool for the analysis of biological macromole-
cules. They provide a computationally tractable represen-
tation of an otherwise complex problem, with the
important advantage of being structural descriptors inde-
pendent of the coordinate frame. Thus providing a sort of
internal coordinates description, rotationally and transla-
tionally independent. However the simplified representa-
tion loses on accuracy as compared to the original 3-
dimensional model. Multiple applications can be found in
the literature that make use of the concept. Contact maps
have been used for development of structural alignment
algorithms [3,4], for automatic domain identification
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[5,6], in structural modelling by the extraction of contact-
based empirical potentials [7-10] or for the identification
of residues critical for folding [11], stability [12] and func-
tion [13]. Furthermore they have been used as a proxy for
3-dimensional structure prediction by means of machine
learning techniques in order to predict residue contacts
from sequence information [14-18].

Several methods have been proposed in the past for the
reconstruction of contact maps. Most of them develop
around the common mathematical theory of distance
geometry first applied to chemistry by Blumenthal [19].
The theory took really off when Crippen and Havel [20]
applied it to the problem of protein structure determina-
tion by NMR methods. In a typical NMR experiment dis-
tances between spatially close Hydrogen atoms can be
determined for a protein in solution through the detec-
tion of the Nuclear Overhausser Effect (NOE) [21]. The
NOE data can be seen then as a set of distance ranges
between some pairs of Hydrogen atoms. Distance geome-
try deals with distances between points and their embed-
ding in 3-dimensional space. In principle given a proper
metric matrix with all exact distances among a set of
points an analytical solution to the embedding can be
found easily. The problem becomes more complicated
when not all distances are given (sparse distance map)
and when only distance ranges rather than exact dis-
tances are known. This is the case of the NMR experi-
ments and equivalently of contact maps: we know some
distance ranges between pairs of atoms for which we
would like to find 3-dimensional coordinates. A heuristic
algorithm (named EMBED) to solve the problem was
proposed by Crippen and Havel and has been applied
extensively ever since. Other algorithms have been pro-
posed such as the alternating projection algorithm by
Glunt et al. [22] or the geometric build-up algorithm by
Wu and Wu [23].

However the problem of reconstructability of protein
contact maps has not been fully addressed in the litera-
ture. A few studies [24-26] have tried to evaluate the
accuracy of the existing methods but they all lack in com-
pleteness of the test set and thorough assessment of the
different parameters or do not provide fully realistic pro-
tein models but only Cα traces.

Our aim here is twofold. We would like to find what is
the reconstruction accuracy for an average protein so that
the limits of the utility of contact maps in protein struc-
ture prediction can be precisely assessed. As a second aim
we are looking for optimal criteria in the definition of a
contact map decomposition model: atoms selected as
interaction centres and distance cut-off. By decomposing
a representative set of PDB protein structures into resi-
due interaction graphs and then reconstructing them
based purely on the contact information we should be
able to assess the accuracy and loss of information in the

decomposition process by comparing to the original
native structure (see Figure 1). If a specific contact map
model that reconstructs optimally can be found, that
would help direct efforts in prediction of contact maps.
Previous work has looked at optimality of contact defini-
tion from very different points of view, mainly in relation
to how well contacting pairs describe the residue propen-
sities when discriminating decoys from native structures.
Here we look at it in a purely geometrical way, we are
intending to find out how much of the 3D geometrical
topology is captured by the network of contacts. Addi-
tionally by introducing artificial noise in the contact maps
we also look at the effect of inaccurate contact informa-
tion in the 3-dimensional recovery, essential to the appli-
cability of contacts for predictive purposes.

Results and Discussion
We studied the reconstructability of a set of representa-
tive native PDB protein structures (see Methods). Firstly
we decomposed the native proteins into contact maps
with different contact type definitions and for several dis-
tance cut-offs. Then we used our reconstruction software
to recreate the 3D structures based solely in the informa-
tion supplied by the contact maps.

Figure 1 Schematic representation of the optimization proce-
dure. 1) the native structure is decomposed into contact maps based 
on different definitions, 2) the 3D structure is reconstructed from con-
tact information only, obtaining an ensemble of conformations, 3) the 
accuracy is measured against the original structure. The protein shown 
is PDB structure 1bxyA. The ensemble corresponds to 6 reconstruc-
tions (ribbon representation) in different colours and also contains the 
native protein (cartoon representation) in blue.
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To measure the accuracy we then proceed by evaluating
the RMSD of the generated models with the original
structure. We measured the RMSD on the Cα atoms over
all residues, independent of whether the reconstructions
were based on Cα contact maps or not. This seems to be a
well-established way of measuring the similarity between
two structures especially when they are closely related
and should facilitate the comparison to other published
work. Another well-established method for structure
comparison, GDT [27], was not deemed to be appropriate
here as it is most useful in comparing structures over a
broader range of dissimilarity as is the case in the CASP
experiment.

Optimal cut-off
In Figure 2 we present the accuracy of reconstruction as
measured by RMSD vs. the distance cut-off for contact
maps based on Cα, Cβ and Cα + Cβ contact-types (see
Methods for contact-type definitions).

The range of cut-offs chosen was based on values previ-
ously used in the literature keeping them within a bio-
chemically sensible range: the minimum cut-off was 6Å
as values below result in too sparse contact maps. At the

other end we chose 15Å since beyond that the contact
map starts to lose in information content becoming fully
connected.

The first interesting observation is the existence of an
optimal cut-off for all the contact types. This optimal
value is not very precisely defined in most cases, it seems
to span the cut-off distances from 9 to 11Å with higher
cut-offs having only a marginal loss of accuracy. However
we consider of a more significant value the lower cut-offs.
First of all because of the biochemical meaning of the
contacts. It is in the region about the 8Å cut-off where
our definition of contact lead to distances between atoms
that are in the range of the Van der Waals interactions.
Also the information content of the contacts should be
taken into account. As shown in Figure 3a the practically
unchanged accuracy values in the higher cut-off regions
are accompanied by an increase in the total number of
contacts (the number of contacts increases roughly lin-
early with the distance cut-off ). Thus we could see this as
a loss of information content per contact i.e. we are add-
ing a lot more information that is simply redundant. Fig-
ure 3b illustrates this better by representing the gain in
accuracy with respect to contacts added vs the distance

Figure 2 Accuracy of reconstructions. Reconstruction Cα RMSD vs. distance cutoff for each of the contact definitions. Plotted are the mean accuracy 
values for the set of 60 proteins for Cα, Cβ and Cα + Cβ contact definitions. Horizontal lines mark the minimum RMSD for each of them. The error bars 
represent the standard deviation across the distribution of 60 proteins.
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cut-off. The accuracy gain occurs only up to 8Å, after that
there is no change as more contacts are added.

Additionally no dependence on the protein length
across all cut-offs could be observed (see Figure 5). The
reconstruction process seems to work with the same
accuracy as measured by RMSD regardless of the protein
size. This holds across all proteins tested (data not
shown) and is in agreement with what similar studies
found [26,24].

Our RMSD vs distance cut-off plots show no further
improvement in accuracy beyond the optimal cut-off
region. This is in clear disagreement with [26] where the
reconstruction quality is reported to further increase for
cut-off values as big as 18Å. This can be explained by the
fundamentally different procedure of computing the
reconstructed models: in our case an all atom approach
with realistic regularization of the coordinates through a

restraint-only harmonic potential was used for the con-
struction of the models.

Vassura et al. on the other hand uses a simpler Cα trace
model, without a final refinement phase. Optimal thresh-
old values found here are in agreement to some of the
reported optimal values found in other studies. There has
been many attempts in the past to find an optimal contact
map definition with respect to both distance cut-off and
interaction centre. The optimizations were based in dif-
ferent criteria according to what the focus was in the par-
ticular study.

Some authors like Gromiha et al. [28] studied the corre-
lation of relative contact order with folding rate, finding
that from several cut-offs 8Å gave the best correlations
for the Cα contact type when considering long range
interactions only.

Karchin et al. [7] found that residue burial expressed as
contact counts performs best at fold recognition for Cβ
contact type with a cut-off of 14Å. Similarly Benkert et al.
[8] used the same residue burial measure and surprisingly
found that a cut-off of 9Å was optimal, possibly due to
differences in normalisation procedures. Quite a few
studies tried to find an optimal contact definition based
on the discriminatory power of contact-based empirical
potentials in distinguishing decoys from native struc-
tures. Bolser et al. [9] found that the best performing two-
body potential was that derived from Cβ contact defini-
tion with a 12Å cut-off. Vendruscolo et al. [29] found that
for the Cα contact type the best cut-off was at 8.5Å for a
two-body contact potential.

As contact maps are only meaningful in the context of
obtaining 3D protein models the reconstructability crite-
rium should not be neglected when considering a contact
definition for instance in the prediction of contacts. Con-
tacts containing more geometrical information will be
more valuable when building 3-dimensional models. This
is of special importance if we consider that the recon-
struction of contact maps seems to be possible even with
sparser contact maps (see [30,31]), which means that
contacts even at optimal definitions still seem to contain
redundant information.

Optimal interaction centre
Comparing the accuracy values between the Cα, Cβ and
Cα + Cβ cases (see Figure 2) it is apparent that Cα + Cβ per-
forms better across the whole range of cut-offs tested,
with Cβ alone doing also better than Cα. Figure 4 shows
again this comparison for proteins divided into their
respective SCOP classes. The trend holds within each of
the SCOP classes.

Melo et al. [10] studying distance dependent empirical
potentials explored several interaction centres conclud-
ing that the Cβ atom was the best performing atom centre.

Figure 3 Number of contacts and reconstruction accuracy. a) 
RMSD values for the protein 1bkrA using Cα as contact definition, the 
size of the dots represent the total number of contacts in the contact 
map for a particular cutoff. The red curve is a linear fit to a polynomial. 
b) RMSD delta over delta of number of contacts against the cut-off for 
Cα contact definition for the average of the 60 proteins in the data set. 
The red curve is again a linear fit to a polynomial.
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This seems to be a widely accepted result as indicates the
use of the Cβ contact type for the contact prediction cate-
gory at the Critical Assessment of protein Structure Pre-
diction (CASP) experiment [32].

Our study, purely based on the 3D geometrical infor-
mation content of the contacts, confirms the preference
for Cβ as the interaction centre of choice. It seems natural
that Cβ is better in order to derive empirical potentials as
it spans both the backbone and the side-chain. But also it
is a superior point of choice for embedding a 3D structure
from interatomic distance restraints. The interaction cen-
tre is able to capture geometrical information for the
backbone positioning as well as for the orientation of the
side-chain leading to a more precise 3D description.

Also of interest is the fact that the combination of both
Cα and Cβ contacts leads still to better reconstruction per-
formance, indicating that there is some more backbone
information not contained in the Cβ restraints. This sug-
gests an approach in the homology modelling of proteins
based on distance restraints (see [33-35]): using two
atoms per residue to restrain the geometry will lead to
more precise models. We also obtained better accuracy

results (data not shown) by choosing a backbone atom
and a side-chain atom farther away from the Cβ.

Reconstructions for different SCOP classes
We then address the question of whether the reconstruc-
tion process is dependant of the type of protein. In order
to do so we separate our 60 proteins into the four SCOP
classes to which they belong to, each of the classes con-
taining 15 structures. Figure 4 shows the accuracy values
for each of these four classes. The results hold for other
cutoffs. It is striking that the accuracy and spread of the
all-β group is significantly better than that of the other
three. Interestingly the median values are not very far
away for the 4 classes but the variances are hugely differ-
ent especially for the all-beta case. Contrary to this result,
in a similar study Saitoh et al. [24] stated that they did not
encounter a dependency of the accuracy of reconstruc-
tion based on the SCOP class. This might be explained by
the much smaller test set used in that study, 11 proteins
in total and only 2 in the all-β class. Vassura et al. [26] did
find some differences across different classes especially a
lower accuracy for the all-a class, which we also observe
here.

Figure 4 Variability for different SCOP classes. Reconstruction accuracy comparison for proteins in the four SCOP classes, using boxplots to depict 
the distributions of RMSD values. There are exactly 15 proteins per class from the set of 60 PDB representatives. a) For Cα b) for Cβ and c) Cα + Cβ, all 
three at 9Å cutoff.
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Variability of the reconstruction ensembles
The reconstruction process inherently leads to a non-
unique solution fully matching the contact map. We stud-
ied the variance of the ensemble of reconstructed struc-
tures. The average spread of the pairwise RMSD among
the ensemble structures is in most cases below 2Å. In
Table 1 we present the spread values for a 12 proteins
subset (see Methods). An example ensemble can be seen
in Figure 1.

As seen in Figure 1 the reconstruction ensemble is rem-
iniscent of an NMR structure ensemble, not surprisingly
as both are based on fitting 3D coordinates to distance
restraints. This shows another advantage of the contact
map representation, namely that the conformational flex-
ibility of the molecules is implicit in the model.

Comparison to previous studies
For completeness of this work we compare our results to
those of two previously published reconstruction meth-
ods [26,25]. In Figure 5 we present our results (black) for
the set of 17 proteins used by Vendruscolo et al. and sub-
sequently by Vassura et al. together with their results (red
and green respectively). Our RMSD values are higher in
most cases. Remarkably the values of Vassura et al. are a
lot lower. However caution should be taken in this com-

parison as they do not report on the variability (error) of
the result. As their algorithm (like the others) is stochas-
tic the evaluation of the variability across different runs is
important to consider. Another important issue to take
into account is that these two previous studies are using a
simpler representation of proteins, namely one based on
only the Cα atoms. In contrast here we are constructing
full atom protein chains with realistic bonds and angles.
This leads to higher RMSD values as more geometrical
constraints need to be fulfilled.

Tolerance to missing contacts and noise
As a final part of the study we then address the question
of reconstruction of contact maps in the more realistic
scenario of incomplete or noisy maps, which is likely to
be the case when the input is a predicted set of contacts.
To do this instead of using real predictions, for instance
from homology or machine learning methods, we simu-
late incomplete and noisy contact maps to thoroughly
explore the effect of noise in the process of reconstruc-
tion.

Figure 6a presents the reconstruction accuracy versus
the percentage of contact deletion. Thus we are simulat-
ing a prediction that misses contacts but with a 100% pre-

Figure 5 Comparison to previous studies. Comparison of our reconstruction RMSD values (black) with those of Vassura et al. (green) and Ven-
druscolo et al (red). The set is the one used by Vendruscolo and subsequently by Vassura. Two proteins were eliminated from their set because of 
ambiguities with the data. The error bars are for the variability across different runs (not reported by Vassura).
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cision. The striking observation here is that the
reconstruction seems to be very robust to missing infor-
mation, thus indicating that there is a lot of redundancy
in the contacts. A previous study in our group [30] deals
with this problem in more depth and finds that one can
even predict rationally a subset of contacts that somehow
contain the most structural information.

Interestingly enough there seems to be a non-linear
relationship in the information redundancy with respect
to cut-off. Figure 6b represents as before the reconstruc-
tion RMSD versus the deletion of contacts but this time
only for contact type Cβ and different cut-offs. The loss of
accuracy with lower percentage sampled subsets seems to
decrease with higher cut-offs. Thus for the same percent-
age deletion one can recreate the original structure better
with contact maps of higher cut-offs, i.e. the redundancy
is higher. The second test that we perform intends to
asses the robustness of the 3D recovery process with
respect to the presence of noise, the case of a more realis-
tic prediction with false positives. Figure 6c represents
the reconstruction accuracy versus the percentage of
noise added. The behaviour here is totally different than
before. An addition of only 2% of random contacts
severely affects the 3D recovery process. The Cβ defini-
tion behaves better at all levels of noise.

An existing application [36] is reported to perform bet-
ter with noisy contact maps, but this seems to be due to
their pre-filtering based on finding well connected nodes,
equivalent to finding contact clusters. As the test is

against randomly added contacts this is not a very realis-
tic filtering. In a real scenario a) one would not have all
well-connected real contacts of the native map and b) the
false positives would be very different from random
noise. Thus we argue that the filtering used in FT-
COMAR based in common neighbours is not realistic
and so the reported tolerance to noise could not be
extended to real situations. In our case we have tested the
robustness of the algorithm still against random noise
(which in principle would have a different distribution
than predicted false positives) but we do not perform any
pre-filtering. We believe this to constitute a more realistic
benchmark.

The tests performed here are based on randomly gener-
ated inaccurate contact maps which in principle differ
significantly from ab-initio predictions. However from
our results here we could conclude that with adequately
precise ab-initio contact predictions one could produce
reasonable models. In fact we applied successfully some
of these ideas in the CASP8 community-wide experiment
for structure prediction [37]. In that case we used tem-
plate-based contact maps that led to 3D models compara-
ble to those of established methods. The non-random
noise of the template-based maps did not seem to affect
significantly the 3D recovery.

Conclusions
In this work we have studied the viability of computing
3D protein models from contact maps. We assessed the

Table 1: RMSD of reconstruction ensembles.

PDB code SCOP class Length Ensemble's average RMSD

1bkrA all-α 109 1.93

1oddA all-α 118 2.76

1cemA all-α 363 1.69

1pzcA all-β 123 1.52

1onlA all-β 128 1.67

1eurA all-β 365 2.49

1e6kA α/β 130 1.91

1o8wA α/β 146 1.71

1edeA α/β 310 1.62

1r9hA α + β 135 3.11

1ugmA α + β 125 2.17

1iu4A α + β 331 3.70

The 12 proteins subset with chain lengths and the average pairwise RMSD of the reconstruction ensembles, based on Cβ contact maps with 
8Å cut-off.

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1bkr
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1odd
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1cem
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1pzc
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1onl
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1eur
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1e6k
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1o8w
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ede
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1r9h
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1ugm
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1iu4
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performance of a reconstruction procedure based on the
well known distance geometry protocol used extensively
in NMR protein structure determination.

We perform a comprehensive evaluation covering a
representative set of the PDB spanning the 4 SCOP
classes. We then explore several possible contact map
definitions and evaluate the accuracy of the reconstruc-
tions based on RMSD to the available native structure.

We found that contacts based on the Cβ atoms are a
better description of the 3-dimensional model than those
based on Cα, confirming other studies that used one-body
and two-body empirical contact-based potentials for fold
recognition to find this optimum. Reconstruction accu-
racy can be further improved by using the two contact
definitions together Cα + Cβ.

With regards to contact cut-offs we found that the opti-
mal lies in the region from 9 to 11Å. We do not observe,
contrary to previous studies [26] that the accuracy
improves for higher cut-offs. Because of the increasing
amount of contacts that higher cut-off contact maps
yield, we preferred as an optimal threshold the lower end
of the optimal range. A contact map based on a 9Å cut-off
achieves maximal geometrical information per contact.

Interestingly the accuracy of the reconstruction seems
to be different for different classes of proteins. Particu-
larly the all-β SCOP class yields very good accuracies
across all its members as compare to the other classes,
leading to the conclusion that some topologies are more
amenable to be described in terms of single atom distance
restraints.

These results are particularly valuable for the contact
prediction community. As contact prediction ultimately
aims at obtaining 3-dimensional models of protein struc-
tures the usage of our optimal contact definition findings
should contribute to better accuracies of the predictions.
At the same time the results can be useful in the struc-
tural alignment of proteins through contact map overlap
[3]. These methods seek a 3D alignment by optimising a
contact map overlap measure. Clearly contacts that con-
tain better 3-dimensional information should lead to
improved results in the final alignments.

Further our 3D recovery procedure seems to perform
also very well even if only a partial subset of the contacts
is available. With as little as 40% of the contacts reason-
ably good models can be produced. On the contrary the
method is very sensible to the presence of non-real con-
tacts. The introduction of restraints at random points in
the chain is simply fatal for the recovery of the original
structure. This indicates that contact predictions should
focus on accuracy rather than coverage.

Methods
Reconstruction pipeline
This study is based on the TINKER molecular dynamics
package [38], available at http://dasher.wustl.edu/tinker.
In particular the distgeom [39] program was used for the
generation of 3-dimensional protein models from dis-
tance restraints which is at the core of the contact map
reconstruction procedure.

An interface to the TINKER package was developed
(Java) providing a single command line executable as a
one stop solution for contact map reconstruction, taking
contact maps as input and outputting PDB files. The soft-
ware is multiplatform (Linux, Windows and Mac) and
only requires a working copy of the TINKER package
locally installed.

We have made our program freely available under the
terms of the GPL v.2 at http://www.molgen.mpg.de/
~lappe/reconstruct.

Figure 6 Reconstruction for incomplete or noisy maps. Behaviour 
of the reconstruction algorithm with noise or incomplete data. a) ran-
dom subsets are sampled for Cα and Cβ maps, b) random subsets are 
sampled for Cβ maps at different cut-offs (7, 9, 11 and 13, with different 
colours) and c) random contact noise is added to the map (Cα and Cβ 

maps). The 12 proteins subset (see Methods) was used for this analysis. 
For each of the levels of noise 10 random samples were taken and 30 
models generated. The variability within the different proteins in the 
set is represented with the error bars.
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Reconstruction procedure
We generated distance restraints from the contact maps
in the form of lower and upper bounds restraints for pairs
of atoms (with standard value of 100.0 kcal/Å2 for the
force constant). The restraints were then fed into dist-
geom to generate a total of 30 models per structure using
simulated annealing for refinement. The extensive study
performed required a substantial amount of computation
as we had 60 proteins, 3 contact-type definitions and 19
cutoff bins from 6 to 15 with 0.5 step. This gave a total of
3420 contact maps, for each of them we computed 30
structures in order to have a statistically meaningful sam-
pling of the reconstruction space, resulting in a total of
102,600 models. The computations were carried out in a
distributed fashion on a Linux cluster with over 100
CPUs.

The conformations found through the distance geome-
try protocol can not distinguish between the 2 enantiom-
ers of the molecule, as chirality information is simply not
present in the contact map. We overcome this problem by
comparing to the native molecule through RMSD. The
RMSD values for the conformation ensemble are found to
be distributed bimodally, by simply choosing the lowest
third of models as ranked by RMSD we are sure not to be
falling into the wrong enantiomer.

Contact maps and distance restraints
We used two definitions of contact maps in this study: Cα
and Cβ. Two atoms were considered to constitute a con-
tact when their euclidean distances where below the
given cut-off. In the Cα model the backbone Cα atom for
each residue is chosen, whilst for the Cβ model the Cβ
atom of the side chain of each residue is taken, except for
Glycine where we use the Cα atom.

For the reconstruction procedure we then need the
contacts to be translated into distance restraints.
Restraints were generated only for pairs of atoms corre-
sponding to the contacts: Cα atoms or Cβ atoms for each
of the cases above. As upper bound of the restraint we
used directly the distance cut-off, while for the lower
bound value we used distance statistics derived from the
PDB database. We proceeded by plotting the distance dis-
tribution for all Cα or Cβ atoms and then choosing as our
lower cutoff the value of the 90th percentile of the distri-
bution.

Distance Geometry
The distance geometry procedure in TINKER is an
implementation of the established distance geometry
algorithms used for NMR protein structure determina-
tion, see [20]. Crippen and Havel proposed the EMBED
algorithm consisting of three steps: bounds smoothing,
embedding and regularization (coordinate refinement).
The bounds smoothing is the procedure by which the ini-

tial sparse set of distance restraints is extended to obtain
a full set of distance ranges for all pairs of atoms. This is
achieved by means of the triangle inequality starting from
the distances of known pairs. Once distance restraints are
found for all pairs one only needs to select at random a
particular value from within the restraints. There are sev-
eral strategies for this selection [40], the most effective
one is metrization. To perform metrization one proceeds
starting at a random atom, choosing distances for it and
then readjusting the whole matrix through the triangle
inequality procedure. By doing this for all atoms the
result is a sampled distance matrix where the triangle
inequality is fulfilled or in other words a metric matrix.
Once we have a distance matrix of exact distances for all
pair of atoms a very good approximation of the 3-dimen-
sional embedding can be obtained through the 3 largest
eigenvalues of a certain transformation of the distance
matrix. The result of the embedding is a good solution to
the given distance restraints, however the geometry of
the molecule is still not good enough especially with
regards to the bond distances and angles. Thus the need
for a final regularization step consisting in the minimiza-
tion of an error function of the restraint violations usually
done through simulated annealing.

Data set
In the selection of the data set we aimed at covering a
diverse set of structures to ensure generality of the results
obtained. We used a non-redundant PDB dataset of 60
proteins selected from SCOP release 1.73 [41]. Only
monomeric, monodomain proteins from the four main
SCOP classes and from highly populated folds are cho-
sen. All proteins have resolutions better than 3.0Å, R-fac-
tor lower than 0.3 as well as no missing or ambiguous
conformational data. A subset of 12 proteins, three per
SCOP class, is selected from the dataset as used by Sathy-
apriya et al. [30]. From each group of 3 proteins, two fall
in the size range of 100 - 120 amino acids and the third is
three times as big as the other two. The PDB codes of the
subset of proteins are given in Table 1.
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