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Abstract

adverse drug reactions.

bioinformatics functionality.

Background: Recently there has been an explosion of new data sources about genes, proteins, genetic variations,
chemical compounds, diseases and drugs. Integration of these data sources and the identification of patterns that go
across them is of critical interest. Initiatives such as Bio2RDF and LODD have tackled the problem of linking biological
data and drug data respectively using RDF. Thus far, the inclusion of chemogenomic and systems chemical biology
information that crosses the domains of chemistry and biology has been very limited

Results: We have created a single repository called Chem2Bio2RDF by aggregating data from multiple
chemogenomics repositories that is cross-linked into Bio2RDF and LODD. We have also created a linked-path
generation tool to facilitate SPARQL query generation, and have created extended SPARQL functions to address
specific chemical/biological search needs. We demonstrate the utility of Chem2Bio2RDF in investigating
polypharmacology, identification of potential multiple pathway inhibitors, and the association of pathways with

Conclusions: We have created a new semantic systems chemical biology resource, and have demonstrated its
potential usefulness in specific examples of polypharmacology, multiple pathway inhibition and adverse drug reaction
- pathway mapping. We have also demonstrated the usefulness of extending SPARQL with cheminformatics and

Background

Recent advances in chemical & biological sciences have
lead to an explosion of new data sources about genes,
proteins, genetic variations, chemical compounds, dis-
eases and drugs. Through integrated and intelligent data
mining, this information could provide important
insights into the complex functions of biological systems
and the actions of chemical compounds or drugs on these
systems. However, this can only be achieved when data is
semantically integrated (i.e. using multiple data sources
that are connected in meaningful ways) and in particular
when chemical and biological resources are brought
together in such a framework [1,2].
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There are critical problems in biology that can only be
answered through computational analysis of this kind of
integrated chemical and biological information. For
example, it is considered increasingly important to profile
existing and potential new drugs for their effects across
many protein targets, not just a single target of interest
(this is known as polypharmacology [3,4]). Only by
exploring the relationships of the drugs to a wide body of
target information can we determine this profile. Further,
the polypharmacologic action of drugs on targets that fall
within the same pathway can determine the drug's ability
to interrupt pathways at multiple points, and thus pro-
vide more robust efficacy. Relationships between these
pathways and potential side effects of drugs or chemicals
that are being considered as drugs (such as undesirably
inhibition of a pathway) can only be determined by large-
scale analysis of the impact of the chemicals on known
pathway systems [5,6]. The need to address these kinds of
problems has led to the emergence of the field of Systems
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Chemical Biology [7], a field which covers the computa-
tional analysis of integrated chemical and biological
information for the enhancement of biological under-
standing, including chemogenomics (the relationship of
compounds to genes specifically).

Implementing such an integrated system involves the
creation of large networks of linked compounds, protein
targets, genes, pathways, drugs, diseases and side effects
from multiple, heterogeneous sources. It must be possible
to query these data in ways that go beyond querying of a
single source and allow inferences that cross domains: for
example a positive experimental test of a chemical com-
pound in a biological enzymatic assay where the enzyme
is associated with a particular metabolic pathway consti-
tutes a probable action of that compound on the pathway.
Currently, there are significant barriers to carry out this
kind of analysis. Many of the needed data sources overlap
and cover similar data (we refer to them as homogenous
or semi-homogenous data sources) but with slightly dif-
ferent foci. All data sources tend also to be published in
very diverse formats (text files, scholarly journal articles,
XML, relational databases, and so on) and may be struc-
tured or unstructured. The semantic relationship of these
datasets to each other is often unclear.

Recent Semantic Web technologies provide efficient
ways to integrate heterogeneous data. The Semantic Web
[8] initially proposed by Tim Berners-Lee, has demon-
strated its utility in the life sciences, healthcare and drug
discovery [2,9-11]. Various semantic languages have been
established to represent and query semantic meaning of
data and relationship. In this work we use RDF [12] to
model chemogenomic and systems chemical biology data
and use SPARQL [13] to query them.

A variety of RDF-based Semantic Web resources have
already been created for biological data and drug data
separately. Bio2RDF [14] provides a platform and a strat-
egy for generation and querying of biological RDF data in
a distributed framework, with around 4 billion RDF tri-
ples across over 30 biological resources. Linking Open
Drug Data (LODD) [15] led by the W3C Semantic Web
Health Care and Life Sciences Interest Group (HCLS IG)
links RDF data from the Linked Clinical Trials dataset
derived from ClinicialTrial.gov, DrugBank (a repository
of almost 5000 FDA-approved drugs), and many other
sources, with more than 8.4 million RDF triples and
388,000 links to external data sources. Similar efforts are
YeastHub [16], LinkHub [17], BioDash [18] and BioGate-
way [19].

Approaches to querying across heterogeneous data
sources in the life sciences have been discussed previ-
ously [20]. In the work reported in this paper, we have
created an RDF resource for integrated chemical and bio-
logical information. We have further employed methods
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to facilitate the easy generation of SPARQL queries and
have implemented a variety of searching options for the
RDF datasets by extending the SPARQL query language
to include domain-specific cheminformatics and bioin-
formatics functionality. We refer to this combination of
new RDF triples, links to Bio2RDF and LODD, and
searching capabilities as Chem2Bio2RDF. We present
three specific examples of how Chem2Bio2RDF can be
used in the previously described important areas of
polypharmacology, pathway inhibition and adverse drug
reaction analysis.

Methods

Datasets

Our datasets are organized into six categories based on
the kinds of biological and chemical concepts they con-
tain. These categories are: chemical & drug, protein &
gene, chemogenomics, systems (i.e., PPI and pathway),
phenotype (i.e., disease and side effect) and literature.
Some data sources are listed in multiple categories. Some
of the data used were previously employed in relational
database format in our prior work [3] and in this case
they were simply converted into RDF/XML via a D2R
server [21]. For the rest of the datasets, we acquired the
raw dataset (by downloading from web sites), and con-
verted the data into our relational database using custom-
ized scripts. These are then published as RDF through
the D2R server. The data can be queried via a D2R
SPARQL endpoint.

We adopted PubChem Compound ID (CID) as the
identifier for compounds, and UniProt ID for protein tar-
gets. The compounds represented by other data formats
(e.g., SMILES, InChi and SDF) were mapped to CID via
InChi keys. A detailed description of each of the datasets
can be found at http://chem2bio2rdf.org/datasets.html.
All the triples are stored together and the whole set is
called Chem2Bio2RDF dataset (Figure 1).

Storage and querying architecture

We developed a schema to classify the concepts and the
RDF resources in Chem2Bio2RDF. The schema file can
be downloaded from http://chem2bio2rdf.org/down-
load.html. The RDF data can be explored and queried in
our website http://chem2bio2rdf.org/. Figure 2 shows the
generalized query architecture of Chem2Bio2RDF and
how it links with the other sources (including Bio2RDF
and LODD).

We linked our data to LODD and Bio2RDF using the
owl:sameAs construct. Since LODD and BioRDF have
strict namespace definition and dereferenceable URIs, it
is straightforward to link them simply via a D2R mapping
file. For example, the drug Lepirudin http://
chem?2bio2rdf.org/drugbank/resource/drugbank drug/
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DB00001 is linked to the following URIs: http://
bio2rdf.org/drugbank drugs:DB00001, http://www.dbpe-
dia.org/resource/Lepirudin, http://www4.wiwiss.fu-ber-
lin.de/dailymed/resource/ingredient/Lepirudin, and
http://www4.wiwiss.fu-berlin.de/drugbank/resource/

drugs/DB00001

Implementation of cheminformatics and bioinformatics
functionality in SPARQL

SPARQL is a query language for RDF and provides func-
tions and syntax to satisfy generalized querying needs.
However, these basic functions are not able to address
specific chemical/biological search needs. We extended
SPARQL using the ARQ [22] in Jena with cheminformat-
ics functionality from the Chemistry Development Kit
(CDK) [23], ChemBioGrid [24], and bioinformatics func-
tionality from BioJava [25]. We can now thus perform a

diverse set of functions in a query including chemical
similarity searching, protein similarity searching, and
drug-like compound selection. For the chemical similar-
ity search, we add two extending functions: fingerprint
and tanimoto mapping to the CDK functions getFinger-
print and Tanimoto.calculate. The fingerprint function
generates a string of 166 binary descriptors that represent
the presence (denoted as 1) or absence (denoted as 0) of
common 2D structural features in a chemical as defined
by the popular MACCS structural keys [26]. The Tanim-
oto Coefficient is used to calculate the similarity between
these pairs of descriptors [27]. The Tanimoto coefficient
between two chemicals A and B is defined as:

Nc

Tanimoto = ————=———
NA+NB-NC
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Figure 2 Chem2Bio2RDF querying architecture. Chem2Bio2RDF is linked to Bio2RDF, LODD and other RDF resources. LPG refers to prototype
methods used for automatically generating links between two given objects and automated generation of SPARQL queries.

Where N is the number of bits that are set in the fin-
gerprints of both A and B, and N, and Ny are the total
number of bits set in A and B, respectively.

Results
Creation of the Chem2Bio2RDF repository
We have created a single repository called

Chem2Bio2RDF by aggregating data from multiple
repositories including PubChem Bioassay [28], DrugBank
[29], KEGG Ligand [30], CTD [31], BindingDB [32],
PharmGKB [33], MATADOR [34], and a number of small
QSAR sets available on the web [35]. A schema of the
data sources has been created, and the data in these sets
are represented as RDF triples, that link chemical com-
pounds (as identified by a PubChem ID) with targets,
genes, side effects, diseases and publications (Figure 1).
Table 1 lists the datasets along with the number of triples
in Chem2Bio2RDF. We have created a variety of proto-

type tools for querying the data, including one that allows
automated generation of links between dataset resources
(Figure 3)

Case study 1: Linking DrugBank and PubChem to
investigate Dexamethasone polypharmacology

Since approximately 35% of known drugs have more than
one target, the efficacy of many drugs is increasingly
thought to come from their effect on multiple targets.
This is known as polypharmacology. We recently studied
the utility of data in PubChem for identifying cases of
polypharmacology [3] as well as how chemical and bio-
logical data can be mined on a large scale [36]. We can
now extend this, using Chem2Bio2RDF, to incorporate
data from DrugBank as well as PubChem. In particular, if
a compound has the same multiple targets as a marketed
drug but has a different chemical structure, that com-
pound could be a candidate for a novel new therapy. Con-
versely, if we have already established polypharmacologic
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Table 1: Chem2Bio2RDF datasets: some data sources map to multiple RDF resources.

Database Resource name Number of RDF triples

PubChem Compound compound 233852
PubChem BioAssay pubchem_bioassay 1715247
ChEBI chebi 2237330
KEGG kegg_ligand 96000
KEGG kegg_interaction 70029
KEGG kegg_pathway_protein 84760
CTD ctd_interaction 2443826
CTD ctd_chem_disease 2025513
BindingDB bindingdb_ligand 223818
BindingDB bindingdb_interaction 800016
PharmGKB pharmgkb_drugs 14760
PharmGKB Pharmgkb_genes 340808
PharmGKB pharmgkb_relations 73276
PharmGKB pharmgkb_diseases 9591
DrugBank drugbank_drug 47640
DrugBank drugbank_interaction 111001
Public QSAR sets qsar 27269
MATADOR matador 253488
UNIPROT uniprot 34951
HPRD hprd 408177
Reactome reactome 21985
DIP dip 1113840
OMIM omim 23432
SIDER sider 305510
PubMed pubmed2compound 269178
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action of known drugs, can we find other interesting
drug-like compounds that also show similar polypharma-
cology? These questions can be formulated as a query:
find all the drug-like compounds in PubChem BioAssay
that share at least two targets with a drug in DrugBank.
We can now translate this into a SPARQL query of
Chem2Bio2RDF (in this example using Dexamethasone -
an anti-inflammatory 9-fluoro-glucocorticoid which
interacts with six proteins - as the drug of interest). The
exact SPARQL query used is available on the
chem?2bio2rdf.org website.

The query starts with retrieving the active compounds,
followed by the identification of targets, which are then
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linked to drugs in DrugBank (Figure 4). In PubChem Bio-
Assay, outcome represents the binary result (1 is inactive,
2 is active) and the normalized score measures the activ-
ity (0-100). We select the compounds with activity score
greater than 50. In addition, since it is expected that
retrieved compounds are drug-like, the function
ruleofFive is used to filter only those compounds that
pass four drug-likeness rules. One path is then created if
the compound is able to link to the input drug (i.e., Dex-
amethasone) by sharing one common target, however, as
Figure 4 shows, only compound that has at least two
paths reaching the input drug shows polypharmacology,
thus we group the paths, and select the compound with
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the number of link paths greater than 2 as the output.
This query process is illustrated in Figure 5.

Nine of retrieved active compounds are active against
at least two of the same protein targets, all of which are
drug-like (in terms of Lipinski's Rule of Five). These com-
pounds make sense from a medicinal chemistry perspec-
tive. For example, dexamethasone and one result tocris-
1126 (CID: 6603742) have similar activities in NFKB1 and
NR3C1, because they only have slight difference in stere-
ochemistry. The activity of dexamethasone is also similar
to that of another search hit, hydrocortisone (CID: 5754),
where the addition of the methyl and fluorine to hydro-
cortisone has no effect on the activity but improves its
drug-likeness as measured by the rule-of-five. In our gen-
eralized mapping process, we found 55 significant pro-
teins in DrugBank that are studied in PubChem BioAssay.
27 drugs have corresponding active compounds showing
polypharmacology.

Case study 2: Linking KEGG/Reactome Pathways and
PubChem to identify potential multiple pathway inhibitors
for MAPK

Traditional drug discovery approaches focus on identify-
ing a potential target in a disease-related biological path-
way, and then finding a drug molecule to interact with
this target. However, divergent and redundant pathways
in humans often enable a system to keep functioning if
one pathway is blocked as there is an alternative pathway
to compensate [37]. This can get quite complex, as illus-
trated in Figure 6, where it is inappropriate to inhibit the
upstream node A, which has a downstream node B that
performs other biological functions. Therefore, in order
to block the whole pathway, the drug has to inhibit targets
C and D, which are located in the separated branches. If
the compound in PubChem is active against C and D, it
might be of interest to further investigate as it has efficacy
toward the disease raised from the dysfunction of the
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pathway. We can therefore begin to identify such com-
pounds with the question: find all the compounds in Pub-
Chem that are active towards at least two targets that are
in a given pathway. We can formalize this into a
Chem2Bio2RDF query firstly by generating a rule linking
compounds with pathways via UniProt. This rule can be
illustrated as: compound « is targeting protein y, and pro-

P
itz @ ¢ TD

Figure 6 lllustration of polypharmacology in pathways. The com-
pound is active against two proteins that are located in the two
branches of the pathway that is associated with one disease. Targeting
either node C or node D is not able to block the whole pathway.

tein y belongs to pathway z, thus we reason that com-
pound x is related to pathway z. We can then implement
this rule in a SPARQL query (the rule and the query are
supplied on the chem2bio2rdf.org website).

The rule generates triples consisting of compound and
pathway, which are further refined by its activity (out-
come is 2) and pathway name (including MAPK signal-
ling pathway). Finally, like the linking in case 1, the results
are grouped and only compounds that are multiple path-
way inhibitors are selected. This is illustrated in Figure 7.

The MAPK signalling pathway plays important roles in
coordinating cell proliferation, differentiation and death.
The inhibitors of proteins involved in the pathway are
widely studied, but the robustness of this pathway leads
to drug resistance. Cisplatin, for example, is used to treat
ovarian cancer but the development of resistant cell pop-
ulation limits its efficiency in long-term trials. It has been
suggested that targeting the ERK-MKP-1 system could
destroy this pathway and further overcome Cisplatin
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resistance in human ovarian cancer treatment [38]. One
compound (CID: 573747) was found in the retrieved
results that has never been reported in the literature, but
which can apparently inhibit both ERK2 and MKP-1. We
might consider this a candidate to provide a new direc-
tion for the design of inhibitors of both ERK and MKP-1
to reduce Cisplatin resistance. After iterating all the
known pathways, we hit 36 pathways, in which at least
two proteins are inhibited simultaneously by at least one
compound in PubChem.

Case study 3: Linking KEGG and DrugBank to associate
pathways with drug hepatotoxicity

Adverse drug reactions are of serious consequence and
are often the subject of rigorous investigation in pharma-
ceutical R&D processes. Here, we apply Chem2Bio2RDF
to study the most significant pathways that are associated
with a given adverse drug reaction. The association
between side effect and pathway is made using the path-
ways' gene components that are targets of drugs with
known side effects. More specifically, we consider a gene
is related to a certain side effect if and only if at least two
drugs targeting this gene have reported the same side
effect. Further, if there exists a pathway that contains
more than 2 gene targets that are associated with that
side effect, an associative relationship between the path-
way and side effect can be drawn. Clearly, the more these
associative paths can be discovered, the stronger the evi-
dence of such pathway-adverse drug effect association it
becomes.

In this study, we examined hepatotoxicity (liver toxic-
ity) as the side effect. Drug induced liver injury is a major
cause of safety-related drug withdrawal (e.g., Ticrynafen,
Benoxaprofen, Bromfenac, Troglitazone, Nefazodone)
both before and after a drug goes to market, and thus
identifying pathways in the body that might be associated
with liver function and toxicity is important. Here we
define drugs associated with hepatotoxicity as those with
side effect terms that include mnecrosis, hepatitis and
hepatomegaly.

We posed the specific question: find the top 5 pathways
in the KEGG pathway dataset that contain at least two
efficient targets that have drugs that are associated with

Table 2: PPl data source distribution.

Data source # of records percentage
HPRD 35645 52.6%

DIP 32976 48.7%

ALL 67769
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hepatotoxicity. A gene target is considered as efficient if
the gene is targeted by at least two drugs that cause the
given side effect. This question can be formed into a
SPARQL  query which is available on the
chem?2bio2rdf.org website.

The graph linking these terms, pathways, targets and
drugs is shown in Figure 8, which includes the top 5 path-
ways identified from the search. They share the top 5
pathways: Arachidonic acid metabolism, VEGF signalling
pathway, Neuroactive ligand-receptor interaction, small
cell lung cancer, and pathways in cancer. The mechanism
for hepatomegaly is slightly different. The top 5 pathways
of hepatomegaly contain the calcium signalling and gap
junction pathway, which are not involved in the hepatic
necrosis and hepatitis. Literature review [39] shows that
those pathways are highly correlated with liver injury. For
instance, the increase concentration of calcium in the cal-
cium signalling pathway will cause the damage of hepatic
cell. The targets we discovered are also known as the
major targets for liver injury based on literature reviews
[40].

Discussion

The difficulties of polypharmacology are to explore the
combination of targets and then to identify active com-
pounds against the sets of targets. Linking between
chemical, biological, systems, and phenotype data is dem-
onstrated to be a promising way to address the problems.
For example, linking between bioassay data and market
drug data enables to explore the compounds similar to
drugs that already show polypharmacology. Quinacrine,
which has been used as an anthelmintic and in the treat-
ment of giardiasis and malignant effusions, shows polyp-
harmacology. One compound Loxapine (CID: 71399) is
found to show similar polypharmacology with quina-
crine. Loxapine is active in both BioAssay 859 and BioAs-
say 377, whose targets are CHRMI1 and ABCBI1
respectively. As Loxapine tends to be hydrophobic,
medicinal chemists would not be surprised that it is
active in BioAssay 377, which identifies substrates (or
inhibitors) for multidrug resistance transporter. It is also
reported that Loxapine might get metabolized to Amox-
apine that is a considerably weak antagonist in BioAssay
859 [41]. Other than Loxapine, many identified com-
pounds such as Oxybutynin were proved to show polyp-
harmacology by literature reviews.

By linking bioassay data to pathways, we can identify
the compounds that inhibit at least two of proteins in a
pathway, leading to the pathway dysfunction. For exam-
ple, compound CID 6419769 could interact with proteins
HSD11B1 and AKR1C4, which are in the different
branches of C21-Steroid hormone metabolism pathways.
The blocking of the pathway might be able to partially
explain why CID 6419769 has side effects [42]. In pro-
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Table 3: Pathway data source distribution.
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Data Source Protein records

Pathway records

KEGG 8172 81.0% 192 34.8%
Reactome 4397 43.6% 360 65.2%
ALL 10091 552

tein-protein interaction networks, two proteins are con-
nected if both physically interact. In terms of
polypharmacology, the deletion of one protein does not
affect the whole network, but if two connected nodes
with high degree were deleted, the network would be dis-
turbed. For example, by linking bioassay to PPI, we found
that two compound (CID: 460747 and CID: 9549688) are
active against two high degree proteins (PLK1 and TP53)
which are associated with cancer.

We note that there are parallel contributions from dif-
ferent data sources and vendors (for example, KEGG and
Reactome both provide pathway data). We think that an
important part if this work is not just the integration of
heterogeneous data, but also the integration of sources
covering homogenous kinds of data. Tables 2, 3, 4 show
the percentage contribution of unique information for
homogeneous sources for protein-protein interaction
(PPI), pathway, and chemogenomics data respectively.
For PPI, HPRD and DIP have 35645 and 32976 unique
protein pairs respectively, and the total number of unique
pairs in two datasets is 67769. Each dataset contributes
almost half of the pairs, and both share very little number
of common pairs. The PPI network would not be com-
plete if either dataset were ignored. Pathway is more
complicated than PPI, since each organization could have

Table 4: Chemogenomics data source distribution

Data source # of records percentage
BindingDB 36839 12.1%

CTD 95786 31.5%
DrugBank 10381 3.4%
Matador 15843 5.2%
PubChem 146088 48.1%
QSAR 2148 0.7%

ALL 303773

its own definition of pathway, which makes the whole
integration very difficult. For example, a pathway in Reac-
tome is usually composed by a small number of proteins,
although the total number of pathways is more than
KEGG, the proteins involved in Reactome are far less
than KEGG. We are not able to judge which one is better,
thus we have to consider all pathway datasets together.
For the chemogenomics data, a chemical protein interac-
tion is recorded as one entry, and all the unique interac-
tions were derived from 6 datasets. We did not consider
another two chemogenomics data sets (KEGG Ligand
and PharmGKB), as KEGG Ligand includes only meta-
bolic molecules rather than chemicals designed for drug
discovery and many drugs in PharmGKB only provide
names from which the chemical identifier is not able to
be linked to compound. Each dataset only contributes a
small portion of interactions so that it is not able to repre-
sent all chemogenomics data. PubChem BioAssay uses
high throughput screening which allows testing thou-
sands of compounds per experiment, thus yielding a large
number of chemical protein interactions, but the number
of targets studied in PubChem is small compared CTD.
The benefit of integration has ramifications for linking
too. For example, if we take an example in linking chemi-
cal to pathway via chemogenomics data, chemical has 6
directions (6 chemogenomics datasets) to associate with
a gene that is mapped to multiple pathways in either
KEGG or Reactome. We randomly picked up 100 drugs
from SIDER and linked the drug to pathway through 6
chemogenomics datasets. In another four experiments,
we only selected one dataset for one domain instead of
using all datasets. If only CTD is selected for chemog-
enomics data and only KEGG is selected for pathway, the
number of paths linking from the 100 drugs to pathways
and the number of pathways we found are 6,863 and 178
respectively, compared to 12,240 and 350 when all che-
mogenomics and pathway data sources were selected
(Table 5).

Conclusions

We have created a new systems chemical biology
resource called Chem2Bio2RDF that integrates small
molecule, target, gene, pathway and drug information
and permits cross-source linking with LODD and
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Table 5: Results of linking sample drugs to pathways.
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Dataset used paths genes pathways
CTD, KEGG 6863 763 178
CTD, Reactome 1157 547 146
PubChem, KEGG 522 33 86
PubChem, Reactome 97 24 18
ALL 12240 1181 350
5. Scheiber J, Chen B, Milik M, Sukuru SC, Bender A, Mikhailov D, Whitebread

Bio2RDF. We have demonstrated the utility of this
approach in specific examples of polypharmacology, mul-
tiple pathway inhibition, and adverse drug reaction -
pathway mapping. We also demonstrated the usefulness
of extending the SPARQL query language with chemin-
formatics and bioinformatics functionality, and have dis-
cussed the importance of integrating not just
heterogeneous data but data sources which cover the
same kinds of data.

We propose three further developments of this work.
First, we hope to include more resources and datasets
into Chem2Bio2RDF as they become available. Second,
we see a variety of applications of using large-scale identi-
fication and ranking of paths of interest between data
sources, and we are working on developing methods for
this. Third, we are linking Chem2Bio2RDF with a variety
of network and data visualization tools.

Authors' contributions

BC carried out the majority of the implementation of Chem2Bio2RDF, super-
vised by YD and DJW. BC, HW and QZ created the data sources. XD worked on
the architecture. DJ developed the SPARQL extensions. HW worked on the case
3 study. DJW assembled this paper from a previous white paper written by BC,
YD and DJW. All contributed to the intellectual evolution of this project. All
authors have read and approved the final manuscript.

Acknowledgements
We thank Li Huang for helping make the figures.

Author Details

1School of Informatics and Computing, Indiana University, Bloomington, IN,
USA and 2School of Library and Information Science, Indiana University,
Bloomington, IN, USA

Received: 23 November 2009 Accepted: 17 May 2010
Published: 17 May 2010

References

1. Wild DJ: Mining large heterogeneous datasets in drug discovery. Expert
Opinion on Drug Discovery 2009, 4(10):995-1004.

2. SlaterT, Bouton C, Huang ES: Beyond data integration. Drug Discovery
Today 2008, 13(13-14):584-9.

3. Chen B, Wild DJ, Guha R: PubChem as a Source of Polypharmacology. J
Chem Inf and Model 2009, 49(9):2044-2055.

4. Hopkins AL: Network Pharmacology: The Next Paradigm in Drug
Discovery. Nat. Chem. Biol 2008, 4:682-690.

20.

21.

22.
23.

24.

S, Hamon J, Azzaoui K, Urban L, Glick M, Davies JW, Jenkins JL: Gaining
insight into off-target mediated effects of drug candidates with a
comprehensive systems chemical biology analysis. J Chem Inf Model
2009, 49(2):308-17.

Xie L, Li J, Xie L, Bourne PE: Drug discovery using chemical systems
biology: identification of the protein-ligand binding network to
explain the side effects of CETP inhibitors. PLoS Comput Biol 2009,
5(5):e1000387.

OpreaTl, Tropsha A, Faulon J, Rintoul MD: Systems chemical biology. Nat
Chem Biol 2007, 3:447-450.

Berners-Lee T, Handler J, Lassila O: The semantic web. Scientific American
2001,

Neumann EK: A life science semantic web: are we there yet? Science
2005, 283:22-5.

Neumann EK, Miller E, Wilbanks J: What the semantic web could do for
the life sciences. Drug Discovery Today:BIOSILICO 2006, 2:228-34.

Chen H, Ding L, Wu Z, Yu T, Dhanapalan L, Chen JY: Semantic web for
integrated network analysis in biomedicine. Brief Bioinform 2009,
10(2):177-92.

RDF  [http://www.w3.0rg/RDF]

SPARQL [http://www.w3.org/TR/rdf-spargl-query/]

Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J: Bio2RDF: Towards
a mashup to build bioinformatics knowledge systems. JBiomed Inform
2008, 41:706-716.

Jentzsch A, Zhao J, Hassanzadeh O, Cheung K, Samwald K, Andersson B:
Linking open drug data. Proceedings of the International Conference on
Semantic Systems (I-SEMANTICS'09) 2009; Graz, Austria .

Cheung K, Yip K, Smith A, Deknikker R, Masiar A, Gerstein M: YeastHub: A
semantic web use case for integrating data in the life sciences domain.
Bioinformatics 2005, 21(Suppl 1):i85-96.

Villanueva-Rosales N, Osbahr K, Doumontier M: Towards a Semantic
Knowledge base for Yeast biologists. JBiomed Inform 2008,
41(5):779-89.

Neumann EK, Quan D: Biodash: a semantic web dashboard for drug
development. Pac Symp on Biocomput 2006, 11:176-187.

Antezana E, Blondé W, Egana M, Rutherford A, Stevens R, De Baets B,
Mironov V, Kuiper M: BioGateway: a semantic systems biology tool for
the life sciences. BMC Bioinformatics 2009, 10(Suppl 10):511.

Cheung K, Frost HR, Marshall MS, Prud'hommeaux E, Samwald M, Zhao J,
Paschke A: A journey to Semantic Web query federation in the life
sciences. BMC Bioinformatics 2009, 10(Suppl 10):S10.

Bizer C, Cyganiak R: D2R Server - Publishing Relational Databases on the
Semantic Web. Poster at the 5th International Semantic Web Conference
2006.

ARQ [http://www.openjena.org/ARQ]

Steinbeck C, Han Y, Kuhn'S, Horlacher O, Luttmann E, Willighagen EL: The
Chemistry Development Kit (CDK): An Open-Source Java Library for
Chemo- and Bioinformatics. J Chem Inf Comput Sci 2003, 43(2):493-500.
Dong X, Gilbert KE, Guha R, Heiland R, Kim J, Pierce ME, Fox GC, Wild DJ:
Web service infrastructure for chemoinformatics. J Chem Inf Model
2007,47(4):1303-1307.



http://www.biomedcentral.com/1471-2105/11/255
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18598913
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18936753
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19434832
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19436720
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17637771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19304873
http://www.w3.org/RDF
http://www.w3.org/TR/rdf-sparql-query/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18472304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18562252
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19796395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19796394
http://www.openjena.org/ARQ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12653513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17602467

Chen et al. BMC Bioinformatics 2010, 11:255 Page 13 0f 13
http://www.biomedcentral.com/1471-2105/11/255

25. Holland RC, Down TA, Pocock M, Prli¢ A, Huen D, James K, Foisy S, Drager
A, Yates A, Heuer M, Schreiber MJ: BioJava: an open-source framework
for bioinformatics. Bioinformatics 2008, 24(18):2096-2097.

26. Durant JL, Leland BA, Henry DR, Nourse JG: Reoptimization of MDL Keys
for Use in Drug Discovery. JChem Inf Comput Sci 2002, 42(6):1273-1280.

27. Holliday JD, Hu CY, Willett P: Grouping of coefficients for the calculation
of inter-molecular similarity and dissimilarity using 2D fragment bit-
strings. Comb Chem High Throughput Screen 2002, 5(2):155-66.

28. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH: PubChem: a public
information system for analyzing bioactivities of small molecules. Nuc/
Acids Res 2009, 37:W623-W633.

29. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang
Z, Woolsey J: DrugBank: A Comprehensive Resource for in Silico Drug
Discovery and Exploration. Nucleic Acids Res 2006, 34:D668-72.

30. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S,
Katayama T, Araki M, Hirakawa M: From genomics to chemical genomics:
new developments in KEGG. Nucleic Acids Res 2006, 34:D354-357.

31. Mattingly CJ, Colby GT, Forrest JN, Boyer JL: The Comparative
Toxicogenomics Database (CTD). Environ Health Perspect 2003,
111(6):793-795.

32. LiuT,LinY, Wen X, Jorissen RN, Gilson MK: BindingDB: a web-accessible
database of experimentally determined protein-ligand binding
affinities. Nucl Acids Res 2007, 35:D198-D201.

33. Klein TE, Chang JT, Cho MK, Easton KL, Fergerson R, Hewett M, Lin Z, Liu Y,
Liu'S, Oliver DE, Rubin DL, Shafa F, Stuart JM, Altman RB: Integrating
Genotype and Phenotype Information: An Overview of the PharmGKB
Project. The Pharmacogenomics Journal 2001, 1:167-170.

34. Gunther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, Ahmed
J, Urdiales EG, Gewiess A, Jensen LJ, Schneider R, Skoblo R, Russell RB,
Bourne PE, Bork P, Preissner R: SuperTarget and Matador: resources for
exploring drug-target relationships. Nucl Acids Res 2008, 36:D919-922.

35. QSARsets [http//www.cheminformatics.org]

36. Wang H, Klinginsmith J, Dong X, Lee AC, Guha R, Wu' Y, Crippen GM, Wild
DJ: Chemical data mining of the NCI human tumor cell line database. J
Chem Inf Model 2007, 47(6):2063-2076.

37. Keith CT, Borisy AA, Stockwell BR: Multicomponent Therapeutics for
Networked Systems. Nat Rev Drug Discovery 2005, 4:71-78.

38. Wang J, Zhou JY, Wu GS: ERK-Dependent MKP-1-Mediated Cisplatin
Resistance in Human Ovarian Cancer Cells. Cancer Res 2007, 67:3-1194.

39. Jones BE, Czaja MJ: Il Intracellular signaling in response to toxic liver
injury. AmJPhysiol 1998, 275(5 Pt 1):G874-878.

40. Gong G, Waris G, Tanveer R, Siddiqui A: Human hepatitis C virus NS5A
protein alters intracellular calcium levels, induces oxidative stress, and
activates STAT-3 and NF-kappa B. Proc Natl Acad Sci USA 2001,
98(17):9599-9604.

41. Coupet J, Fisher SK, Rauh CE, Lai F, Beer B: Interaction of Amoxapine with
Muscarinic Cholinergic Receptors - an in Vitro Assessment. EurJ
Pharmacol 1985, 112:231-235.

42, Andrews RC, Rooyackers O, Walker BR: Effects of the 11 Beta-
hydroxysteroid Dehydrogrenase Inhibitor Carbenoxolone on Insulin
Sensitivity in Men with Type 2 Diabetes. JClin Endocrinol Metab 2003,
88:285-291.

doi: 10.1186/1471-2105-11-255

Cite this article as: Chen et al, Chem2Bio2RDF: a semantic framework for
linking and data mining chemogenomic and systems chemical biology data
BMC Bioinformatics 2010, 11:255

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18689808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11966424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19498078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12760826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17145705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11908751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17942422
http://www.cheminformatics.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17915856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9815013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11481452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4029261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519867

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Datasets
	Storage and querying architecture
	Implementation of cheminformatics and bioinformatics functionality in SPARQL

	Results
	Creation of the Chem2Bio2RDF repository
	Case study 1: Linking DrugBank and PubChem to investigate Dexamethasone polypharmacology
	Case study 2: Linking KEGG/Reactome Pathways and PubChem to identify potential multiple pathway inhibitors for MAPK
	Case study 3: Linking KEGG and DrugBank to associate pathways with drug hepatotoxicity

	Discussion
	Conclusions
	Authors' contributions
	Acknowledgements
	Author Details
	References

